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Isotropical Linear Spaces and Valuated
Delta-Matroids
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Abstract. The spinor variety is cut out by the quadratic Wick relations among the principal Pfaffians of an n×n skew-
symmetric matrix. Its points correspond to n-dimensional isotropic subspaces of a 2n-dimensional vector space. In
this paper we tropicalize this picture, and we develop a combinatorial theory of tropical Wick vectors and tropical
linear spaces that are tropically isotropic. We characterize tropical Wick vectors in terms of subdivisions of Delta-
matroid polytopes, and we examine to what extent the Wick relations form a tropical basis. Our theory generalizes
several results for tropical linear spaces and valuated matroids to the class of Coxeter matroids of type D.

Résumé. La variété spinorielle est decoupée par les relations quadratiques de Wick parmi les Pfaffiens principaux
d’une matrice antisymétrique n × n. Ses points correspondent aux sous-espaces isotropes à n dimensions d’un
espace vectoriel de dimension 2n. Dans cet article nous tropicalison cette description, et nous développons une
théorie combinatoire de vecteurs tropicaux de Wick et d’espaces linéaires tropicaux qui sont tropicallement isotropes.
Nous caractérisons des vecteurs tropicaux de Wick en termes de subdivisions des polytopes Delta-matroı̈de, et nous
étudions dans quelle mesure les relations de Wick forment une base tropicale. Notre théorie généralise plusieurs
résultats pour les espaces linéaires tropicaux et évaluait des matroı̈des à la classe des matroı̈des de Coxeter du type
D.

Keywords: spinor variety, isotropic subspace, tropical linear space, valuated matroid, delta-matroid, matroid subdi-
vision.

1 Introduction
Let n be a positive integer, and let V be a 2n-dimensional vector space over an algebraically closed field
K of characteristic 0. Fix a basis e1, e2, . . . , en, e1∗ , e2∗ , . . . , en∗ for V , and consider the symmetric
bilinear form on V defined as

Q(x, y) =

n∑
i=1

xi yi∗ +

n∑
i=1

xi∗ yi,

for any x, y ∈ V with coordinates x = (x1, . . . , xn, x1∗ , . . . , xn∗) and y = (y1, . . . , yn, y1∗ , . . . , yn∗).
An n-dimensional subspace U ⊆ V is called (totally) isotropic if for all u, v ∈ U we have Q(u, v) = 0,
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or equivalently, for all u ∈ U we have Q(u, u) = 0. Denote by P(n) the collection of subsets of the
set [n] := {1, 2, . . . , n}. The space of pure spinors Spin±(n) is an algebraic set in projective space
PP(n)−1 that parametrizes totally isotropic subspaces of V . Its defining ideal is generated by very special
quadratic equations, known as Wick relations. We will discuss these relations in Section 2. Since any
linear subspace W ⊆ Kn defines an isotropic subspace U := W × W⊥ ⊆ K2n, all Grassmannians
G(k, n) can be embedded naturally into the space of pure spinors, and in fact, Wick relations can be seen
as a natural generalization of Plücker relations.

In [Spe08], Speyer studied tropical Plücker relations, tropical Plücker vectors (or valuated matroids
[DW92]), and their relation with tropical linear spaces. In his study he showed that these objects have
a beautiful combinatorial structure, which is closely related to matroid polytope decompositions. In this
paper we will study the tropical variety and prevariety defined by all Wick relations, the combinatorics
satisfied by the vectors in these spaces (valuated ∆-matroids [DW91]), and their connection with tropical
linear spaces that are tropically isotropic (which we will call isotropical linear spaces). Much of our work
can be seen as a generalization to type D of some of the results obtained by Speyer, or as a generalization
of the theory of ∆-matroids to the “valuated” setup.

We will say that a vector p ∈ TP(n) with coordinates in the tropical semiring T := R ∪ {∞} is a
tropical Wick vector if it satisfies the tropical Wick relations. A central object for our study of tropical
Wick vectors will be that of an even ∆-matroid [Bou87]. Even ∆-matroids are a natural generalization
of classical matroids, and much of the theory of matroids can be extended to them. In particular, their
associated polytopes are precisely those 0/1 polytopes whose edges have the form ±ei ± ej , with i 6= j.
In this sense, even ∆-matroids can be seen as Coxeter matroids of type D, while classical matroids
correspond to Coxeter matroids of type A. We will present all the necessary background on even ∆-
matroids in Section 3. Tropical Wick vectors will be valuated ∆-matroids: real functions on the set of
bases of an even ∆-matroid satisfying certain “valuated exchange property” which is amenable to the
greedy algorithm (see [DW91]).

In Section 4 we will be interested in determining for what values of n the Wick relations form a tropical
basis, and we will provide an answer for all n 6= 6. We will prove in Section 5 that in fact tropical Wick
vectors can be characterized in terms of even ∆-matroid polytope subdivisions. We give a complete list of
all even ∆-matroids up to isomorphism on a ground set of at most 5 elements, together with their corre-
sponding spaces of valuations, in the website http://math.berkeley.edu/˜felipe/delta/.
In Section 6 we will extend some of the theory of even ∆-matroids to the valuated setup. We will define
duality, circuits, and cycles for a tropical Wick vector p, generalizing the corresponding definitions for
even ∆-matroids. We will be mostly interested in studying the cocycle space of a tropical Wick vector,
which can be seen as an analog in type D to the tropical linear space associated to a tropical Plücker
vector, and we will give a parametric description of it in terms of cocircuits. We will then specialize our
results to tropical Plücker vectors, unifying in this way several results for tropical linear spaces given by
Murota and Tamura [MT01], Speyer [Spe08], and Ardila and Klivans [AK06]. In Section 7 we will define
isotropical linear spaces and study their relation with tropical Wick vectors. We will give an effective
characterization for determining when a tropical linear space is isotropical, and we will show that the
correspondence between isotropic linear spaces and points in the pure spinor space is lost after tropicaliz-
ing. Nonetheless, we will prove that this correspondence still holds when we restrict our attention only to
vectors having “small support”.

http://math.berkeley.edu/~felipe/delta/
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2 Isotropic Linear Spaces and Spinor Varieties
Let n be a positive integer, and let V be a 2n-dimensional vector space over an algebraically closed field
K of characteristic 0, with a fixed basis e1, e2, . . . , en, e1∗ , e2∗ , . . . , en∗ . Denote by P(n) the collection
of subsets of the set [n] := {1, 2, . . . , n}. In order to simplify the notation, if S ∈ P(n) and a ∈ [n]
we will write Sa, S − a, and S∆a instead of S ∪ {a}, S \ {a}, and S∆{a}, respectively. Given an n-
dimensional isotropic subspace U ⊆ V , one can associate to it a vector w ∈ PP(n)−1 of Wick coordinates
as follows. Write U as the rowspace of some n× 2n matrix M with entries in K. If the first n columns of
M are linearly independent, we can row reduce the matrix M and assume that it has the form M = [I|A],
where I is the identity matrix of size n and A is an n×n matrix. The fact that U is isotropic is equivalent
to the property that the matrix A is skew-symmetric. The vector w ∈ PP(n)−1 is then defined as

w[n]\S :=

{
Pf(AS) if |S| is even,
0 if |S| is odd;

where S ∈ P(n) and Pf(AS) denotes the Pfaffian of the principal submatrix AS of A whose rows
and columns are indexed by the elements of S. If the first n columns of M are linearly dependent
then we proceed in a similar way but working over a different affine chart of PP(n)−1. In this case, we
can first reorder the elements of our basis (and thus the columns of M ) using a permutation of 2n :=
{1, 2, . . . , n, 1∗, 2∗, . . . , n∗} consisting of transpositions of the form (j, j∗) for all j in some index set
J ⊆ [n], so that we get a new matrix that can be row-reduced to a matrix of the form M ′ = [I|A] (with A
skew-symmetric). We then compute the Wick coordinates as

w[n]\S :=

{
(−1)sg(S,J) · Pf(AS∆J) if |S∆J | is even,
0 if |S∆J | is odd;

where (−1)sg(S,J) is some sign depending on S and J that will not be important for us. The vector
w ∈ PP(n)−1 of Wick coordinates depends only on the subspace U , and the subspace U can be recovered
from its vector w of Wick coordinates.

The space of pure spinors is the set Spin±(n) ⊆ PP(n)−1 of Wick coordinates of all n-dimensional
isotropic subspaces of V , and thus it is a parameter space for these subspaces. It is an algebraic set, and
it decomposes into two isomorphic irreducible varieties as Spin±(n) = Spin+(n) t Spin−(n), where
Spin+(n) consists of all Wick coordinates w whose support supp(w) := {S ∈ P(n) : wS 6= 0} is made
of even-sized subsets, and Spin−(n) consists of all Wick coordinates whose support is made of odd-sized
subsets. The irreducible variety Spin+(n) is called the spinor variety; it is the projective closure of the
image of the map sending an n × n skew-symmetric matrix to its vector of Pfaffians. Its defining ideal
consists of all polynomial relations among the Pfaffians of a skew-symmetric matrix, and it is generated
by the following quadratic relations:

s∑
i=1

(−1)i wτiσ1σ2···σr · wτ1τ2···τ̂i···τs +

r∑
j=1

(−1)j wσ1σ2···σ̂j ···σr · wσjτ1τ2···τs , (1)

where σ, τ ∈ P(n) have odd cardinalities r, s, respectively, and the variables wσ are understood to be
alternating with respect to a reordering of the indices, e.g. w2134 = −w1234 and w1135 = 0. The ideal
defining the space of pure spinors is generated by all quadratic relations having the form (1), but now with
σ, τ ∈ P(n) having any cardinality. These relations are known as Wick relations. The shortest nontrivial
Wick relations are obtained when |σ∆τ | = 4; they have the form wSabcd · wS − wSab · wScd + wSac ·
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wSbd − wSad · wSbc and wSabc · wSd − wSabd · wSc + wSacd · wSb − wSbcd · pSa, where S ⊆ [n] and
a, b, c, d ∈ [n] \S are distinct. These relations will be of special importance for us; they will be called the
4-term Wick relations.

3 Delta-Matroids
In this section we review some of the basic theory of even ∆-matroids.

3.1 Bases

Our first description of even ∆-matroids is the following.

Definition 3.1 An even ∆-matroid (or even Delta-matroid) is a pair M = (E,B), where E is a finite set
and B is a nonempty collection of subsets of E satisfying the following symmetric exchange axiom: for
all A,B ∈ B and for all a ∈ A∆B, there exists b ∈ A∆B such that b 6= a and A∆{a, b} ∈ B. Here ∆
denotes symmetric difference: X∆Y = (X \Y )∪ (Y \X). The set E is called the ground set of M , and
B is called the collection of bases of M . We also say that M is an even ∆-matroid over the set E.

Even Delta-matroids are a natural generalization of classical matroids; in fact, it is easy to see that
matroids are precisely those even ∆-matroids whose bases have all the same cardinality (the reader not
familiar with matroids can take this as a definition). The following proposition is easy to prove.

Proposition 3.2 Let M be an even ∆-matroid. Then all the bases of M have the same parity.

It should be mentioned that the bases of an even ∆-matroid can all have odd cardinality; unfortunately,
the name used for even ∆-matroids might be a little misleading.

The notion of duality for matroids generalizes naturally to even ∆-matroids.

Definition 3.3 Let M = (E,B) be an even ∆-matroid. Directly from the definition it follows that the
collection B∗ := {E \ B : B ∈ B} is also the collection of bases of an even ∆-matroid M∗ over E. We
will refer to M∗ as the dual even ∆-matroid to M .

3.2 Representability

Our interest in even ∆-matroids comes from the study of the possible supports of Wick vectors.

Proposition 3.4 Let V be a 2n-dimensional vector space over the field K. If U ⊆ V is an n-dimensional
isotropic subspace with Wick coordinates w, then the subsets in supp(w) := {S ∈ P(n) : wS 6= 0} form
the collection of bases of an even ∆-matroid M(U) over [n]. An even ∆-matroid arising in this way is
said to be a representable even ∆-matroid (over the field K).

This notion of representability generalizes the classical notion of representability for classical matroids.
For matroids, some work has succeeded in studying this property over fields of very small characteristic,
but there is no simple and useful characterization of representable matroids over a field of characteristic
zero. The study of representability for even ∆-matroids shares the same difficulties, and there seems to
be almost no research done in this direction so far.
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3.3 Matroid Polytopes
Given any collection B of subsets of [n] one can associate to it the polytope ΓB := convex{eS : S ∈ B},
where eS :=

∑
i∈S ei is the indicator vector of the subset S. The following theorem characterizes the

polytopes associated to even ∆-matroids; it is a special case of a more general and fundamental theorem
characterizing the associated polytopes of Coxeter matroids (see [BGW03]).

Theorem 3.5 If B ⊆ P(n) is nonempty then B is the collection of bases of an even ∆-matroid if and only
if all the edges of the polytope ΓB have the form ±ei ± ej , where i, j ∈ [n] are distinct.

These results let us think of even ∆-matroids as “matroids of type D” (while classical matroids are “ma-
troids of type A”).

3.4 Circuits and Symmetric Matroids
We will now describe a notion of circuits for even ∆-matroids. We will present here only the basic
properties needed for the rest of the paper; a much more detailed description can be found in [BGW03].

Consider the sets [n] := {1, 2, . . . , n} and [n]∗ := {1∗, 2∗, . . . , n∗}. Define the map ∗ : [n]→ [n]∗ by
i 7→ i∗ and the map ∗ : [n]∗ → [n] by i∗ 7→ i. We can think of ∗ as an involution of the set 2n := [n]∪[n]∗,
where for any j ∈ 2n we have j∗∗ = j. If J ⊆ 2n we define J∗ := {j∗ : j ∈ J}. We say that the set
J is admissible if J ∩ J∗ = ∅, and that it is a transversal if it is an admissible subset of size n. For
any S ⊆ [n], we define its extension S̄ ⊆ 2n to be the transversal given by S̄ := S ∪ ([n] \ S)∗, and for
any transversal J we will define its restriction to be the set J ∩ [n]. Extending and restricting are clearly
bijections (inverse to each other) between the set P(n) and the set of transversals V(n) of 2n.

Given an even ∆-matroidM = ([n],B), the symmetric matroid associated toM is the collection B̄ of
transversals defined as B̄ := {B̄ : B ∈ B}. There is of course no substantial difference between an even
∆-matroid and its associated symmetric matroid; however, working with symmetric matroids will allow
us to simplify the forthcoming definitions.

Definition 3.6 Let M = ([n],B) be an even ∆-matroid over [n]. A subset S ⊆ 2n is called independent
inM if it is contained in some transversal B̄ ∈ B̄, and it is called dependent inM if it is not independent.
A subset C ⊆ 2n is called a circuit of M if C is a minimal dependent subset which is admissible. A
cocircuit of M is a circuit of the dual even ∆-matroid M∗. The set of circuits of M will be denoted by
C(M), and the set of cocircuits by C∗(M). An admissible union of circuits of M is called a cycle of M .
A cocycle of M is a cycle of the dual even ∆-matroid M∗.

This definition of circuits for even ∆-matroids generalizes the concept of circuits for matroids. In
fact, if M = ([n],B) is a matroid, C is its collection of (classical) circuits and K is its collection of
(classical) cocircuits, then the collection of circuits of M , when considered as an even ∆-matroid, is
{C : C ∈ C} ∪ {K∗ : K ∈ K}.
Example 3.7 Take n = 3, and let U be the isotropic subspace of C6 defined as the rowspace of the matrix

M =


1 2 3 1∗ 2∗ 3∗

1 0 0 0 1 −1
0 1 0 −1 0 2
0 0 1 1 −2 0

.
The even ∆-matroid M represented by U has bases B = {123, 1, 2, 3}, corresponding to the support of
its vector of Wick coordinates. Its associated polytope is the tetrahedron with vertices (1, 1, 1), (1, 0, 0),
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(0, 1, 0), and (0, 0, 1); whose edges are indeed of the form±ei± ej . The circuits of M are the admissible
subsets 1∗23, 12∗3, 123∗, 1∗2∗3∗. The dual even ∆-matroid M∗ has bases B∗ = {∅, 12, 13, 23}. The
cocircuits of M are the admissible subsets 123, 12∗3∗, 1∗23∗, 1∗2∗3.

4 Tropical Wick Relations
We now turn to the study of the tropical prevariety and tropical variety defined by the Wick relations. Due
to space constraints, we will assume the reader is familiar with the basic notions of tropical geometry.

Definition 4.1 A vector p = (pS) ∈ TP(n) is called a tropical Wick vector if it satisfies the tropical Wick
relations, that is, for all S, T ∈ P(n) the minimum

min
i∈S∆T

(pS∆i + pT∆i) (2)

is achieved at least twice (or it is equal to ∞). The ∆-Dressian ∆Dr(n) ⊆ TP(n) is the space of all
tropical Wick vectors in TP(n), i.e., the tropical prevariety defined by the Wick relations.

Tropical Wick vectors have also been studied in the literature under the name of valuated ∆-matroids
(see [DW91]). The following definition will be central to our study, and it is the reason why working over
R ∪∞ and not just R is fundamental for us.

Definition 4.2 The support of a vector p = (pS) ∈ TP(n) is supp(p) := {S ⊆ [n] : pS 6=∞}.
We will later see (Theorem 5.1) that the support of any tropical Wick vector consists of subsets whose
cardinalities have all the same parity, so the ∆-Dressian decomposes as the disjoint union of two tropical
prevarieties: the even ∆-Dressian ∆Dr+(n) ⊆ TP(n) (consisting of all tropical Wick vectors whose
support has only subsets of even cardinality) and the odd ∆-Dressian ∆Dr−(n) ⊆ TP(n) (defined anal-
ogously).

One of the main advantages of allowing our vectors to have∞ entries is that tropical Wick vectors can
be seen as a generalization of tropical Plücker vectors (or valuated matroids), as explained below.

Definition 4.3 A tropical Wick vector p = (pS) ∈ TP(n) is called a tropical Plücker vector (or a valuated
matroid) if all the subsets in supp(p) have the same cardinality rp, called the rank of p. The name is
justified by noting that in this case, the tropical Wick relations become just the tropical Plücker relations:
For all S, T ∈ P(n) such that |S| = rp − 1 and |T | = rp + 1, the minimum

min
i∈T\S

(pSi + pT−i) (3)

is achieved at least twice (or it is equal to∞). The space of tropical Plücker vectors of rank k is called
the Dressian Dr(k, n); it is the tropical prevariety defined by the Plücker relations of rank k.

Tropical Plücker vectors play a central role in the combinatorial study of tropical linear spaces done
by Speyer (see [Spe08]). In his paper he only deals with tropical Plücker vectors whose support is the
collection of all subsets of [n] of some fixed size k; we will later see that our definition is the “correct”
generalization to more general supports.

Definition 4.4 The tropical pure spinor space TSpin±(n) ⊆ TP(n) is the tropicalization of the space
of pure spinors, i.e., it is the tropical variety defined by all polynomials in the ideal generated by the
Wick relations. A tropical Wick vector in the tropical pure spinor space is said to be realizable. The
decomposition of the ∆-Dressian into its even an odd parts induces a decomposition of the tropical pure
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spinor space as the disjoint union of two “isomorphic” tropical varieties TSpin+(n) and TSpin−(n),
namely, the tropicalization of the spinor varieties Spin+(n) and Spin−(n) described in Section 2. The
tropicalization TSpin+(n) ⊆ TP(n) of the even part Spin+(n) will be called the tropical spinor variety.

By definition, we have that the tropical pure spinor space TSpin±(n) is contained in the ∆-Dressian
∆Dr(n). A first step in studying representability of tropical Wick vectors (i.e. valuated ∆-matroids) is to
determine when these two spaces are the same, or equivalently, when the Wick relations form a tropical
basis. Our main result in this section answers this question for almost all values of n.

Theorem 4.5 If n ≤ 5 then the tropical pure spinor space TSpin±(n) is equal to the ∆-Dressian
∆Dr(n), i.e., the Wick relations form a tropical basis for the ideal they generate. If n ≥ 7 then TSpin±(n)
is strictly smaller than ∆Dr(n); in fact, there is a vector in the even ∆-Dressian ∆Dr+(n) whose support
consists of all even-sized subsets of [n] which is not in the tropical spinor variety TSpin+(n).

To show that the tropical pure spinor space and the ∆-Dressian agree when n ≤ 5 we used of Anders
Jensen’s software Gfan [Jen]. The results of our computations can be found at the website http://
math.berkeley.edu/˜felipe/delta/. It is still unclear what happens when n = 6. In this case,
the spinor variety is described by 76 nontrivial Wick relations (60 of which are 4-term Wick relations) on
32 variables, and a Gfan computation requires a long time to finish. We state the following conjecture.

Conjecture 4.6 The tropical pure spinor space TSpin±(6) is equal to the ∆-Dressian ∆Dr(6).

Our equality between TSpin±(n) and ∆Dr(n) for n ≤ 5 implies the following corollary about repre-
sentability of even ∆-matroids.

Corollary 4.7 Let M be an even ∆-matroid on a ground set of at most 5 elements. Then M is a repre-
sentable even ∆-matroid over any algebraically closed field of characteristic 0.

5 Tropical Wick Vectors and Delta-Matroid Subdivisions
In this section we provide a description of tropical Wick vectors in terms of polytopal subdivisions. We
start with a useful local characterization, which was basically proved by Murota in [Mur06].

Theorem 5.1 Suppose p = (pS) ∈ TP(n) has nonempty support. Then p is a tropical Wick vector if
and only if supp(p) is the collection of bases of an even ∆-matroid over [n] and the vector p satisfies
the 4-term tropical Wick relations: For all S ∈ P(n) and all a, b, c, d ∈ [n] \ S distinct, the minima
min(pSabcd + pS , pSab + pScd, pSac + pSbd, pSad + pSbc) and min(pSabc + pSd, pSabd + pSc, pSacd +
pSb, pSbcd + pSa) are achieved at least twice (or are equal to∞).

Corollary 5.2 Suppose p = (pS) ∈ TP(n) has nonempty support. Then p is a tropical Plücker vector if
and only if supp(p) is the collection of bases of matroid over [n] (of rank rp) and the vector p satisfies the
3-term tropical Plücker relations: For all S ∈ P(n) such that |S| = rp − 2 and all a, b, c, d ∈ [n] \ S
distinct, the minimum min(pSab+pScd, pSac+pSbd, pSad+pSbc) is achieved at least twice (or it is equal
to∞).

Corollary 5.2 shows that our notion of tropical Plücker vector is indeed a generalization of the one given
by Speyer in [Spe08] to the case where supp(p) is not necessarily the collection of bases of a uniform
matroid.

http://math.berkeley.edu/~felipe/delta/
http://math.berkeley.edu/~felipe/delta/
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Definition 5.3 Given a vector p = (pS) ∈ TP(n), denote by Γp ⊆ Rn its associated polytope Γp :=
convex{eS : S ∈ supp(p)}. The vector p induces naturally a regular subdivision Dp of Γp in the
following way. Consider the vector p as a height function on the vertices of Γp, so “lift” vertex eS of Γp
to height pS to obtain the lifted polytope Γ′p = convex{(eS , pS) : S ∈ supp(p)} ⊆ Rn+1. The lower
faces of Γ′p are the faces of Γ′p minimizing a linear form (v, 1) ∈ Rn+1; their projection back to Rn form
the polytopal subdivision Dp of Γp, called the regular subdivision induced by p.

We now come to the main result of this section. It describes tropical Wick vectors as the height vectors
that induce “nice” polytopal subdivisions. After finishing this paper, it was pointed out to the author
that an equivalent formulation of this result had already been proved by Murota in [Mur97], under the
language of maximizers of an even ∆-matroid.

Theorem 5.4 Let p = (pS) ∈ TP(n). Then p is a tropical Wick vector if and only if the regular subdivision
Dp induced by p is an even ∆-matroid subdivision, i.e., it is a subdivision of an even ∆-matroid polytope
into even ∆-matroid polytopes.

If we restrict Theorem 5.4 to the case where all subsets in supp(p) have the same cardinality, we get the
following corollary. It generalizes the results of Speyer in [Spe08] for subdivisions of a hypersimplex.

Corollary 5.5 Let p ∈ TP(n). Then p is a tropical Plücker vector if and only if the regular subdivisionDp
induced by p is a matroid subdivision, i.e., it is a subdivision of a matroid polytope into matroid polytopes.

6 The Cocycle Space
In this section we define the notion of circuits, cocircuits and duality for tropical Wick vectors, and study
the space of vectors which are “tropically orthogonal” to all circuits. The admissible part of this space
will be called the cocycle space, for which we give a parametric representation. Most of our results can
be seen as a generalization of results for matroids and even ∆-matroids to the “valuated” setup. For this
purpose it is useful to keep in mind that for any even ∆-matroid M = ([n],B), by Theorem 5.4 there is a
natural tropical Wick vector associated to it, namely, the vector pM ∈ TP(n) defined as

(pM )I :=

{
0 if I ∈ B,
∞ otherwise.

Definition 6.1 Suppose p = (pS) ∈ TP(n) is a tropical Wick vector. It follows easily from the definition
that the vector p∗ = (p∗S) ∈ TP(n) defined as p∗S := p[n]\S is also a tropical Wick vector, called the dual
tropical Wick vector to p. Note that the even ∆-matroid associated to p∗ is the dual even ∆-matroid to
the one associated to p.

Definition 6.2 Recall that a subset J ⊆ 2n is said to be admissible if J ∩ J∗ = ∅. An admissible subset
of 2n of size n is called a transversal; the set of all transversals of 2n is denoted by V(n). For any subset
S ∈ P(n) we defined its extension to be the transversal S̄ := S ∪ ([n] \ S)∗ ⊆ 2n. There is of course a
bijection S 7→ S̄ between P(n) and V(n).

Now, let p = (pS) ∈ TP(n) be a tropical Wick vector. It will be convenient for us to work with the
natural extension p̄ ∈ TV(n) of p defined as p̄S̄ := pS . For any T ∈ P(n) we define the vector cT ∈ T2n

(also denoted cT̄ ) as

(cT )i = (cT̄ )i :=

{
p̄T̄∆{i,i∗} if i ∈ T̄ ,
∞ otherwise.
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It can be checked that if supp(cT ) 6= ∅ then supp(cT ) is one of the circuits of the even ∆-matroid Mp

whose collection of bases is supp(p). We will say that the vector c ∈ T2n is a circuit of the tropical Wick
vector p if supp(c) 6= ∅ and there is some T ∈ P(n) and some λ ∈ R such that c = λ�cT (or in classical
notation, c = cT + λ · 1, where 1 denotes the vector in T2n whose coordinates are all equal to 1). It is
not hard to see that C(Mp) = {supp(c) : c is a circuit of p}, so this notion of circuits indeed generalizes
the notion of circuits for even ∆-matroids to the “valuated” setup. The collection of circuits of p will be
denoted by C(p) ⊆ T2n. A cocircuit of the tropical Wick vector p is just a circuit of the dual vector p∗,
i.e., a vector of the form λ� c∗T , where c∗T ∈ T2n (also denoted c∗

T̄
) is the vector

(c∗T )i = (c∗T̄ )i :=

{
p̄T̄∆{i,i∗} if i /∈ T̄ ,
∞ otherwise.

We now define the concept of “tropical orthogonality”, which is just the tropicalization of the usual
notion of orthogonality in terms of the dot product.

Definition 6.3 Two vectors x, y ∈ TN are said to be tropically orthogonal, denoted by x>y, if the
minimum min(x1 +y1, x2 +y2, . . . , xN +yN ) is achieved at least twice (or it is equal to∞). If X ⊆ TN
then its tropically orthogonal set is X> := {y ∈ TN : y>x for all x ∈ X}.

We now turn to the study of the space of vectors which are tropically orthogonal to all circuits. Our
motivation for this will be clear later, when we deal with tropical linear spaces.

Definition 6.4 A vector x ∈ T2n is said to be admissible if supp(x) is an admissible subset of 2n. Let
p ∈ TP(n) be a tropical Wick vector. If x ∈ C(p)> is admissible then x will be called a cocycle of p. The
set of all cocycles of p will be called the cocycle space of p, and will be denoted by Q(p) ⊆ T2n.

We will now give a parametric description for the cocycle space Q(p) ⊆ T2n of a tropical Wick vector
p ∈ TP(n). For this purpose we first introduce the concept of tropical convexity.

Definition 6.5 A setX ⊆ TN is called tropically convex if it is closed under tropical linear combinations,
i.e., for any x1, . . . , xr ∈ X and any λ1, . . . , λr ∈ T we have that λ1� x1⊕ · · · ⊕λr � xr ∈ X . For any
a1, . . . , ar ∈ TN , their tropical convex hull is defined to be tconvex(a1, . . . , ar) := {λ1 � a1 ⊕ · · · ⊕
λr � ar : λ1, . . . , λr ∈ T}; it is the smallest tropically convex set containing the vectors a1, . . . , ar. A set
of the form tconvex(a1, . . . , ar) is usually called a tropical polytope.

Theorem 6.6 Let p ∈ TP(n) be a tropical Wick vector. Then the cocycle spaceQ(p) ⊆ T2n of p is the set
of admissible vectors in the tropical convex hull of the cocircuits of p.

Theorem 6.6 implies that if p is a tropical Wick vector andM is its associated even ∆-matroid then the set
of supports of all cocycles of p is precisely the set of cocycles of M (see Definition 3.6), so our definition
of cocycles for tropical Wick vectors extends the usual definition of cocycles for even ∆-matroids to the
valuated setup. Theorem 6.6 implies the following corollary.

Corollary 6.7 Let p ∈ TP(n) be a tropical Wick vector. ThenQ(p∗) ⊆ T2n is the set of admissible vectors
in Q(p)>.

6.1 Tropical Linear Spaces
We will now specialize some of the results presented above to tropical Plücker vectors (i.e. valuated
matroids). In this way we will unify several results for tropical linear spaces given by Murota and Tamura
in [MT01], Speyer in [Spe08], and Ardila and Klivans in [AK06]. Unless otherwise stated, all matroidal
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terminology in this section will refer to the classical matroidal notions and not to the ∆-matroidal notions
discussed above.

Definition 6.8 Let p = (pS) ∈ TP(n) be a tropical Plücker vector of rank rp. For T ∈ P(n) of size
rp + 1, we define the vector dT ∈ Tn as

(dT )i :=

{
pT−i if i ∈ T,
∞ otherwise.

If supp(dT ) 6= ∅ then supp(dT ) is one of the circuits of the matroid Mp whose collection of bases
is supp(p). We will say that the vector d ∈ Tn is a Plücker circuit of p if supp(d) 6= ∅ and there
is some T ∈ P(n) of size rp + 1 and some λ ∈ R such that d = λ � dT (or in classical notation,
d = dT + λ · 1, where 1 denotes the vector in Tn whose coordinates are all equal to 1). It is not hard
to see that C(Mp) = {supp(d) : d is a Plücker circuit of p}, so this notion of Plücker circuits generalizes
the notion of circuits for matroids to the “valuated” setup. The collection of Plücker circuits of p will be
denoted by PC(p). A Plücker cocircuit of p is just a Plücker circuit of the dual vector p∗, i.e., a vector of
the form λ� d∗T where T ∈ P(n) has size n− rp − 1 and d∗T ∈ Tn denotes the vector

(d∗T )i :=

{
pT∪i if i /∈ T,
∞ otherwise.

The reason we are using the name “Plücker circuits” is just so that they are not confused with the circuits
of p in the ∆-matroidal sense; a more appropriate name (but not very practical for the purposes of this
paper) would be “circuits in type A” (while the ∆-matroidal circuits are “circuits in type D”).

The following definition was introduced by Speyer in [Spe08].

Definition 6.9 Let p ∈ TP(n) be a tropical Plücker vector. The space Lp := PC(p)> ⊆ Tn is called the
tropical linear space associated to p.

The tropical linear space Lp should be thought of as the space of cocyles of p “in type A” (while Q(p) is
the space of cocycles of p “in type D”). Tropical linear spaces have a very special geometric importance,
for more information the reader is invited to consult [Spe08]. The following proposition will allow us to
apply the “type D” results that we got in previous sections to the study of tropical linear spaces.

Proposition 6.10 Let p ∈ TP(n) be a tropical Plücker vector, and let Lp ⊆ Tn be its associated linear
space. Then, under the natural identification T2n ∼= Tn × Tn, we have C(p)> = Lp × Lp∗ .

The following theorem provides a parametric description of any tropical linear space. It was first proved
by Murota and Tamura in [MT01]. In the case of realizable tropical linear spaces it also appears in work
of Yu and Yuster [YY07]. It follows easily from the results in the previous section.

Theorem 6.11 Suppose p ∈ TP(n) is a tropical Plücker vector. Then the tropical linear space Lp ⊆ Tn
is the tropical convex hull of the Plücker cocircuits of p.

It is instructive to see what Theorem 6.11 is saying when applied to tropical Plücker vectors with only
zero and infinity entries (what is sometimes called the “constant coefficient case” in tropical geometry).
In this case, since the complements of unions of cocircuits of the associated matroid M are exactly the
flats of M , we get precisely the description of the tropical linear space in terms of the flats of M that was
given by Ardila and Klivans in [AK06].

Another useful application of our results to the study of tropical linear spaces is the following. It was
also proved by Murota and Tamura in [MT01].
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Theorem 6.12 If p ∈ TP(n) is a tropical Plücker vector then Lp∗ = L>p . In particular, for any tropical
linear space L, we have (L>)> = L.

7 Isotropical Linear Spaces
Definition 7.1 Let L ⊆ T2n be an n-dimensional tropical linear space. We say that L is (totally) isotropic
if for any two x, y ∈ Lwe have that the minimum min(x1+y1∗ , . . . , xn+yn∗ , x1∗+y1 , . . . , xn∗+yn )
is achieved at least twice (or it is equal to ∞). In this case, we also say that L is an isotropical linear
space. Note that if K = C{{t}} and V = K2n, the tropicalization of any n-dimensional isotropic
subspace U of V (see Section 2) is an isotropical linear space L ⊆ T2n. In this case we say that L is
isotropically realizable by U .

We mentioned in Section 2 that if U is an isotropic linear subspace then its vector of Wick coordinates
w carries all the information of U . One might expect something similar to hold tropically, that is, that the
valuation of the Wick vector w still carries all the information of the tropicalization of U . This is not true,
as the next example shows.

Example 7.2 We present two n-dimensional isotropic linear subspaces of C{{t}}2n whose corresponding
tropicalizations are distinct tropical linear spaces, but whose Wick coordinates have the same valuation.
Take n = 4. Let U1 be the 4-dimensional isotropic linear subspace of C{{t}}8 defined as the rowspace of
the matrix

M1 =


1 2 3 4 1∗ 2∗ 3∗ 4∗

1 0 0 0 0 1 2 2
0 1 0 0 −1 0 1 2
0 0 1 0 −2 −1 0 1
0 0 0 1 −2 −2 −1 0

,
and U2 be the 4-dimensional isotropic linear subspace of C{{t}}8 defined as the rowspace of

M2 =


1 2 3 4 1∗ 2∗ 3∗ 4∗

1 0 0 0 0 1 2 4
0 1 0 0 −1 0 1 2
0 0 1 0 −2 −1 0 1
0 0 0 1 −4 −2 −1 0

.
Their corresponding tropical linear spaces L1 and L2 are distinct since, for example, the Plücker coor-
dinate indexed by the subset 343∗4∗ is nonzero for U1 but zero for U2. However, the Wick coordinates of
U1 and U2 are all nonzero scalars (the ones indexed by even subsets), and thus their valuations give rise
to the same tropical Wick vector.

It is important to have an effective way for deciding if a tropical linear space is isotropical or not. For
this purpose, if v ∈ T2n, we call its reflection to be the vector vr ∈ T2n defined as vri := vi∗ . If X ⊆ T2n

then its reflection is the set Xr := {xr : x ∈ X}. The following theorem gives us a simple criterion for
identifying isotropical linear spaces.

Theorem 7.3 Let L ⊆ T2n be a tropical linear space with associated tropical Plücker vector p (whose
coordinates are indexed by subsets of 2n). Then the following are equivalent:
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1. L is an n-dimensional isotropical linear space.

2. L> = Lr.

3. p2n \T = pT∗ for all T ⊆ 2n of size n.

If L is an isotropical linear space which is isotropically realizable by U then we have seen that the
valuation p of the Wick vector w associated to U does not determine L. Nonetheless, the following
theorem shows that p does determine the admissible part of L.

Theorem 7.4 Let L ⊆ T2n be an n-dimensional isotropical linear space which is isotropically realizable
by the isotropic subspace U ⊆ C{{t}}2n. Let p ∈ TP(n) be the tropical Wick vector obtained as the
valuation of the Wick vector w associated to U . Then the set of admissible vectors in L is the cocycle
space Q(p) ⊆ T2n.
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