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Consider a(MODq,MODp) circuit, where the inputs of the bottom MODp gates are degree-d polynomials with
integer coefficients of the input variables (p, q are different primes). Using our main tool — the Degree Decreasing
Lemma — we show that this circuit can be converted to a(MODq,MODp) circuit with linear polynomials on the
input-level with the price of increasing the size of the circuit. This result implies special cases of the Constant Degree
Hypothesis of Barrington, Straubing and Thérien [3], and implies also a generalization of the lower bound results of
Yan and Parberry [21], Krause and Waack [12] and Krause and Pudlák [11]. Perhaps the most important application
is an exponential lower bound for the size of(MODq,MODp) circuits computing the fan-inn AND, where the input
of each MODp gate at the bottom is anarbitrary integer valued function ofcn variables(c < 1) plus an arbitrary
linear function ofn input variables.
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1 Introduction
Boolean circuits are one of the most interesting models of computation. They are widely examined in
VLSI design, in general computability theory and in complexity theory context as well as in the theory of
parallel computation.

Almost all of the strongest and deepest lower bound results for the computational complexity of finite
functions were proved using the Boolean circuit model of computation ([13], [22], [9], [14], [15], or see
[20] for a survey).

Even these famous and sophisticated lower bound results were proven for very restricted circuit classes.
Bounded depth and polynomial size is one of the most natural restrictions. Ajtai [1], Furst, Saxe, and

Sipser [5] proved that no polynomial sized, constant depth circuit can compute the PARITY function. Yao
[22] and H̊astad [9] generalized this result for sub-logarithmic depths.

†A preliminary version of this work appeared in the Proceedings of ICALP’98, Springer Verlag, LNCS 1443, pp. 215-222.
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Since the modular gates are very simple to define, and they are immune to the random restriction
techniques in lower bound proofs for the PARITY function, the following natural question was asked by
several researchers: How powerful will become the Boolean circuits if — beside the standard AND, OR
and NOT gates — MODm gates are also allowed in the circuit? Here a MODm gate outputs 1 iff the sum
of its inputs is in a setA⊂ {0,1,2, . . . ,m−1} modulom.

Razborov [14] showed that for computing MAJORITY with AND, OR, NOT and MOD2 gates, ex-
ponential size is needed with constant depth. This result was generalized by Smolensky [15] for MODp

gates instead of MOD2 ones, wherep denotes a prime.
Very little is known, however, if both MODp and MODq gates are allowed in the circuit for different

primesp,q, or, if the modulus is a non-prime power composite, e.g., 6. For example, it is consistent with
our present knowledge that depth-3, linear-size circuits with MOD6 gatesonly, recognize the Hamiltonian
graphs (see [3]). The existing lower bound results use diverse techniques from Fourier-analysis, commu-
nication complexity theory, group-theory and several forms of random restrictions (see [3], [11], [17],
[18], [16], [8], [6], [7], [2], [10]).

It is not difficult to see that constant-depth circuits with MODp gates only (p prime), cannot compute
even simple functions: the fan-inn OR or AND functions, since they can only compute constant degree
polynomials of the input variables over GFp (see [15]).

But depth-2 circuits with MOD2 and MOD3 gates, or MOD6 gates can compute then-fan-in OR and
AND functions [10], [3]. Consequently, these circuits are more powerful than circuits with MODp gates
only.

By the famous results of Yao [23] and Beigel and Tarui [4], and Toda [19], every polynomial-size,
constant-depth circuit with AND, OR, NOT and MODm gates can be converted to a depth-2 circuit with a
SYMMETRIC gate at the top and quasi-polynomially many AND gates of poly-logarithmic fan-in at the
bottom. One might hope that this result is an excellent tool for bounding the power of circuits containing
modular gates. Unfortunately, the existing lower bound techniques are not strong enough to bound the
computational power of these circuits.

Our main contribution here is a lemma, the Degree Decreasing Lemma, which yields a tool for dealing
with low-fan-in AND gates at the bottom of(MODq,MODp) circuits. We believe that – in the light of the
result of Yao, Beigel and Tarui – our result may have further important consequences in modular circuit
theory.

2 Preliminaries
Definition 1 A fan-in n gate is an n-variable Boolean function. Let G1,G2, . . . ,Gℓ be gates of unbounded
fan-in. Then a

(G1,G2, . . . ,Gℓ;d)− circuit

denotes a depth-ℓ circuit with a G1-gate on the top, G2 gates on the second level, G3 gates on the third
level from the top,..., and Gℓ gates on the last level. Multi-linear polynomials (i.e., polynomials where the
exponent of every variable is 0 or 1) with integer coefficients and of input-variables x1,x2, . . . ,xn of degree
at most d are connected to Gℓ gates on the last level. The size of a circuit is defined to be the total number
of the gates G1,G2, . . . ,Gℓ in the circuit.

All of our gates are of unbounded fan-in, and we allow to connect inputs to gates or gates to gates
with multiple wires. Let us remark, that we are interested mainly in circuits with modular gates and with
constant moduli; consequently, the number of wires is polynomially related to the number of gates.
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In the literature MODm gates are sometimes defined to be 1, iff the sum of their inputs is divisible by
m, and sometimes they are defined to be 1, iff the sum of their inputs is not divisible bym. The following,
more general definition covers both cases.

Definition 2 We say that gate G is aMODm-gate, if there exists a non-empty A⊂ {0,1, . . . ,m−1}, such
that

G(x1,x2, . . . ,xn) =
{

1, if ∑n
i=1xi modm∈ A

0 otherwise.

A is called the 1-set of G.MODm gates with 1-set A are denoted byMODA
m.

Definition 3 Let p be a prime. We say that polynomial P(x1,x2, . . . ,xn) over the p element field is a
depth-d polynomial, if it can be computed by an arithmetic circuit from inputs x1,x2, . . . ,xn and constants
1 and 0, as follows: the arithmetic circuit is levelled, the variables and constants 0 and 1 are situated
on the lowest level, and multiple wires (i.e., constant multipliers) are allowed in the circuit. The levels of
the circuit contains ADDITION and MULTIPLICATION gates, the ADDITION gates are of unbounded
fan-in, the MULTIPLICATION gates are of fan-in 2. There are only d levels where MULTIPLICATION
gates occur, and within the same level, one input of each MULTIPLICATION gates are connected to the
same node (called the common multiplier on the level), situated one level lower.

In other words, if on the same level there are several MULTIPLICATION gates, and one of them com-
putesPQ, then all the other MULTIPLICATION gates on the same level should computePR1, PR2,...,PRs

or, alternatively,R1Q, R2Q,...,RsQ, whereP, Q andRi for i = 1,2, . . . ,s denote polynomials, computed in
the nodes just below our level.

Note, that we have not bounded the number of gates in the arithmetic circuit, just the number of levels
containing multiplications and the structure within the levels.

Lemma 4 Any multi-linear polynomial with n variables is a depth-(n−1) polynomial.

Proof: We prove by induction. Our induction hypothesis is the following: IfP(x1,x2, . . . ,xn) is a multi-
linear polynomial ofn variables, then it can be computed by an arithmetic circuit of Definition 3 such that
on the first (lowest) multiplication level the common multiplier isx2, on the second multiplication level
the common multiplier isx3, ...., on then−1st multiplication-level the common multiplier isxn.

The base case is obvious. The induction step: IfP(x1,x2, . . . ,xn) is a multi-linear polynomial, then
P = xnQ+R whereQ andR are multi-linear polynomials of variablesx1,x2, . . . ,xn−1. Consequently, for
Q andR the induction hypothesis is satisfied with depthn−2, so we are done. ✷

We remark, that linear polynomials are depth-0 polynomials. Polynomial

(x1 +x2 +x3 +x4 +x5)(x2 +x4 +x5)
2(x3 +x5 +2)+(x2 +x4 +x5)(x3 +x1 +x5)+12

is a depth-2 polynomial.

Definition 5 Let p and q be two different primes, and let d be a non-negative integer. Then

(MODq,MODp;depth−d)

denotes a(MODq,MODp) circuit, where the input of eachMODp-gate is a depth-d polynomial.
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3 The Degree-Decreasing Lemma
The following lemma is our main tool. It exploits a surprising property of(MODp,MODq)-circuits,
which lacks in(MODp,MODp) circuits, since constant-depth circuits with MODp gates are capable only
to compute a constant degree polynomial of the inputs, and this constant depends on the depth, and not on
the size.

Remark 1. Generally, the inputs of the modular gates are Boolean variables. Here, however, for wider
applicability of the lemma, we allow inputx for a general MODm gate to be chosen from set{0,1, . . . ,m−
1}. This will allow us to substitute polynomials into the variables of the lemma.

Remark 2. The output of the general MODm gates depend only on the sum of the inputs. In the
next lemma it will be more convenient to denote MODA

m(y1,y2, . . . ,yℓ) i.e., gate MODA
m with inputs

y1,y2, . . . ,yℓ, by MODA
m(y1 +y2 + · · ·+yℓ).

Lemma 6 (Degree Decreasing Lemma) Let p and q be different primes, and let x1,x2,x3 be variables
with values from{0,1, . . . , p−1}. Then

MODB
q(MODA

p(x1x2 +x3)) = MODB
q(H0 +H1 + · · ·+Hp−1 +β),

where Hi abbreviates

Hi = α
p−1

∑
j=0

MODA
p(ix2 +x3 + j(x1− i))

for i = 0,1, . . . , p−1, whereα is the multiplicative inverse of p modulo q:αp≡ 1 (modq), andβ is a
positive integer satisfyingβ = −|A|(p−1)α modq.

In the special case of(MOD3,MOD{1}
2 ) circuit, the statement of Lemma 6 is illustrated on Figure 1.

Fig. 1: Degree-decreasing in the(MOD3,MOD{1}
2 ) case: on the left the input is a degree-2 polynomial, on the right

the inputs are linear polynomials.
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Proof: Let x1 = k and let 0≤ i ≤ p−1, k 6= i. Then

Hk = α
p−1

∑
j=0

MODA
p(kx2 +x3) = αpMODA

p(kx2 +x3) ≡ MODA
p(x1x2 +x3) (modq),

and

Hi = α
p−1

∑
j=0

MODA
p(ix2 +x3 + j(k− i)) = α|A|,

since for any fixedx2,x3, i,k expressionix2 + x3 + j(k− i) takes on every value exactly once modulop
while j = 0,1, . . . , p−1; so MODA

p(ix2 +x3 + j(k− i)) equals to 1 exactly|A| times. Consequently,

MODB
q(H0 +H1 + · · ·+Hp−1 +β) = MODB

q(MODA
p(x1x2 +x3)+(p−1)α|A|+β)

= MODB
q(MODA

p(x1x2 +x3)).

✷

4 Applications of the Degree Decreasing Lemma
The following theorem facilitates the applications of the Degree Decreasing Lemma:

Theorem 7 Suppose, that function f: {0,1}n →{0,1} can be computed by a(MODB
q ,MODA

p;depth−d)
circuit of size s, where p and q are two different primes, and d is a non-negative integer. Then f can also
be computed by a(MODB

q ,MODA
p;1) circuit of size

(p2d +1)s.

Proof:
We first show, that our(MODB

q ,MODA
p;depth− d) circuit of size s can be converted into a

(MODB
q ,MODA

p;depth− (d−1)) circuit of size at mostp2s+ 1. Repeating this conversiond−2 times,
the statement follows.

We know that the input of every MODAp-gate can be constructed with at mostd multiplications in
an arithmetic circuit. Let us consider a fixed MODA

p-gate. Suppose, that the last multiplication, which
computes its input-polynomial isPQ+ R, whereP,Q,R are depth-(d−1) multi-linear polynomials ofn
variables. This MODAp-gate, using the Degree Decreasing Lemma (Lemma 6), can be converted to at most
p2 MODA

p-gates, each with depth-(d−1) polynomials as inputs, plus (possibly) a leftover MODA
p-gate

with input 1 (which may be connected to the MODB
q gate with multiple wires) such that the sum of these

gates give the same output moduloq as the original one. If the conversion is done for all MODA
p-gates, the

result is a(MODB
q ,MODA

p;depth−(d−1)) circuit of size at mostp2s+1, since the “leftover” MODAp-gate
with input 1 should be counted once. ✷
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4.1 Constant Degree Hypothesis
Barrington, Straubing and Thérien in [3] conjectured that any(MODB

q ,MODA
p;d) circuit needs exponen-

tial size to compute the fan-inn AND function. They called it theConstant Degree Hypothesis(CDH),
and proved thed = 1 case, with group-theoretic techniques.

Yan and Parberry [21] – using Fourier-analysis – proved also thed = 1

case for(MOD{1,2,...,q−1}
q ,MOD{1}

2 ;1) circuits, but their method also works for the special case of the
CDH where the sum of the degrees of the monomialsgi on the input-level satisfies:

∑
deg(gi)≥1

(deg(gi)−1) ≤
n

2(q−1)
−O(1).

Our Theorem 7 yields the following generalization of this result:

Theorem 8 For any prime p there exists a constant0< cp < 1, such that for any0< c< cp there exists a
0 < c′ < 1, such that if a(MODB

q ,MODA
p,depth−⌊cn⌋) circuit computes the n-fan-in AND function, then

its size is at least2c′n.

Proof: From the result of [3] and from Theorem 7 the statement is immediate. ✷

We should add, that Theorem 8 does not imply the CDH, but it greatly generalizes the lower bounds of
[21] and of [3], and it works not only for the constant degree, but degree-cnpolynomials as well.

Corollary 9 For any prime p there exists a constant0 < cp < 1, such that for any0 < c < cp there exists
a 0 < c′ < 1, such that if the fan-in n AND function is computed by a circuit with aMODB

q gate at the top,

MODA
p gates at the next level, where the input of eachMODA

p gate isan arbitrary integer-valued function
of cn variables plus an arbitrary linear polynomial of n variables, then the circuit must contain at least
2c′n MODA

p gates.

Proof: First we convert the integer-valued function ofcn variables into a polynomial over GF(p), for
each MODA

p gates. These polynomials have degree at mostcn, and depend on at mostcn variables.
Consequently, the circuit is a(MODB

q ,MODA
p,depth− (⌊cn⌋−1)) circuit, and Theorem 8 applies. ✷

We should mention, that Corollary 9 is much stronger than Yan and Parberry’s result [21], since here the
degree-sum of the inputs of each MODA

p gate can be even exponentially large inn, vs. the small linear
upper bound of [21].

4.2 The ID function
Krause and Waack [12], using communication-complexity techniques, showed that any

(MOD{1,2,...,m−1}
m , SYMMETRIC;1) circuit, computing the ID function:

ID(x,y) =

{

1, if x = y,
0 otherwise,

for x,y∈{0,1}n, should have size at least 2n/ logm, where SYMMETRIC is a gate, computing an arbitrary
symmetric Boolean function.

Using this result, we prove:
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Theorem 10 Let p and q be two different primes. If a

(MOD{1,2,...,m−1}
q ,MODA

p,depth−⌊(1− ε)n⌋)

circuit computes the2n-fan-in ID function, then its size is at least2cεn, where0 < c < 1 depends only on
p.

Proof: From the result of [12] and from Theorem 7 the statement is immediate. ✷

Unfortunately, the methods of [12] do not generalize for MODB
q gates with unrestrictedB’s.

4.3 The MODr function

Krause and Pudlák [11] proved that any(MOD{0}
pk ,MOD{0}

q ;1) circuit which computes the MOD{0}
r func-

tion has size at least 2c′′n, for somec′′ > 0, wherep,q andr are different primes. We also generalize this
result as follows:

Theorem 11 There exist0 < c′ < c < 1 for different primes p,q, r, and positive integer k, if circuit

(MOD{0}
pk ,MOD{0}

q ;depth−⌊cn⌋) computesMOD{0}
r (x1,x2, . . . ,xn), then its size is at least2c′n.

Proof: From the result of [11] and from Theorem 7 the statement is immediate. ✷
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