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Gelfand–Tsetlin Polytopes and
Feigin–Fourier–Littelmann–Vinberg Polytopes
as Marked Poset Polytopes

Federico Ardila†, Thomas Bliem‡ and Dido Salazar§

Department of Mathematics, San Francisco State University, San Francisco, CA, USA

Abstract. Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope
and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We
generalize his result to a wider family of polytopes constructed from a poset P with integers assigned to some of its
elements.

Through this construction, we explain combinatorially the relationship between the Gelfand–Tsetlin polytopes (1950)
and the Feigin–Fourier–Littelmann–Vinberg polytopes (2010, 2005), which arise in the representation theory of the
special linear Lie algebra.

We then use the generalized Gelfand–Tsetlin polytopes of Berenstein and Zelevinsky (1989) to propose conjectural
analogues of the Feigin–Fourier–Littelmann–Vinberg polytopes corresponding to the symplectic and odd orthogonal
Lie algebras.

Résumé. Stanley (1986) a montré que chaque ensemble fini partiellement ordonné permet de définir deux polyèdres,
le polyèdre de l’ordre et le polyèdre des chaı̂nes. Ces polyèdres ont le même polynôme de Ehrhart, bien qu’ils soient
tout à fait distincts du point de vue combinatoire. On généralise ce résultat à une famille plus générale de polyèdres,
construits à partir d’un ensemble partiellement ordonné ayant des entiers attachés à certains de ses éléments.

Par cette construction, on explique en termes combinatoires la relation entre les polyèdres de Gelfand-Tsetlin (1950)
et ceux de Feigin-Fourier-Littelmann-Vinberg (2010, 2005), qui apparaissent dans la théorie des représentations des
algèbres de Lie linéaires spéciales. On utilise les polyèdres de Gelfand-Tsetlin généralisés par Berenstein et Zelevinsky
(1989) afin d’obtenir des analogues (conjecturés) des polytopes de Feigin-Fourier-Littelmann-Vinberg pour les algèbres
de Lie symplectiques et orthogonales impaires.
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1 Introduction
Consider the simple complex Lie algebra sln. The irreducible representations of sln are parametrized up
to isomorphism by dominant integral weights, i.e., weakly decreasing n-tuples of integers determined up
to adding multiples of (1, . . . ,1). Given a dominant integral weight λ , let V (λ ) denote the correspond-
ing irreducible sln-module. The module V (λ ) has a distinguished basis, the Gelfand–Tsetlin [5] basis,
parametrized by the points with integral coordinates (“integral points” or “lattice points” for short) in the
Gelfand–Tsetlin polytope GT(λ )⊂ Rn(n−1)/2.

Recently, Feigin, Fourier, and Littelmann [3] constructed a different basis of V (λ ), conjecturally
announced by Vinberg [8]. This basis is related to the Poincaré–Birkhoff–Witt basis of the universal
enveloping algebra U(n−), where n− is the span of the negative root spaces. Again, the basis elements are
parametrized by the integral points in a certain polytope FFLV(λ )⊂ Rn(n−1)/2.

Feigin, Fourier, and Littelmann used two subtle algebraic arguments to prove that their basis indeed
spans V (λ ) and is linearly independent. When they had only produced the first half of the proof, they
asked the second author of this paper:

Question 1.1. [4] Is there a combinatorial explanation for the fact that GT(λ ) and FFLV(λ ) contain the
same number of lattice points?

This question provided the motivation for this paper. We answer it by generalizing a result of Stanley [6]
on poset polytopes, as we now describe. Let P be a finite poset. Let A be a subset of P which contains all
minimal and maximal elements of P. Let λ = (λa)a∈A be a vector in RA, which we think of as a marking
of the elements of A with real numbers. We call such a triple (P,A,λ ) a marked poset.

Definition 1.2. The marked order polytope of (P,A,λ ) is

O(P,A)λ = {x ∈ RP−A | xp ≤ xq for p < q, λa ≤ xp for a < p,

xp ≤ λa for p < a},

where p and q represent elements of P−A, and a represents an element of A. The marked chain polytope
of (P,A,λ ) is

C (P,A)λ = {x ∈ RP−A
≥0 | xp1 + · · ·+ xpk ≤ λb−λa

for a < p1 < · · ·< pk < b},

where a,b represent elements of A, and p1, . . . , pk represent elements of P−A.

For any polytope with integer coordinates Q there exists a polynomial EQ(t), the Ehrhart polynomial
of Q, with the following property: for every positive integer n, the n-th dilate nQ of Q contains exactly
EQ(n) lattice points (see [7]). With this notion, our answer to Question 1.1 is given by the following two
results.

Theorem 1.3. For any marked poset (P,A,λ ) with λ ∈ ZA, the marked order polytope O(P,A)λ and the
marked chain polytope C (P,A)λ have the same Ehrhart polynomial.

Theorem 1.4. For every partition λ there exists a marked poset (P,A,λ ) such that GT(λ ) = O(P,A)λ and
FFLV(λ ) = C (P,A)λ .
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We also consider the extension of these constructions to other Lie algebras. Berenstein and Zelevinsky
proposed a construction of generalized Gelfand–Tsetlin polytopes [1] for other semisimple Lie algebras.
For the symplectic and odd orthogonal Lie algebras, their polytopes are also in the family of marked order
polytopes. Therefore Theorem 1.3 yields candidates for the Feigin–Fourier–Littelmann–Vinberg polytopes
in types Bn and Cn.

The paper is organized as follows. In §2 we discuss the relevant aspects of the representation theory
of the simple complex Lie algebras sln. Section 3 treats marked order and chain polytopes, and gives a
bijection between their lattice points. Section 4 discusses the application of the combinatorial results of §3
to the representation theoretic polytopes that interest us.

We note that the combinatorial §3 is self-contained, and may be of independent interest beyond the
representation theoretic application. A possible way to read this article is to skip §2 and continue there
directly.

2 Preliminaries
Consider the simple complex Lie algebra sln. Let h be the Cartan subalgebra consisting of its diagonal
matrices. For i = 1, . . . ,n, let εi ∈ h∗ denote the projection onto the i-th diagonal component. As ε1 + · · ·+
εn = 0, the coefficient vector of an integral weight is only determined as an element of Zn/〈(1, . . . ,1)〉.
We identify an integral weight with the corresponding equivalence class of coefficient vectors. If λ is a
weight and we use the symbol λ in a context where it has to be interpreted as an n-tuple λ = (λ1, . . . ,λn),
we use the convention that a representative has been chosen implicitly. Fix simple roots αi = εi− εi+1 for
i = 1, . . . ,n−1. The corresponding fundamental weights are ωi = ε1 + · · ·+ εi. Hence dominant integral
weights correspond to weakly decreasing n-tuples of integers, or partitions.

Given a dominant integral weight λ , the associated Gelfand–Tsetlin [5] polytope GT(λ ) is defined as
follows: Consider the board given in Figure 1.

λ1 λ2 · · · λn

Figure 1: Board defining Gelfand–Tsetlin patterns.

Each one of the n(n−1)/2 empty boxes stands for a real variable. The polytope GT(λ ) ⊂ Rn(n−1)/2

is given by the fillings of the board with real numbers with the following property: each number is less
than or equal to its upper left neighbor and greater than or equal to its upper right neighbor. Note that
the ambiguity in choosing an n-tuple for the weight λ amounts to an integral translation of GT(λ ), and
hence does not affect its number of integral points. In fact, the integral points in GT(λ ) parametrize the
Gelfand–Tsetlin basis of V (λ ), hence |GT(λ )∩Zn(n−1)/2|= dimV (λ ).

Feigin, Fourier, and Littelmann [3] associate a different polytope with a dominant integral weight λ as
follows: The positive roots of sln are Φ+ = {αi, j | 0 ≤ i < j ≤ n}, where αi, j = εi− ε j. A Dyck path is
by definition a sequence (β (0), . . . ,β (k)) in Φ+ such that β (0) and β (k) are simple, and if β (l) = αi, j,
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then either β (l +1) = αi+1, j or β (l +1) = αi, j+1. Denote the coordinates on RΦ+ by sβ for β ∈Φ+. Let
λ = m1ω1 + · · ·+mn−1ωn−1. Then the polytope FFLV(λ )⊂ RΦ+ is given by the inequalities

sβ ≥ 0

for all β ∈Φ+ and
sβ (0)+ · · ·+ sβ (k) ≤ mi + · · ·+m j

for all Dyck paths (β (0), . . . ,β (k)) such that β (0) = αi and β (k) = α j.
For all α ∈Φ+, let fα be a nonzero element of the root space g−α . Let vλ be a highest weight vector

of V (λ ). Fix any total order on Φ+. As s ranges over the lattice points of FFLV(λ ), the elements(
∏α∈Φ+

f sα
α

)
vλ form a basis of V (λ ) [3, Th. 3.11]. Hence |FFLV(λ )∩ZΦ+ |= dimV (λ ).

The previous discussion shows that |FFLV(λ )∩ZΦ+ |= |GT(λ )∩Zn(n−1)/2|. In the sequel, we give a
combinatorial explanation and an extension of this fact.

3 Marked poset polytopes
To any finite poset P, Stanley [6] associated two polytopes in RP: the order polytope and the chain polytope.
He showed that there is a continuous, piecewise linear bijection between them, which restricts to a bijection
between their sets of integral points. In this section we construct a generalization of the order and chain
polytopes, and prove the analogous result. We begin with a review of Stanley’s work.

3.1 Stanley’s order and chain polytopes

Let P be a finite poset. For p,q ∈ P we say that p covers q, and write p� q, when p > q and there is no
r ∈ P with p > r > q. We identify P with its Hasse diagram: the graph with vertex set P, having an edge
going down from p to q whenever p covers q.

The order polytope and chain polytope of P are,

O(P) = {x ∈ [0,1]P | xp ≤ xq for all p < q}, and

C (P) = {x ∈ [0,1]P | xp1 + · · ·+ xpk ≤ 1 for all chains p1 < · · ·< pk}.

respectively.
Stanley proved that, even though O(P) and C (P) can have quite different combinatorial structures, they

have the same Ehrhart polynomial. He did this as follows. Define the transfer map ϕ : RP→ RP by

ϕ(x)p =

{
xp if p is minimal,
min{xp− xq | p� q} otherwise

(1)

for x ∈ RP, p ∈ P. Then:

Theorem 3.1 ([6, Theorem 3.2]). The transfer map ϕ restricts to a continuous, piecewise linear bijection
from O(P) onto C (P). For any m ∈ N, ϕ restricts to a bijection from O(P)∩ 1

m ZP onto C (P)∩ 1
m ZP.
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3.2 Marked poset polytopes
We now recall the definition of marked order and chain polytopes, and prove that they satisfy a generalization
of Theorem 3.1.

An element of a poset is called extremal if it is maximal or minimal.

Definition 3.2. A marked poset (P,A,λ ) consists of a finite poset P, a subset A ⊆ P containing all its
extremal elements, and a vector λ ∈ RA. We identify it with the marked Hasse diagram, where we label
the elements a ∈ A with λa in the Hasse diagram of P.

0

p

q

r

3

1

2

Figure 2: A marked Hasse diagram defining a partial order on the set P = {p,q,r} ∪ A with |A| = 4 and λ =
(3,2,1,0) ∈ RA.

Definition 3.3. The marked order polytope of (P,A,λ ) is

O(P,A)λ = {x ∈ RP−A | xp ≤ xq for p < q,
λa ≤ xp for a < p,

xp ≤ λa for p < a},

where p and q represent elements of P−A, and a represents an element of A. The marked chain polytope
of (P,A,λ ) is

C (P,A)λ = {x ∈ RP−A
≥0 | xp1 + · · ·+ xpk ≤ λb−λa

for a < p1 < · · ·< pk < b},

where a,b represent elements of A, and p1, . . . , pk represent elements of P−A.

Stanley’s construction is a special case of ours as follows: Given any finite poset P, add a new smallest
and largest element to obtain P̃ = P∪{0̂, 1̂} for 0̂, 1̂ /∈ P. Let A = {0̂, 1̂} and λ = (0,1). Then

O(P) = O(P̃,A)λ and C (P) = C (P̃,A)λ .

The following definitions will be needed in the proof of Theorem 3.4: The length of a chain C = {p1 <
· · ·< pk} ⊆ P is `(C) = k−1. The height of p ∈ P is the length of the longest chain ending at p. If P is
graded, the height of an element is just its rank.

Theorem 3.4. Let (P,A,λ ) be a marked poset. The map ϕ̃ : RP−A→ RP−A defined by

ϕ̃(x)p = min ({xp− xq | p� q,q /∈ A}∪{xp−λq | p� q,q ∈ A})

for each p ∈ P−A restricts to a continuous, piecewise affine bijection from O(P,A)λ onto C (P,A)λ .
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3

3

3
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3
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Figure 3: The marked order polytope of the marked poset in Figure 2 is given by the inequalities 0≤ xp ≤ xq ≤ xr ≤ 3
and 1≤ xq ≤ 2. The marked chain polytope is given by the inequalities xp,xq,xr ≥ 0, xp + xq + xr ≤ 3, xp + xq ≤ 2,
xq + xr ≤ 2, and xq ≤ 1. Note that they are not combinatorially isomorphic.

The following alternative description of ϕ̃ may be useful. Let ϕ : RP→ RP be Stanley’s transfer map as
defined in (1). Let π : RP→ RP−A be the canonical projection which forgets the coordinates in A, and let
i : RP−A→ RP be the canonical inclusion into the fiber over λ ∈ RA, which adds a coordinate λa to each
a ∈ A. Then ϕ̃ = π ◦ϕ ◦ i.

These maps (and some more to be defined in the proof) are illustrated in the following diagram.

RP
ϕ

// RP

π

��

O(P,A)λ

ϕ̃
--?�

i

OO

C (P,A)λ

ψ̃

mm

ψ

``AAAAAAAAAAAAAAAAAAAAA

Proof. We start by showing that ϕ̃(O(P,A)λ ) ⊆ C (P,A)λ . Let x ∈ O(P,A)λ and y = ϕ̃(x). Let a,b ∈ A,
and p1, . . . , pk ∈ P−A be such that a < p1 < · · ·< pk < b. The definition of ϕ implies that ypi ≤ xpi−xpi−1
for all i = 2, . . . ,k and yp1 ≤ xp1 −λa. Thus,

yp1 + · · ·+ ypk ≤ (xp1 −λa)+(xp2 − xp1)+ · · ·+(xpk − xpk−1)

= xpk −λa ≤ λb−λa.

Hence, y ∈ C (P,A)λ .
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To show that ϕ̃ is bijective, we construct its inverse ψ̃ : C (P,A)→ O(P,A). We first define a map
ψ : RP−A→ RP, where we define ψ(y)p recursively by going up the poset according to the rule:

ψ(y)p =

{
λp if p ∈ A,
yp +max{ψ(y)q | p� q} if p /∈ A.

Since all elements of height 0 are in A, ψ(y) is well-defined. We define ψ̃ = π ◦ψ by applying ψ and then
forgetting the A-coordinates. We will prove that, when restricted to C (P,A)λ , ψ̃ is the inverse of ϕ̃ .

First we show that ψ̃ ◦ ϕ̃ is the identity on O(P,A)λ . We begin by showing that ψ ◦ ϕ̃ = i; i.e., that if
x ∈ O(P,A)λ and y = ϕ̃(x) then i(x) = ψ(y). We prove i(x)p = ψ(y)p by induction on ht(p). The claim
certainly holds for ht(p) = 0. Suppose that we have proved it for all elements of height at most n, and let p
have height n+1. If p ∈ A, then

ψ(y)p = λp = i(x)p

by definition. Otherwise, if p /∈ A, we have

ψ(y)p = yp +max{ψ(y)q | p� q}
= yp +max{i(x)q | p� q}.

by the inductive hypothesis. As

yp = ϕ̃(x)p = π(ϕ(i(x)))p = ϕ(i(x))p

= min{i(x)p− i(x)q | p� q}
= i(x)p−max{i(x)q | p� q},

we conclude that ψ(y)p = i(x)p, as desired.
We have shown that ψ ◦ ϕ̃ = i. By composing with the projection which forgets the A coordinates, we

obtain that ψ̃ ◦ ϕ̃ is the identity on O(P,A)λ . Hence ϕ̃ is injective.
To prove surjectivity, let y ∈ C (P,A)λ and define x = ψ̃(y) ∈ RP−A. We start by showing that x ∈

O(P,A)λ . Let p ∈ P−A. By definition,

xp = ψ(y)p = yp +max{ψ(y)q | p� q}

As yp ≥ 0, this implies xp ≥ ψ(y)q for all q such that p� q. If q ∈ A, this says that xp ≥ λq. If q /∈ A, this
says that xp ≥ xq. As p is arbitrary, it follows that x ∈ O(P,A)λ .

Finally, we claim that ϕ̃(x) = y. Once again, we prove that ϕ̃(x)p = yp for all p ∈ P−A by induction on
the height of p. For height 0 this statement is vacuous. Suppose that it holds for all elements of height at
most n, and consider p ∈ P−A with ht(p) = n+1. Then

ϕ̃(x)p = min{i(x)p− i(x)q | p� q}
= min{ψ(y)p−ψ(y)q | p� q}
= ψ(y)p−max{ψ(y)q | p� q}
= yp +max{ψ(y)q | p� q}−max{ψ(y)q | p� q}
= yp,
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as desired. We have shown that ϕ̃ ◦ ψ̃ is the identity on C (P,A)λ , hence ϕ̃ is surjective.
We conclude that ψ̃ : C (P,A)λ → O(P,A)λ and ϕ̃ : O(P,A)λ → C (P,A)λ are inverse functions, and

therefore bijective, as we wished to show. The fact that they are continuous and piecewise affine follows
directly from the definitions.

We conclude this section with the generalization of the second part of Theorem 3.1, the compatibility of
the transfer map with the integral lattice. If λ is integral, then O(P,A)λ is clearly an integral polytope, so
|O(P,A)λ ∩ 1

m ZP−A| is polynomial in m.

Theorem 3.5. Let (P,A,λ ) be a marked poset with λ ∈ ZA. Then ϕ̃ restricts to a bijection between
O(P,A)λ ∩ 1

m ZP−A and C (P,A)λ ∩ 1
m ZP−A. Therefore O(P,A)λ and C (P,A)λ have the same Ehrhart

polynomial.

Proof. This follows immediately from the proof of Theorem 3.4, as both ϕ̃ and ψ̃ preserve integrality.

It is worth noting that Theorem 3.5 does not hold for general λ ∈ RA.

4 Applications
We now show how marked poset polytopes occur “in nature” in the representation theory of semisimple
Lie algebras. More concretely, marked order polytopes occur as Gelfand–Tsetlin polytopes in type A, B,
and C, and marked chain polytopes occur as Feigin–Fourier–Littelmann–Vinberg polytopes in type A.

4.1 Type A.
Let λ be a dominant integral weight for sln. Let O(P,A)λ and C (P,A)λ be the marked order and chain
polytopes determined by the marked Hasse diagram given in Figure 4. Note that Figure 4 is obtained from

λ1

λ2

...

λn

Figure 4: Marked Hasse diagram for sln.

Figure 1 by a clockwise rotation by 90◦. Hence from the definitions it is immediate that GT(λ ) =O(P,A)λ .
Similarly, it follows immediately from the definitions that FFLV(λ ) = C (P,A)λ . Hence the equation

|FFLV(λ )∩ZΦ+ |= |GT(λ )∩Zn(n−1)/2|

is implied by Theorem 3.5.
It would be interesting to see whether the explicit bijection of Theorem 3.5 gives interesting information

about the transition matrix between the Gelfand–Tsetlin basis and the Feigin–Fourier–Littelmann–Vinberg
basis of V (λ ).
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4.2 Type C.
Now consider the symplectic Lie algebra sp2n. Here the role of Gelfand–Tsetlin patterns is played by the
generalized Gelfand–Tsetlin patterns defined by Berenstein and Zelevinsky [1]. Fix a Cartan subalgebra
h⊂ sp2n. Choose simple roots α1, . . . ,αn ∈ h∗ such that αi 6⊥ αi+1 for i < n and αn is the long root. Let
ε1, . . . ,εn be the basis of h∗ such that αi = εi−εi+1 for i < n and αn = 2εn. The corresponding fundamental
weights are ωi = ε1 + · · ·+ εi. This is the setting as used by Bourbaki [2]. We identify a weight λ with
the n-tuple (λ1, . . . ,λn) of its coefficients with respect to the basis ε1, . . . ,εn. Then dominant integral
weights correspond to weakly decreasing n-tuples of nonnegative integers. Given a dominant integral
weight λ , Berenstein and Zelevinsky define an sp2n-pattern of highest weight λ to be a filling of the board
in Figure 5 with nonnegative integers, such that every number is bounded from above by its upper left
neighbor and bounded from below by its upper right neighbor (if any). They show that dimV (λ ) is the

λ1 λ2 · · · λn

Figure 5: Board defining generalized Gelfand–Tsetlin patterns for sp2n and o2n+1.

number of such patterns [1, Th. 4.2].
Let O(P,A)(λ ,0) and C (P,A)(λ ,0) be the marked order and chain polytopes determined by the marked

Hasse diagram given in Figure 6. Note that Figure 6 is obtained from Figure 5 by a clockwise rotation
by 90◦ and apposition of the zeroes. From the definitions it is immediate that the sp2n-patterns of highest
weight λ are the integral points in O(P,A)(λ ,0). This suggests the following:

Conjecture 4.1. The lattice points in C (P,A)(λ ,0) parametrize a PBW basis of V (λ ) for the symplectic
Lie algebras, as described in §2 and in [3, Theorem 3.11].

Indeed, this conjecture is proved in an article in preparation by Feigin, Fourier, and Littelmann. [4]

4.3 Type B.
For the odd orthogonal Lie algebra o2n+1, the situation is a bit more complicated. Fix a Cartan subalgebra
h⊂ o2n+1. Choose simple roots α1, . . . ,αn ∈ h∗ such that αi 6⊥ αi+1 for i < n and αn is the short root. Let
ε1, . . . ,εn be the basis of h∗ such that αi = εi− εi+1 for i < n and αn = εn. The corresponding fundamental
weights are ωi = ε1+ · · ·+εi for i < n and ωn =

1
2 (ε1+ · · ·+εn). This is the setting as used by Bourbaki [2].
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λ1

λ2

...

λn

0 0 0 0

Figure 6: Marked Hasse diagram for sp2n and o2n+1.

We identify a weight λ with the n-tuple (λ1, . . . ,λn) of its coefficients with respect to the basis ε1, . . . ,εn.
Then dominant integral weights correspond to weakly decreasing n-tuples in 1

2 Z≥0 such that either all
or none of the components are integers. Given a dominant integral weight λ , Berenstein and Zelevinsky
[1] define an o2n+1-pattern of highest weight λ to be a filling of the board in Figure 5 with elements of
1
2 Z≥0 such that every number is bounded from above by its upper left neighbor and bounded from below
by its upper right neighbor (if any), and such that all numbers which possess an upper right neighbor are
congruent to λ1 modulo Z. Let R(λ ) be the set of o2n+1-patterns of highest weight λ .

As in type C, let O(P,A)(λ ,0) be the marked order polytope defined by the marked Hasse diagram in
Figure 6. Then R(λ ) ⊂ O(P,A)(λ ,0), but R(λ ) does not consist of the integral points, but of the points
determined by more complicated congruence conditions. Namely, decompose

P−A = P′∪P′′∪P′′′,

where P′, P′′, and P′′′ consist of all elements in P of height 1, 2, and≥ 3, respectively, that are not contained
in A. Then R(λ ) consists of all x ∈ O(P,A)(λ ,0) ∩ ( 1

2 Z)P−A such that xp + λ1 ∈ Z for all p ∈ P′′ ∪P′′′.
Hence S(λ ) = ϕ̃(R(λ )) consists of all

y ∈ C (P,A)(λ ,0)∩
(
( 1

2 Z)P′∪P′′ ×ZP′′′
)

such that
max{yq : p� q}+ yp +λ1 ∈ Z

for all p ∈ P′′. From the point of view taken in this article, S(λ ) appears to be the most natural candidate
to parametrize a PBW basis of [3] in type C. Note that the elements of S(λ ) can not appear directly as
exponent vectors of a PBW basis, as their components are not necessarily integral, so we are missing at
least a change of coordinates in this case.

Question 4.2. Is there a way to modify S(λ ) so that it parametrizes a PBW basis of V (λ ) for the odd
orthogonal Lie algebras, as described in §2 and in [3, Theorem 3.11]?

4.4 Type D.
The generalized Gelfand–Tsetlin polytopes [1] for the even orthogonal Lie algebras o2n are not marked
order polytopes, so our methods do not apply here. It would be interesting to find a suitable modification of
our results to this case.
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