Bumping algorithm for set-valued shifted tableaux

Takeshi IKEDA ${ }^{1} \mid \ddagger$ Hiroshi NARUSE ${ }^{2}$ and Yasuhide NUMATA ${ }^{34}$
${ }^{1}$ Department of Applied Mathematics, Okayama University of Science, Ridai-cho, Kita-ku, Okayama, Japan
${ }^{2}$ Graduate School of Education, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
${ }^{3}$ Department of Mathematical Informatics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
${ }^{4}$ Japan Science and Technology (JST) CREST

Abstract

We present an insertion algorithm of Robinson-Schensted type that applies to set-valued shifted Young tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a K-theoretic analogue of the Schur Q-functions. Résumé Nous présentons un algorithme d'insertion de Robinson-Schensted qui s'applique aux tableaux décalés à valeurs sur des ensembles. Notre algorithme est une généralisation de l'algorithme de Buch pour les tableaux à valeurs sur des ensembles et de l'algorithme de Worley et Sagan pour les tableaux décalés. Comme application, nous obtenons une formule de Pieri pour un analogue en K-théorie des Q-functions de Schur.

Keywords: set-valued shifted tableaux, insertion, Robinson-Schensted, Pieri rule, K-theory, Schur Q-functions

1 Introduction

This article is an extended abstract of the paper [INN] of the same title. Most details of the proofs are omitted.

In [IN], we introduced a non-homogeneous (K-theoretic) analogue of Schur Q-functions. These functions are labeled by strict partitions (or shifted Young diagrams), as are the original Q-functions. For a strict partition λ, the corresponding K-theoretic Schur Q-function $G Q_{\lambda}(x)$ can be expressed as a weighted generating function of shifted set-valued semistandard tableaux of shape λ, which are the central concern of this article.

The main result of the paper is a Robinson-Schensted type insertion algorithm for the shifted set-valued tableaux (Thm 3.4). Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch [Bu] and non set-valued shifted tableaux by Worley [Wo] and Sagan [Sa]. As an immediate consequence of our algorithm, we have a Pieri rule for $G Q_{\lambda}(x)$ (Cor. 3.5).

The original purpose for introducing functions $G Q_{\lambda}(x)$ was to apply them to Schubert calculus. In [IN] we introduced function $G Q_{\lambda}(x \mid b)$ (resp. $\left.G P_{\lambda}(x \mid b)\right)$ with the equivariant parameter $b=\left(b_{1}, b_{2}, \ldots\right)$,

[^0]which represents the structure sheaf of the Schubert variety indexed by λ in the K-ring of T-equivariant coherent sheaves on Langangian (resp. orthogonal) Grassmannian, where T is the maximal torus acting on the Grassmannians. Thus our Pieri rule gives an explicit description of K-theoretic Schubert structure constant for an arbitrary Schubert class times a special (one row type) Schubert class in the K-ring of Lagrangian Grassmannian.

Recently, a K-theoretic Littlewood-Richardson rule in terms of the jeu de taquin for odd orthogonal Grassmannians of maximal isotropic subspaces has been obtained by Clifford, Thomas and Yong [CTY]. Their method starts from a Pieri rule for the K-theory by Buch and Ravikumar [$\overline{\mathrm{BR}]}$, which applies to cominuscule Grassmannians. Our approach differs from them substantially. We proceeded independently a different approach of tableaux insertion to result in the same formula as $[\overline{B R}]$, i.e. the counting of KLGtableaux. But our method is only applicable to the case of Lagrangian Grassmannians, although there is a set valued tableaux description for $G P_{\lambda}(x)$.

Organization of the paper is as follows. In Section 2, we give the definition of shifted set-valued tableaux, and K-theoretic Schur Q-functions $G Q_{\lambda}(x)$. In Section 3, we present our main result, an existence of a Robinson-Schensted type bijection for set-valued shifted tableaux. As a corollary, we have a Pieri rule for $G Q_{\lambda}(x)$. Precise description of the bijection is given by a bumping algorithm which is given in Section 4. In Section 5, we discuss a variant of the bijection, which is analogous to the results by Sagan and Worley. In Section 6, we give an outline of the proof of the main theorem.

2 Shifted Young diagrams, set-valued tableaux

2.1 Shifted Young diagrams

Let Δ denote the set $\left\{(i, j) \in \mathbb{Z}^{2} \mid 1 \leq i \leq j\right\}$. Any element $\alpha=(i, j)$ is called a box. If $i=j$, then (i, j) is called a diagonal box. A shifted Young diagram is any finite subset λ of Δ such that for each $\alpha=(i, j) \in \lambda$, any box $\beta=\left(i^{\prime}, j^{\prime}\right) \in \Delta$ satisfying $i^{\prime} \leq i$ and $j^{\prime} \leq j$ belongs to λ.

We define \mathbb{S} to be the set of shifted Young diagrams. For $\lambda \in \mathbb{S}$, we define $|\lambda|$ to be the number of boxes in λ. For $\lambda, \mu \in \mathbb{S}$ such that $\lambda \subset \mu$, we define the skew shifted Young diagram μ / λ to be the set-theoretic difference $\mu-\lambda$.

Let $\alpha=(i, j), \beta=\left(i^{\prime}, j^{\prime}\right) \in \Delta$. We say that α is weakly below (resp. weakly right of) β if $i \geq i^{\prime}$ (resp. $j \geq j^{\prime}$). We say that α is strictly below (resp. strictly right of) β if $i>i^{\prime}$ (resp. $j>j^{\prime}$). We say that α is directly below (resp. directly right of) β if $i=i^{\prime}+1$ and $j=j^{\prime}$ (resp. $i=i^{\prime}$ and $j=j^{\prime}+1$).

We call a skew shifted diagram θ a horizontal strip (resp. vertical strip) if θ has no pair of boxes in the same column (resp. row). We call θ a broken border strip if θ contains no 2×2 square block.

2.2 Tableaux

Define a totally ordered set \mathcal{B} to be disjoint union of sets $\mathcal{A}=\{1,2, \ldots\}$ and $\mathcal{A}^{\prime}=\left\{1^{\prime}, 2^{\prime}, \ldots\right\}$ with the following order:

$$
1^{\prime}<1<2^{\prime}<2<\cdots
$$

We define binary relations \leq_{r} and \leq_{c} on \mathcal{B} by

$$
x \leq_{r} y \Longleftrightarrow x=y \in \mathcal{A} \text { or } x<y, \quad x \leq_{c} y \Longleftrightarrow x=y \in \mathcal{A}^{\prime} \text { or } x<y
$$

Note that $x \leq_{r} y$ (resp. $x \not \leq_{c} y$) is equivalent to $y \leq_{c} x$ (resp. $y \leq_{r} x$) for any $x, y \in \mathcal{B}$.

Let \mathcal{X} denote the set of non-empty finite subsets of \mathcal{B}. We extend the relations \leq_{r}, \leq_{c} on \mathcal{X} by $A \leq_{r}$ $B \Longleftrightarrow \max A \leq_{r} \min B$ and $A \leq_{c} B \Longleftrightarrow \max A \leq_{c} \min B$ for $A, B \in \mathcal{X}$.
Definition 2.1 (Shifted set-valued semistandard tableaux) Let λ be a shifted Young diagram. A setvalued semistandard tableau of shape λ is a map T from the set of boxes in λ to \mathcal{X} satisfying the following "semistandaredness":

1. $T(\alpha) \leq_{r} T(\beta)$ if $\beta \in \lambda$ is directly right of $\alpha \in \lambda$.
2. $T(\alpha) \leq_{c} T(\beta)$ if $\beta \in \lambda$ is directly below $\alpha \in \lambda$.

Example 2.2 An example of a set-valued tableau is given by the following:

$$
T=\begin{array}{|l|l|l|l|}
\hline 1^{\prime} & 12^{\prime} & 23 & 34^{\prime} \\
\hline 2^{\prime} & 4^{\prime} & 6 \\
\hline & 6 &
\end{array}
$$

We denote by $\mathcal{T}(\lambda)$ the set of all set-valued tableaux of shape λ.

2.3 K-theoretic Q-Schur functions

Let $x=\left(x_{1}, x_{2}, \ldots\right)$ be a sequence of variables. Let $\lambda \in \mathbb{S}$ and $T \in \mathcal{T}(\lambda)$. We define the corresponding monomial $x^{T}=\prod_{i=1}^{\infty} x_{i}^{e_{i}(T)}$ where $e_{i}(T)$ denotes the total number of i and i^{\prime} appearing in T. The weight of $T \in \mathcal{T}(\lambda)$ is defined to be $\beta^{|T|-|\lambda|} x^{T}$, where β is a formal parameter and $|T|$ is the total number of letters in T. The K-theoretic Q-Schur function $G Q_{\lambda}(x)$ is defined as the following formal sum of the weights of the elements in $\mathcal{T}(\lambda)$:

$$
G Q_{\lambda}(x)=\sum_{T \in \mathcal{T}(\lambda)} \beta^{|T|-|\lambda|} x^{T}
$$

When $\beta=0$ this becomes the Schur Q-function $Q_{\lambda}(x)$, and when $\beta=-1$ this represents K-theory Schubert class corresponding to λ for Lagrangian Grassmannians. See [IN] for other expressions of $G Q_{\lambda}(x)$ and geometric background.

3 Statements of main results

3.1 Admissible strips

Let $\theta=\lambda / \mu$ be a broken border strip. We consider a decomposition $\theta=C \sqcup C^{\prime}$, with C, C^{\prime} skew diagrams, i.e. there is a diagram ν satisfying $\mu \subset \nu \subset \lambda$ and $C=\lambda / \nu$ and $C^{\prime}=\nu / \mu$. Such a decomposition of θ is called admissible of if the following conditions are satisfied:

1. in each of the diagrams C and C^{\prime}, there is no pair of boxes in the same row or column.
2. there is no diagonal box in C^{\prime}.

A non-empty broken border strip θ is called a 1-admissible strip if there exists an admissible decomposition of θ. For a 1-admissible strip θ, we denote by $\mathcal{C}(\theta)$ the set of all admissible decompositions of θ. Later we define the notion of m-admissible decomposition of a broken border strip.

Example 3.1 The following is an example of a 1-admissible strip and its 1-admissible decomposition,

where the boxes with entry 1 's form C and $1^{\prime \prime}$'s form C^{\prime}.
The next result shows the role of 1-admissible strip. The detailed construction of the map is given in Section 4 We define the weight of a 1-admissible strip θ to be $\beta^{|\theta|-1}$.
Proposition 3.2 There is a weight preserving bijection:

$$
\phi: \mathcal{T}(\lambda) \times \mathcal{X} \longrightarrow \bigsqcup_{\mu} \mathcal{T}(\mu) \times \mathcal{C}(\mu / \lambda)
$$

where $\mu \in \mathbb{S}$ runs for those μ such that μ / λ is a 1 -admissible strip.

3.2 Composable admissible strips

Let $\lambda, \mu, \nu \in \mathbb{S}$ be such that $\mu \subset \nu \subset \lambda$. Suppose $\theta_{1}=\nu / \mu, \theta_{2}=\lambda / \nu$ are 1-admissible strips. Let $\left(C_{i}^{\prime}, C_{i}\right) \in \mathcal{C}\left(\theta_{i}\right)(i=1,2)$.We say that $\left(C_{1}^{\prime}, C_{1}\right)$ precedes $\left(C_{2}^{\prime}, C_{2}\right)$ and denote $\left(C_{1}^{\prime}, C_{1}\right) \triangleleft\left(C_{2}^{\prime}, C_{2}\right)$, if the following conditions are satisfied:

1. $C_{1}^{\prime} \cup C_{2}^{\prime}$ is a vertical strip.
2. $C_{1} \cup C_{2}$ is a horizontal strip.
3. Each box in C_{2}^{\prime} is strictly below any box in C_{1}^{\prime}.
4. Each box in C_{2} is strictly right of any box in C_{1}.
5. If $C_{1} \neq \emptyset$, then $C_{2}^{\prime}=\emptyset$.

3.3 Main results

Let $\theta=\mu / \lambda$ be a broken border strip, and m be a positive integer. Suppose there is a nested sequence of shifted diagrams

$$
\begin{equation*}
\lambda=\nu^{(0)} \subset \nu^{(1)} \subset \nu^{(2)} \subset \cdots \subset \nu^{(m)}=\mu \tag{1}
\end{equation*}
$$

such that $\theta^{(i)}:=\nu^{(i)} / \nu^{(i-1)}(1 \leq i \leq m)$ are 1-admissible strips. If, moreover, there is a sequence of 1-admissible decompositions $\left(C_{i}^{\prime}, C_{i}\right) \in \mathcal{C}\left(\theta^{(i)}\right)(1 \leq i \leq m)$ such that

$$
\begin{equation*}
\left(C_{i}^{\prime}, C_{i}\right) \triangleleft\left(C_{i+1}^{\prime}, C_{i+1}\right), \quad(1 \leq i \leq m-1) \tag{2}
\end{equation*}
$$

then we say θ is an m-admissible strip. For an m-admissible strip θ, let $\mathcal{C}_{m}(\theta)$ denote the set of pairs $\left(\left\{\nu^{(i)}\right\}_{i=1}^{m},\left\{\left(C_{i}^{\prime}, C_{i}\right)\right\}_{i=1}^{m}\right)$ satisfying the above conditions, which we call m-admissible decompositions of θ. Note $\mathcal{C}_{1}(\theta)=\mathcal{C}(\theta)$ since condition (2) is vacant for $m=1$.

Example 3.3 The following is a 4 -admissible strip

where the boxes with entry i are C_{i}, and i^{\prime} are C_{i}^{\prime}.
We denote by (m) the shifted diagram consisting of one row with m boxes. We simply denote $\mathcal{T}(m)$ for $\mathcal{T}((m))$. Recall that we define the weight of $T \in \mathcal{T}(\lambda)$ as $\beta^{|T|-|\lambda|} x^{T}$. Define the weight of $U \in \mathcal{C}_{m}(\theta)$ to be $\beta^{|\theta|-m}$.

Theorem 3.4 By algorithm 4.4 we have a weight preserving bijection:

$$
\begin{equation*}
\phi_{m}: \mathcal{T}(\lambda) \times \mathcal{T}(m) \longrightarrow \bigsqcup_{\mu} \mathcal{T}(\mu) \times \mathcal{C}_{m}(\mu / \lambda) \tag{3}
\end{equation*}
$$

where μ runs for shifted diagrams μ such that $\mu \supset \lambda$ and μ / λ are m-admissible strips.
As an immediate consequence, we have the following.
Corollary 3.5 (Pieri rule) We have

$$
G Q_{\lambda}(x) \cdot G Q_{m}(x)=\sum_{\mu \supset \lambda} \beta^{|\mu|-|\lambda|-m} \# \mathcal{C}_{m}(\mu / \lambda) \times G Q_{\mu}(x)
$$

where μ runs for shifted diagrams μ such that $\mu \supset \lambda$ and μ / λ are m-admissible strips.
For example we have

$$
G Q_{2,1} \cdot G Q_{2}=2 G Q_{4,1}+2 G Q_{3,2}+3 \beta G Q_{4,2}+\beta G Q_{5,1}+\beta G Q_{3,2,1}+\beta^{2} G Q_{5,2}+\beta^{2} G Q_{4,2,1}
$$

In order to give the coefficient of $G Q_{4,2}$, we count the elements in $\mathcal{C}_{2}(\mu / \lambda)$ with $\mu=(4,2), \lambda=(2,1)$:

		1^{\prime}	2
		2^{\prime}	

		1^{\prime}	2
		1	

		1^{\prime}	2
	2		

N.B. The elements in $\mathcal{C}_{m}(\mu / \lambda)$ are exactly the $K L G$-tableaux of shape μ / λ with content $\{1,2, \ldots, m\}$ in $\overline{B R}$.

4 Bumping algorithm

The aim of this section is to describe the bijection of Prop 3.2
The input of our algorithm is a pair (T, w) with $T \in \mathcal{T}(\lambda)$ for some $\lambda \in \mathbb{S}$ and $w \in \mathcal{X}$. Basic output is a tableau T^{\prime} of some shape $\mu \in \mathbb{S}$ such that $\mu \supset \lambda$. The skew diagram $\theta=\mu / \lambda$, the set of "new boxes", turns out to be a 1 -admissible strip. We also have some "recording data" on θ which gives an element of $\mathcal{C}(\theta)$.

4.1 Parts of "L" shape of a tableau

Let $\lambda \in \mathbb{S}$. Let $\ell(\lambda)$ be the number of rows of λ. For $1 \leq t \leq \lambda_{1}$ we define a subset of λ by

$$
L_{t}(\lambda)=\{(i, j) \in \lambda \mid i=t \text { or } j=t\} .
$$

For example, $L_{1}(\lambda)$ consists of the boxes in the first row. For $k \geq \ell(\lambda), L_{k}(\lambda)$ is just the k-th column. In general, this is a subset of shape " L " including the diagonal box (t, t). Let $T \in \mathcal{T}(\lambda)$. By restriction we have a $\operatorname{map} L_{t}(T): L_{t}(\lambda) \rightarrow \mathcal{X}$, which we call the t-th part of T.

Our algorithm starts from inserting $w=w^{(0)} \in \mathcal{X}$ into $L_{1}=L_{1}(T)$, the first row of T, resulting a row L_{1}^{\prime} with possibly a new box at the right end, and a set $w^{(1)} \in \mathcal{X}$ "bumped out" from the procedure. Then we modify the original tableau $T=T^{(0)}$ by replacing L_{1} with L_{1}^{\prime} to obtain $T^{(1)}$. Next we insert $w^{(1)}$ into the second part of the modified tableau $T^{(2)}$. We repeat this procedure until no boxes are bumped out.

4.2 Insertion into a part of " L " shape (a rough idea)

We define a procedure to insert some sets $w \in \mathcal{X}$ into an L part X of a tableaux.
Here we present a rough idea of constructing the procedure. First, we look at the minimum letters of each boxes in order to decide the box into which a letter in w to be inserted, in the same manner as the classical bumping procedure (some letters go into empty box at the end). If we might simply insert these letters into X, some letters in w may violate the semistandardness, while some letters are not. So we eject some element in X before inserting w. Let \hat{w} be the set of letters in w which do not conflict any original letters in X, and let $\check{w}:=w-\hat{w}$ be the complement. If $\check{w} \neq \emptyset$, let \check{u} be the set of elements in X that conflict some element in \check{w}. To ensure the semistandardness, we first eject the elements in \check{u} from the tableau. Furthermore, if a letter in \hat{w} is inserted into a non-empty box, we eject all the remaining (original) entries of the box. Thus any letter inserted into a non-empty box "does some work" (bumps out at least one letter). This feature is important for constructing the inverse algorithm.
There is a flaw in this idea. For example, we consider a tableau $T=1^{\prime}$ and $w=w^{(1)}=\left\{1^{\prime}\right\}$. According to the naive algorithm above, the resulting tableau is $T^{(1)}=1^{\prime}$, and the ejected set is $w^{(2)}=$ $\left\{1^{\prime}\right\}$. Since the second part is empty, the final result is $1^{\prime} \mid 1^{\prime}$, which is not semistandard. This is a reason why we need the "unmark" process introduced in the next section. In fact, we should care for the case of inserting elements into the diagonal boxes.

4.3 Insertion into a diagonal box

Let $X \in \mathcal{X}$, and u be a subset of X. We insert $w \in \mathcal{X}$ into X, where we consider X to be a diagonal box.

Algorithm 4.1 (Bumping for a diagonal box)

input $X, w, u \in \mathcal{X}$ satisfying $u \subset X$ and $\max w \leq_{c} \min X$.
output Y, v.

procedure

1. If $X \neq u$, then let $Y=(X-u) \cup w$ and $v=u$; and return Y, v.
2. If $i^{\prime}=\max (w) \in \mathcal{A}^{\prime}$ and $i \in X, i^{\prime} \notin X$, then let $Y=\{i\} \cup\left(w-\left\{i^{\prime}\right\}\right)$ and $v=X$; and return Y, v.
3. If $i^{\prime}=\max (w) \in \mathcal{A}^{\prime}$ and $i^{\prime} \in X, i \notin X$, then let $Y=w$ and $v=\{i\} \cup\left(X-\left\{i^{\prime}\right\}\right)$; and return Y, v.
4. If $i^{\prime}=\max (w) \in \mathcal{A}^{\prime}$ and $i, i^{\prime} \in X$, then let $Y=\{i\} \cup w$ and $v=X-\left\{i^{\prime}\right\}$; and return Y, v.
5. Otherwise, let $Y=w$ and $v=X$; and return Y, v.

For example, if $u=X=34$ and $w=13^{\prime}$, then we apply (2) to obtain $Y=13$ rather than 131 , and $u=34$. Thus letter 3^{\prime} is unprimed to be 3 in u. If $u=X=3^{\prime} 4$ and $w=13^{\prime}$, then we apply (3) to obtain $Y=13$ and $u=34$, rather than $u=3^{\prime} 4$. In this case, two 3^{\prime} are involved, and one may think of this process as umpriming "bigger" 3^{\prime}. Case (4) is a bit strange. If $u=X=3^{\prime} 3$ and $w=3^{\prime}$, then we have $Y=3^{\prime} 3$ and $u=3$. This case we are unpriming "bigger" 3^{\prime} also, and let it remain in the box.

4.4 Insertion into a part of " L " shape (definition)

Let T be a tableau of shape λ, and t be a positive integer such that $t \leq \lambda_{1}$. Let $X=L_{t}(T)$ be the t-th part of T. If $t=1$, then X is a row: $X=\left(X_{(1,1)} \leq_{r} X_{(1,2)} \leq_{r} \cdots \leq_{r} X_{\left(1, \lambda_{1}\right)}\right)$. If $t>\ell(\lambda)$ then X is a column: $X=\left(X_{(1, t)} \leq_{c} \cdots \leq_{c} X_{(k, t)}\right)$ for some $k<t$. We say that X is a pure column in this case (note that X does not contain diagonal box). If $1<t \leq \ell(\lambda)$ then $X=L_{t}(T)$ is a sequence of elements in \mathcal{X} :

$$
X=\left(X_{(1, t)} \leq_{c} \cdots \leq_{c} X_{(t-1, t)} \leq_{c} X_{(t, t)} \leq_{r} X_{(t, t+1)} \leq_{r} \cdots \leq_{r} X_{\left(t, t+\lambda_{t}-1\right)}\right)
$$

The following algorithm takes as an input a sequence of elements in \mathcal{X} satisfying

$$
X=\left(X_{-k} \leq_{c} \cdots \leq_{c} X_{-1} \leq_{c} X_{0} \leq_{r} X_{1} \leq_{r} \cdots \leq_{r} X_{l}\right)
$$

for some $k, l \geq 0$, and $w \in \mathcal{X}$. If $k=0$, we consider X as a row. Output is a triple $\left(Y, Y_{+}, v\right)$, where Y is a sequence $Y=\left(Y_{i}\right)_{i=-k}^{l}$ satisfying the same condition as X, and $Y_{+}, v \in \mathcal{X} \cup \emptyset$. If $Y_{+} \neq \emptyset$ we will make a new box with entry Y_{+}at the right end of Y.

Algorithm 4.2 (Bumping rule for an L part)

input $X=\left(X_{i}\right)_{i=-k}^{l}:$ tableau of L shape, i.e.

$$
X=\left(X_{-k} \leq_{c} \cdots \leq_{c} X_{-1} \leq_{c} X_{0} \leq_{r} X_{1} \leq_{r} \cdots \leq_{r} X_{l}\right)
$$

and $w \in \mathcal{X}$.
output Y tableau of L shape of the same length of X, and $Y_{+}, v \in \mathcal{X} \cup \emptyset$.

procedure

1. Define the subsets w_{-k}, \ldots, w_{l+1} of w by

$$
w_{t}= \begin{cases}\left\{x \in w \mid x \leq_{r} \min X_{-k}\right\} & (t=-k) \\ \left\{x \in w \mid \min X_{t-1} \leq_{c} x \leq_{r} \min X_{i}\right\} & (t=-k, \ldots,-1) \\ \left\{x \in w \mid \min X_{-1} \leq_{c} x \leq_{c} \min X_{0}\right\} & (t=0) \\ \left\{x \in w \mid \min X_{t-1} \leq_{r} x \leq_{c} \min X_{t}\right\} & (t=1, \ldots, l) \\ \left\{x \in w \mid \min X_{l} \leq_{r} x\right\} & (t=l+1)\end{cases}
$$

2. Decompose w_{t} into the subsets \check{w}_{t} and \hat{w}_{t} defined by

$$
\hat{w}_{t}= \begin{cases}w_{t} & (t=-k) \\ \left\{x \in w_{t} \mid \max X_{t-1} \leq_{c} x\right\} & (t=-k+1, \ldots, 0) \\ \left\{x \in w_{t} \mid \max X_{t-1} \leq_{r} x\right\} & (t=1, \ldots, l+1)\end{cases}
$$

$\check{w}_{t}=w_{t}-\hat{w}_{t}$, for $t=-k, \ldots, l+1$,
3. Define $\check{u}_{t}, \hat{u}_{k}$, and $u_{k}(t=-k, \ldots, l)$ by:

$$
\begin{aligned}
& \check{u}_{t}= \begin{cases}\emptyset & \left(\text { if } \check{w}_{t+1}=\emptyset\right) \\
\left\{y \in X_{t} \mid y \not Z_{c} \min \check{w}_{t+1}\right\} & \left(\text { if } t=-k, \ldots,-1 \text { and } \check{w}_{t+1} \neq \emptyset\right), \\
\left\{y \in X_{t} \mid y \Sigma_{r} \min \check{w}_{t+1}\right\} & \left(\text { if } t=0, \ldots, l \text { and } \check{w}_{t+1} \neq \emptyset\right)\end{cases} \\
& \hat{u}_{t}= \begin{cases}\emptyset & \left(\text { if } \hat{w}_{t}=\emptyset\right) \\
X_{t}-\check{u}_{t} & \left(\text { if } \hat{w}_{t} \neq \emptyset\right) \\
u_{t} & =\hat{u}_{t} \cup \check{u}_{t} \subset X_{t} .\end{cases}
\end{aligned}
$$

4. Define $Y_{t}=\left(X_{t}-u_{t}\right) \cup w_{t}$ and $v_{t}=u_{t}$ for $t \neq 0$.
5. Let $\left(Y_{0}, v_{0}\right)$ be the pair obtained from the triple $\left(X_{0}, w_{0}, u_{0}\right)$ by Algorithm4.1 if $l \geq 0$.
6. Let $Y=\left(Y_{-k}, \ldots, Y_{l}\right), Y_{+}=w_{l+1}$, and $v=\bigcup_{t=-k}^{l} v_{t}$; and return Y, Y_{+}, v.

Example 4.3 Let $X=\left(X_{-2}, X_{-1} ; X_{0} ; X_{1}, X_{2}, X_{3}\right)$ be

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 13 & 4^{\prime} & 5 & 56 & 8 & 9 \\
\hline
\end{array}
$$

Let us insert $w=25^{\prime} 6^{\prime} 79^{\prime} 9 \in \mathcal{X}$ into X. Since the minimums in X is

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 4^{\prime} & 5 & 5 & 8 & 9 \\
\hline
\end{array}
$$

we have $\left(w_{-2}, \ldots, w_{4}\right)=\left(\emptyset, 2,5^{\prime}, \emptyset, 6^{\prime} 7,9^{\prime}, 9\right)$. Since the maximums of X is

$$
\begin{array}{|l|l|l|l|l|}
\hline 3 & 4^{\prime} & 5 & 6 & 8 \\
\hline
\end{array}
$$

we have

t	-2	-1	0	1	2	3	4
\hat{w}_{t}	\emptyset	\emptyset	5^{\prime}	\emptyset	7	9^{\prime}	9
\check{w}_{t}	\emptyset	2	\emptyset	\emptyset	6^{\prime}	\emptyset	\emptyset
\hat{u}_{t}	\emptyset	\emptyset	5	\emptyset	8	9	-
\check{u}_{t}	3	\emptyset	\emptyset	6	\emptyset	\emptyset	-

Finally we get

$$
Y=\begin{array}{|l|l|l|l|}
\hline 124^{\prime} 5 & 56^{\prime} 79^{\prime} \\
\hline
\end{array}, Y_{+}=\{9\}, u=\{3,5,6,8,9\}
$$

We need to define the bumping algorithm applicable also when $X=L_{t}(T)$ is a pure column case, i.e. $t>\ell(\lambda)$. However, extension of the algorithm to the column case is straightforward, so we omit detailed description here.

4.5 Insertion of w into arbitrary tableau

We define a procedure to insert an element $w \in \mathcal{X}$ into an arbitrary tableau T. In the procedure, we insert w into the first L part of the tableaux. When some letters are bumped out, we insert them into the second L part of the tableau. Then, while some letters are bumped out, we try to insert them into the next L part of the tableux until no letters are bumped out.

Algorithm 4.4

input $T \in \mathcal{T}(\lambda)$ and $w \in \mathcal{X}$.
output U, S^{\prime}, S.

procedure

1. Let $u=w, U=T, S=\emptyset$ and $S^{\prime}=\emptyset$.
2. While $u \neq \emptyset$, do the following:
(a) Let X be the t-th L part of U,
(b) Let $\left(Y, Y_{+}, u\right)$ be the triple obtained from (X, u) by Algorithm4.2.
(c) Let U be the tableaux obtained from U by replacing the t-th L part by Y.
(d) If $Y_{+} \neq \emptyset$, then do the following:
i. Add a new box to the end of t-th L part of U, and insert Y_{+}into the box.
ii. If X is a pure column, then add the new box to S, else add the new box to S^{\prime}.
3. Return U, S^{\prime} and S.

Example 4.5 Let T be the leftmost tableau below. We insert $w=\left\{1^{\prime}, 1,2^{\prime}, 3\right\}$ into T as follows.

$1^{\prime} 1$ 12^{\prime} 23^{\prime}	$1^{\prime} 1$	1	$12^{\prime} 23^{\prime}$	3		$1^{\prime} 1$	1	$12^{\prime} 23^{\prime}$	3		$1^{\prime} 1$	1	1		3
$2^{\prime} 3$		$2^{\prime} 3$	3				2^{\prime}	3				2^{\prime}	2		
$u=1^{\prime} 12^{\prime} 3$		$u=$	12^{\prime}				$u=$	123				12	,		

$$
\begin{aligned}
& \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1^{\prime} 1 & 1 & 1 & 12^{\prime} 23^{\prime} 3 & 3 \\
\hline & 2^{\prime} & 23 &
\end{array} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1^{\prime} 1 & 1 & 1 & 12^{\prime} 23^{\prime} 3 & 3 \\
\cline { 2 - 7 } & & & &
\end{array} \\
& u=3 \quad u=\emptyset
\end{aligned}
$$

For each step, the relevant part of modification is enclosed.
Sets S^{\prime} and S are as follows:

where the box with entry 1^{\prime} (resp. 1) is $S^{\prime}($ resp. S).

4.6 Definition of the map ϕ

In order to complete the description of the map ϕ, we need one more combinatorial idea. Let θ be a 1 -admissible strip. We define an involution $\varrho: \mathcal{C}(\theta) \rightarrow \mathcal{C}(\theta)$. A box $\alpha \in \theta$ is said to be isolated if α is not a diagonal box and there is no other box than α in the row and column where α presents. For each isolated box, apply its entry the obvious involution $1 \mapsto 1^{\prime}, 1^{\prime} \mapsto 1$, while the non-isolated boxes are untouched. The resulting decomposition of θ is obviously admissible. For example, we have

It is obvious that ϱ is an involution.
Proposition 4.6 Let $\lambda \in \mathbb{S}, T \in \mathcal{T}(\lambda)$, and $w \in \mathcal{X}=\mathcal{T}(1)$. We have by Algorithm 4.4 a tableau $U=(T \hookleftarrow w) \in \mathcal{T}(\mu)$ for some $\mu \in \mathbb{S}$ such that $\mu \supset \lambda$ and a decomposition $\left(S^{\prime}, S\right)$ of $\theta=\mu / \lambda$. We have $\left(S^{\prime}, S\right) \in \mathcal{C}(\theta)$, and therefore θ is a 1-admissible strip.

Let $T \in \mathcal{T}(\lambda)$ and $w \in \mathcal{X}$ as in the above proposition. We define $\phi(T, w)$ to be $\left(U, \varrho\left(S^{\prime}, S\right)\right) \in$ $\mathcal{T}(\mu) \times \mathcal{C}(\mu / \lambda)$.

4.7 Proof of Prop. 3.2

To show that ϕ is a bijection, we construct its inverse map. See [INN] for details.

5 Robinson-Schensted type correspondence

5.1 Quasi-standard tableaux

We will define a notion of "recording" tableaux in our setting. The resulting object is an analogue of a standard tableau, which we will call a quasi-standard tableau.

For $T \in \mathcal{T}(\lambda)$ and $w \in \mathcal{X}$ we denote by $T \hookleftarrow w$ the tableau given in Prop. 3.2. Let $T \in \mathcal{T}(\lambda)$ and $\left(w_{1}, \ldots, w_{m}\right) \in \mathcal{X}^{m}$. By the consecutive insertions

$$
T^{(i)}=\left(\cdots\left(\left(T \hookleftarrow w_{1}\right) \hookleftarrow w_{2}\right) \cdots \hookleftarrow w_{i}\right)
$$

we have a tableaux $T^{(i)} \in \mathcal{T}\left(\nu^{(i)}\right)$ for some shifted diagram $\nu^{(i)}$ and an element of $\mathcal{C}\left(\nu^{(i)} / \nu^{(i-1)}\right)$ given by Proposition 3.2. Thus we have a nested sequence of shifted diagrams

$$
\begin{equation*}
\lambda=\nu^{(0)} \subset \nu^{(1)} \subset \nu^{(2)} \subset \cdots \subset \nu^{(m)}=\mu \tag{4}
\end{equation*}
$$

and also 1-admissible decompositions $\left(C_{i}^{\prime}, C_{i}\right)$ of $\theta^{(i)}=\nu^{(i)} / \nu^{(i-1)}$. These objects are expressed as a tableau like

						$1{ }^{\prime}$	1	2	2^{\prime}	4
		1^{\prime}	2	2^{\prime}	2	3^{\prime}	4^{\prime}		4	
	1 '	1	3	3^{\prime}	3	4^{\prime}	4			
	1	2^{\prime}	${ }^{\prime}$	3	4					
		2	2							

where the boxes filled with i (resp. i^{\prime}) are C_{i} (resp. C_{i}^{\prime}).
We call such a tableau a quasi-standard tableau of degree m. The precise definition is the following.
Definition 5.1 A map $U: \mu / \lambda \longrightarrow \mathcal{B}_{m}:=\left\{1^{\prime}, 1, \ldots, m^{\prime}, m\right\}$ is a quasi-standard tableau of degree m, if U is semistandard in the sense of Def. 2.1 and for any $1 \leq i \leq m, U^{-1}\left(\left\{i, i^{\prime}\right\}\right)$ is a 1-admissible strip with admissible decomposition given by $\left(U^{-1}\left(i^{\prime}\right), U^{-1}(i)\right)$.
Let $\mathcal{S}_{m}(\mu / \lambda)$ denote the set of quasi-standard tableaux of degree m on μ / λ.
Remark. By the construction, $\mathcal{S}_{1}(\mu / \lambda)$ is non-empty if and only if $\theta=\mu / \lambda$ is an 1-admissible strip. Then we have $\mathcal{S}_{1}(\theta)=\mathcal{C}(\theta)=\mathcal{C}_{1}(\theta)$. For an m-admissible strip θ, the set $\mathcal{C}_{m}(\theta)$ is a subset of $\mathcal{S}_{m}(\theta)$.

5.2 Robinson-Schensted correspondence

The following result is an immediate consequence of Prop. 3.2
Proposition 5.2 Let $T \in \mathcal{T}(\lambda)$ and $\left(w_{1}, \ldots, w_{m}\right) \in \mathcal{X}^{m}$. By consecutive insertions

$$
T^{\prime}=\left(\cdots\left(\left(T \hookleftarrow w_{1}\right) \hookleftarrow w_{2}\right) \cdots \hookleftarrow w_{m}\right)
$$

we have a tableaux $T^{\prime} \in \mathcal{T}(\mu)$ for some shifted diagram $\mu \supset \lambda$ and the recording tableau U. Then we have $U \in \mathcal{S}_{m}(\mu / \lambda)$. By this correspondence we have a weight preserving bijection

$$
\begin{equation*}
\phi_{m}: \mathcal{T}(\lambda) \times \mathcal{X}^{m} \longrightarrow \bigsqcup_{\mu} \mathcal{T}(\mu) \times \mathcal{S}_{m}(\mu / \lambda) \tag{5}
\end{equation*}
$$

where the sum runs for shifted diagrams μ such that $\mathcal{S}_{m}(\mu / \lambda) \neq \emptyset$.
Then we have immediately the following:
Corollary 5.3 We have

$$
G Q_{\lambda}(x) \cdot G Q_{1}(x)^{m}=\sum_{\mu} \beta^{|\mu / \lambda|-m} \# \mathcal{S}_{m}(\mu / \lambda) \times G Q_{\mu}(x)
$$

where the sum runs for shifted diagrams μ such that $\mathcal{S}_{m}(\mu / \lambda) \neq \emptyset$.
As a special case of $\lambda=\emptyset$, we have the following.
Corollary 5.4 (Robinson-Schensted correspondence) There is a weight preserving bijection

$$
\mathcal{X}^{m} \longrightarrow \bigsqcup_{\lambda} \mathcal{T}(\lambda) \times \mathcal{S}_{m}(\lambda)
$$

This bijection is a set-valued extension of the results in [Sa and Wo.
Example 5.5 Let $\left(w_{1}, w_{2}, w_{3}\right)=\left(2^{\prime} 3,12^{\prime} 2,134\right)$. By the correspondence in Cor. 5.3 we have pair of tableaux

$$
\left(\begin{array}{|c|c|c|c|c|}
\hline 1 & 1 & 2 & 2 & 34 \\
\hline & 23^{\prime} & & & \\
\hline
\end{array}, \begin{array}{l|l|l|l|l}
\hline & & 2^{\prime} & 2 & 3^{\prime} \\
\hline
\end{array}\right.
$$

as a result of bumping process:

6 Outline of proof of Thm 3.4

Now we have the bijection ϕ_{m} in Prop. 5.2. Since a tableau in $\mathcal{T}(m)$ is a sequence in \mathcal{X} such that

$$
X_{1} \leq_{r} \cdots \leq_{r} X_{m}
$$

we can think of $\mathcal{T}(m)$ as a subset of \mathcal{X}^{m}. Thus we only need to determine the image of $\mathcal{T}(\lambda) \times \mathcal{T}(m)$ under the map ϕ_{m}. The case $m=1$ is obvious since $\mathcal{T}(1)=\mathcal{X}$. The case $m=2$ is crucial.
Lemma 6.1 Let $T \in \mathcal{T}(\lambda)$ and $w=\left(w_{1}, w_{2}\right) \in \mathcal{X}^{2}$, and

$$
\phi_{2}(T, w)=\left(T^{\prime},\left(C_{1}^{\prime}, C_{1}\right),\left(C_{2}^{\prime}, C_{2}\right)\right)
$$

Then the following are equivalent:

1. $w_{1} \leq_{r} w_{2}$.
2. $\left(C_{1}^{\prime}, C_{1}\right) \triangleleft\left(C_{2}^{\prime}, C_{2}\right)$.

It is easy to see that the lemma leads to a proof of Thm 3.4 We show this lemma by an argument using "bumping routes". Details are given in [INN].

References

[Bu] A. S. Buch, A Littlewood-Richardson rule for K-theory of Grassmannians, Acta. Math. 189 (2002), 37-78.
[BR] A. S. Buch, V. Ravikumar, Pieri rules for the K-theory of cominuscule Grassmannians, arXiv:1005.2605.
[CTY] E. Clifford, H. Thomas, A. Yong, K-theoretic Schubert calculus for $O G(n, 2 n+1)$ and jeu de taquin for shifted increasing tableaux, arXiv:1002.1664v2
[IN] T. Ikeda, H. Naruse, K-theoretic analogue of Schur Q-functions and maximal isotropic Grassmannians, in preparation.
[INN] T. Ikeda, H. Naruse, Y. Numata, Bumping algorithm for shifted set-valued tableaux, in preparation.
[Sa] B. E. Sagan, Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley. J. Comb. Theory, Ser. A 45(1), 62-103, 1987.
[Wo] D. Worley, A theory of shifted Young tableaux, Ph. D. Thesis, Massachusetts Institute of Technology, 1984.

[^0]: \dagger 'Supported by KAKENHI (20540053).
 1365-8050 © 2011 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

