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The i-th symbol of the well-known infinite word of Thue on the alphabet{0,1} can be characterized as the parity of
the number of occurrences of the digit 1 in the binary representation ofi. Generalized words of Thue are based on
counting the parity of occurrences of an arbitrary wordw∈ {0,1}∗−0∗ in the binary representation ofi. We provide
here the standard Lyndon factorization of some subclasses of this class of infinite words.
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1 Introduction
When we are interested in getting a better insight into the structure of some object, whether in mathematics
or in computer science, one of the basic approaches how to tackle the problem is decomposition of the
object into smaller “canonical” objects. The classical example is the factorization of a natural number
into prime numbers being a powerful tool in the number theory. Natural numbers coded in unary notation
correspond to finite words (strings) over a single-letter alphabet. Words over arbitrary alphabets can be
considered to be a generalization of the concept of the natural number. A canonical decomposition of
words to concatenation factors being Lyndon words is provided by the Lyndon factorization theorem
([10]). Lyndon words are primitive words minimal in their conjugacy classes. They are easy to deal
with, e.g., there exists a simple linear algorithm, introduced by Duval ([8], [2]) for generating Lyndon
words, up to a given length, in lexicographic order. A structural relationship of Lyndon words to other
important classes of words has been established ([1]). Application of the Lyndon factorization leads to
important results in the investigation of finite factorizations of the free monoidA∗ and to discovery of new
unavoidable regularities in words ([20]). Similar investigations of factorizations were performed for the
case of free partially commutative monoids ([7]). The Lyndon factorization can be generalized to Viennot
factorization by proceeding from the lexicographic ordering to Viennot orderings ([13]).

The Lyndon-factorization theorem has been further extended to infinite words (infinite sequences of
symbols - [17]). Investigation of infinite words is crucial in the area of combinatorics on words, since
properties of infinite words very often imply regularities in infinite sets of finite words. It is quite natural
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that, after the existence of the unique Lyndon factorization of infinite words had been proved, the factor-
ization of some important sequences was investigated. In particular, the factorization of the sequence of
Thue, of the Fibonacci sequence, of the regular paperfolding sequence and of the characteristic Sturmian
sequences was characterized in [9],[11], [12].

The sequence of Thue was historically the first sequence where the structural properties were system-
atically studied ([18], [19]; a construction of that sequence was mentioned, probably for the first time, in
[14]). The Thue sequence is one of the simplest non-periodic sequences in the important class of auto-
matic sequences (originally called uniform tag sequences - [6]). Automatic sequences can be equivalently
characterized by, among others, finite state automata, uniform morphisms or substitutions ([6], [5]).

In the current paper we investigate the Lyndon factorization of several subclasses of the class of gen-
eralized sequences of Thue. The generalized Thue sequences were first introduced in [5]. Each wordw
on the alphabet{0,1}, which contains at least one symbol 1, describes, as a parameter, a sequencetw in
this class. Thei-th symbol oftw corresponds to the parity of occurrences ofw as a factor of the binary
representation fori. The Thue sequence corresponds to the single-letter parameter word 1. As is well
known, the Thue sequence does not contain cubic factors. Similarly, the sequencetw does not contain a
factor, which is the 2|w|-th power of a non-empty word ([3]). In fact,tw does not contain any cubic factors
except powers of a single letter ([15],[16]).

The present work is, in a sense, of an experimental character. We believe that studying the factorization
pattern of a whole class of structurally related infinite sequences may bring some deeper insight to the
relationship between the structure of a sequence and its Lyndon decomposition. Though we provide here
a description of the Lyndon factorization of just a few subclasses of the generalized Thue sequences, it
seems to be apparent that the Lyndon factors follow the block structure of the sequence determined by
the iteration underlying uniform morphism or substitution. On the other hand, there does not seem to
be a straightforward way leading to the unique description of the factorization of the whole class of the
generalized words of Thue.

2 Notation and basic notions

2.1 Preliminaries

We denote asN ={0,1, . . .} the set of all natural numbers and, forp∈ N, we denote[p] = {i ∈ N; i < p}.
An alphabetis any finite non-empty setΣ (its elements are called symbols). In particular, we will use
the set[2] = {0,1} as an alphabet consisting of 2 symbols. Afinite word wof length |w| = n ∈ N on
Σ is a finite sequencew = a0a1· · ·an−1 of symbols fromΣ. Theempty word(of length 0) is denoted by
λ. An infinite word (a sequencefor short) onΣ is an infinite sequencew = a0a1· · · of symbols fromΣ.
The symbol in a word or sequencew at the positioni is denoted asw(i) (the position numbering starts
from 0). By Σ∗,Σp,(Σp)∗,Σω we denote the sets of all words, of all words of lengthp, of all words of
length being a multiple ofp and of all sequences onΣ, respectively. Further we denoteΣ∞ = Σ∗∪Σω and
(Σp)∞ = (Σp)∗∪Σω.

For a numberi ∈ [2k] we denote asi[2],k ∈ [2]k the word being the binary representation ofi of length
k≥ 0. For a wordw∈ [2]k we denote as[w]2 the unique number from[2k] with binary representationw.

Theconcatenationof the wordsx∈ Σ∗ andy∈ Σ∞ is xy∈ Σ∞. For x,y∈ Σ∗, the wordsxy andyx are
calledconjugates.If w = xyz∈ Σ∞, thenx,y,zare called aprefix, a factor at position|x|, and asuffixof w,
respectively. In this case, we further denotex−1w = yzandwz−1 = xy. A prefix, factor, or suffix is called
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proper if the remaining part ofw is not empty. A word isprimitive if it is not a concatenation of two or
more equal factors. If(wi)

∞
i=0 is a sequence of finite words of unlimited length such that, for eachi ≥ 0,

wi is a prefixwi+1, then limi→∞ wi will denote the unique infinite word having eachwi as a prefix.
Let r ≥ 1,s≥ 0 and let(Σr)∗ =

⋃
k∈N Σkr. A (r,s)-substitution(introduced in [5]) is a mappingµ :

(Σr)∞ → Γ∞, satisfyingµ(Σr) ⊂ Γs, andµ(xy) = µ(x)µ(y) for x∈ (Σr)∗,y∈ (Σr)∞. Thusµ is completely
determined by its values onΣr . The substitutionµ is prolongablein a wordu∈ Σr if u is a proper prefix
of µ(u). Then, clearly,s> r ≥ 1 and the sequence(µi(u))∞

i=0 of words obtained by repeated application
of µ starting fromu yields a limit s= lim i→∞ µi(u) being a fixed point ofµ, i.e., satisfyingµ(s) = s. A
(1, p)-substitution is calledp-uniform morphism.

Automatic sequences are described by finite state automata ([6], where these sequences are called
uniform tag sequences). We will limit here our considerations to 2-automatic sequences on the alphabet
[2] only. A 2-finite-state automaton(2-fsa) is a tupleA = (Σ, [2],δ,a0,F) whereΣ is a (state) alphabet, δ :
Σ× [2]→ Σ is thetransition function, a0 ∈ Σ is theinitial stateandF ⊂ Σ. We will assume thatA satisfies
δ(a0,0) = a0. We will consider the usual extensionδ∗ : Σ× [2]∗ → Σ defined fora∈ Σ,w∈ [2]∗,x∈ [2]
inductively asδ∗(a,λ) = a,δ∗(a,wx) = δ(δ∗(a,w),x). A sequences= b0b1· · · ∈ [2]ω is 2-automatic if
there exists a 2-fsaA as above such that, fori ∈ N, bi = 1 iff δ∗(a0, i[2],⌈log(i+1)⌉) ∈ F . We say thats is
described byA. We will use here several equivalent characterizations of 2-automatic sequences - see [6],
[4] for the proof of Theorem 2.1.1. (Remark 2.1.2 is based on this proof.)

Theorem 2.1.1 Let s= b0b1· · · ∈ [2]ω be a sequence. The following conditions i, ii, iii are equivalent.

(i) s is a2-automatic sequence

(ii) there is an alphabetΣ, a2-uniform morphismϕ : Σ∞ → Σ∞ and a1-uniform morphismψ : Σ∞ → [2]∞

such that s= ψ( lim
n→∞

ϕn(a))

(iii) s is a fixed point of some(k,kpm)-substitution µ: [2]∞ → [2]∞, k, m≥ 1.

Remark 2.1.2 Let a2-automatic sequence be described by the fsaA = (Σ, [2],δ,a0,F). The morphisms
ϕ,ψ from ii of Theorem 2.1.1 are given, for a∈ Σ, asϕ(a) = δ(a,0)δ(a,1), ψ(a) = (if a ∈ F then1 else
0). The symbol ofψ(ϕr(a)) at position i∈ [2r ], r ≥ 0, is thenψ(δ∗(a, i[2],r)).

2.2 Lyndon words

Assume a totally ordered alphabetΣ with the corresponding lexicographic order onΣ∞. Lyndon words
are defined as primitive words, which are minimal in the class of all their conjugates. The proof of the
following equivalent characterization of Lyndon words and the proof of the Lyndon’s theorem can be
found in [10].

Proposition 2.2.1 A non-empty word is a Lyndon word iff it is strictly smaller than any of its non-empty
proper suffixes.

Theorem 2.2.2 (Lyndon) Any non-empty finite word can be written uniquely as a concatenation of a
non-increasing sequence of Lyndon words.

In [17] the authors definedinfinite Lyndon wordsas those sequences, which have infinitely many prefixes
being Lyndon words. They proved the following generalization of the Lyndon theorem.
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Theorem 2.2.3 Any infinite word s can be uniquely factorized in one of the following forms:
s= l0l1· · ·, where l0 ≥ l1 ≥ ·· · are finite Lyndon words
or
s= l0l1· · ·lklk+1 where l0 ≥ l1 ≥ ·· · ≥ lkare finite Lyndon words

and lk+1 < lk is an infinite Lyndon word.

2.3 Generalized words of Thue

The infinite word of Thuet can be defined ast = lim i→∞ ϕi(0) whereϕ is the 2-uniform morphism on the
alphabet{0,1} described asϕ(0) = 01, ϕ(1) = 10. Hencet = 0110100110010110· · ·. The digit at the
i-th position oft can be determined as the parity of the number of occurrences of the digit 1 in the binary
representation ofi. In [5] generalized words of Thuewere introduced. They were further investigated
in [3], [15] and [16]. Each such infinite wordtw = tw(0)tw(1)tw(2)· · · ∈ {0,1}ω is based on a word
w∈ {0,1}∗−{0}∗. The symboltw(i) at thei-th position oftw is defined astw(i) = #w0|w|i[2] mod2 where

#w0|w|i[2] denotes the number of factorsw occurring in the binary representation ofi padded with at least
|w| leading zeroes. Every occurrence of a factor is counted, e.g.,t010(10) = 0, since 0001010 (the binary
representation of 10 padded with 3 leading zeroes) contains two overlapping factors 010. In particular,
t = t1.

Let for the remaining part of the paperw ∈ {0,1}∗ −{0}∗ be an arbitrary but fixed word. Denote
k = |w|, Σw = {〈α,m〉 ;α is a proper prefix ofw, m∈ [2]}. We will suppose thatk≥ 2 since the casek = 1
meanstw is the sequence of Thue. For the purpose of the next theorem (the proof of the theorem can be
found in [3]), for eachx,y 6= λ, let sp(x,y) denote the longest suffix ofx that is a proper prefix ofy.

Theorem 2.3.1 The sequence tw is described by the fsaAw = (Σw, [2],δw,a0,w,Fw) where, for〈α,m〉 ∈
Σw, j ∈ [2],

δw(〈α,m〉 , j) = 〈sp(α j,w), if α j = w then1−m else m〉 , (1)

a0,w =
〈

sp(0k,w),0
〉

and Fw = {〈α,1〉 ;〈α,1〉 ∈ Σw}. Moreover ,Aw is the minimal fsa, with respect to
the size of the state alphabet, describing tw.

We will denote asϕw,ψw the morphisms corresponding toAw according to Remark 2.1.2 (it is worth to
observe thatψw(〈α,m〉) = m). The sequencetw is a fixed point of a substitution described by the following
theorem from [5].

Theorem 2.3.2 Let µw be the(2k−1,2k)-substitution defined on[2]k−1as

µw(x0x1· · ·x2k−1−1) = y0y1· · ·y2k−1 (2)

where, for i∈ [2k], yi = (x⌊i/2⌋ +χw(i))mod2, andχw(i) = if w = i[2],k then1 else0. Then µw(tw) = tw.

Property 2.3.3 For i ≥ 0 and a∈ Σw, µi
w(ψw(ϕk−1

w (a))) = ψw(ϕk−1+i
w (a)).

Proof. Let a∈ Σw. Since the automatonAw is minimal, the statea can be reached from the initial state
a0,w. Remark 2.1.2 then implies thata occurs in the sequence limn→∞ ϕn(a0,w). Let it be at positionj.
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Then Theorem 2.3.2 implies that

µw(ψw(ϕk−1
w (a))) = µw(tw(2k−1 j)· · ·

tw(2k−1 j +2k−1−1)) = tw(2k j)· · ·

tw(2k j +2k−1) = ψw(ϕk
w(a))

= ψw(ϕk−1
w (ϕ(a))).

(3)

The required assertion is obtained by a simple inductive argument. ✷

Example 2.3.4 Let w= 010. The sequence (spaces are inserted for better readability)

t010 = 0010 1100 1101 0000 1101 0011 0010 0000 1101· · · (4)

is described by the fsaA010 = (Σ010, [2],δ010,〈0,0〉,F010) where

Σ010 = {〈λ,0〉,〈0,0〉,〈01,0〉,〈λ,1〉,〈0,1〉,〈01,1〉},

F010 = {〈λ,1〉,〈0,1〉,〈01,1〉}

and the transition function is given by the following table

δ010 0 1

〈λ,0〉 〈0,0〉 〈λ,0〉
〈0,0〉 〈0,0〉 〈01,0〉
〈01,0〉 〈0,1〉 〈λ,0〉

δ010 0 1

〈λ,1〉 〈0,1〉 〈λ,1〉
〈0,1〉 〈0,1〉 〈01,1〉
〈01,1〉 〈0,0〉 〈λ,1〉

(5)

The morphismϕ010 is described by the rows of the table, e.g.,

ϕ010(〈0,1〉) = 〈0,1〉〈01,1〉,

and
ψw(〈α,m〉) = m for α ∈ {λ,0,01},m∈ {0,1}.

The sequence t010 is a fixed point of the substitution

00007→ 00100000 11117→ 11011111
00107→ 00101100 11017→ 11010011
11007→ 11010000 00117→ 00101111

(6)

We will further use the following two easy observations without explicitly referring to them.

Observation 2.3.5 Let r ≥ 1. x∈ Σ∞
w. No symbol fromΣ can occur inϕr

w(x) both in an even and in an
odd position.

Observation 2.3.6 For each x∈ Σ∞
w let x̄ denote the word obtained by replacing each symbol〈α,m〉 by

〈α,1−m〉. Similarly, for each word x∈ [2]∞ let x̄ denote the word obtained by replacing each symbol m
by1−m. Then
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1. For each a∈ Σw and r≥ 0, ϕr
w(ā) = ϕr

w(a)

2. For each a∈ Σw and r≥ 0, ψw(ϕr
w(ā)) = ψw(ϕr

w(a))

3. For each x∈ ([2]k−1)∞, µw(x̄) = µw(x).

In the remaining part of this text we will omit the subscriptw from Aw, Σw, δw, δ∗w, a0,w, Fw, ϕw, ψw, µw

andχw.

3 Generalized words of Thue and the lexicographic order

3.1 Lexicographic order on the set Σ∞

We consider the set[2]∞ to be ordered lexicographically based on the ordering 0< 1 of [2]. We will
investigate the factors of the sequencetw and their properties related to this lexicographic ordering. The
structure of the sequencetw closely matches the structure of the sequenceτw = limn→∞ ϕn(a0) ∈ Σω. It
seems to be useful to look for an order relation onΣ (and the corresponding lexicographic order onΣ∞)
related to the order of the block factors ofΣ of the formψ(ϕr(a)), such that the morphismϕ is growing
onΣ∞. Sincetw is a fixed point of the(2k−1,2k)-substitutionµ, one would expect that the relative order of
two symbolsa,b∈ Σ should be implied by the order of the wordsψ(ϕk−1(a)),ψ(ϕk−1(b)). This choice
need not be (always) suitable as illustrated by the following example.

Example 3.1.1 Consider w= 10s, s≥ 2, hence k−1 = s, k−1+s= 2s. Let a= 〈1,1〉, b = 〈10s−1,1〉.
Then

ψ(δ∗(a, i[2],2s−1)) =

{

0 for i < 2s−1;

1 for i = 2s−1;
ψ(δ∗(a, i[2],2s)) = 0 for i ≤ 2s;

ψ(δ∗(b, i[2],2s−1)) = 0 for i ≤ 2s−1; ψ(δ∗(b, i[2],2s)) =

{

0 for i < 2s;

1 for i = 2s.

Thereforeψ(ϕk−1+s−1(a)) > ψ(ϕk−1+s−1(b)) andψ(ϕk−1+s(a)) < ψ(ϕk−1+s(b)).

For the rest of the paper, denote bys the length of the longest suffix ofw belonging to 0∗. Example
3.1.1 documented that choosing for the definition of the order relation onΣ an exponent ofϕ smaller than
k−1+s results in an order relation, with respect to whichϕ is not a growing function. Therefore we will
consider the ordering ofΣ based on the blocksψ(ϕk−1+s(a)).

Definition 3.1.2 The (total) order relation< onΣ is defined, for a,b∈ Σ, as
a < b iff ψ(ϕk−1+s(a)) < ψ(ϕk−1+s(b)) .

The relation< is indeed an order relation due to the following Lemma.

Lemma 3.1.3 Let a,b∈ Σ, a 6= b. Then, for r≥ 0, ψ(ϕk−1+r(a)) 6= ψ(ϕk−1+r(b)).

Proof. Let a = 〈α,m〉 ,b = 〈β,n〉 , a 6= b and letd ∈ [2] be different from the last symbol ofw. We will
use Remark 2.1.2. Ifm= n thenα 6= β, assume|α| < |β|. Let w = βγ. Thenψ(δ∗(a,γdk−1+r−|γ|)) = m,
ψ(δ∗(b,γdk−1+r−|γ|)) = 1−n 6= m. If m 6= n thenψ(δ∗(a,dk−1+r)) = m 6= n = ψ(δ∗(b,γdk−1+r−|γ|)). ✷



Lyndon factorization of generalized words of Thue 23

3.2 Monotonicity of ϕ and µ

The total order ofΣ induces the lexicographic order onΣ∞. We will denoteΨ = ψ◦ϕk−1+s. Clearly, the
(k−1+s)-uniform morphismΨ : Σ∞ → [2]∞ is a strictly growing function. Property 2.1.2 implies

Property 3.2.1 For i ≥ 0 and x∈ Σ∗, µi(Ψ(x)) = Ψ(ϕi(x)).

We want to show that the morphismϕ is strictly growing, as well. To prove it we need Property 3.2.2,
which was proved in [3] and one more technical lemma.

Property 3.2.2 ϕ is a one-to-one function.

Lemma 3.2.3 If a,b∈ Σ, a 6= b, and r≥ 0 is the first position whereΨ(a) andΨ(b) contain a different
symbol then r is a multiple of2s.

Proof. Assumer is not a multiple of 2s, i.e., r ≥ 1 and 0s is not a suffix ofr[2],k−1+s. Denoteρ the
word obtained fromr[2],k−1+s by removing the last symbol. Leta = 〈α,m〉 ,b = 〈β,n〉. Since neither of
αr[2],k−1+s, βr[2],k−1+s contains the suffixw, we have

ψ(δ∗(a, r[2],k−1+s)) = ψ(δ∗(a,ρ))and

ψ(δ∗(b, r[2],k−1+s)) = ψ(δ∗(b,ρ)),

henceψ(ϕk−1+s(a)) andψ(ϕk−1+s(b)) differ in position⌊r/2⌋ < r - a contradiction to the minimality of
r. ✷

Lemma 3.2.4 For a,b∈ Σ, if a < b thenϕ(a) < ϕ(b).

Proof. Let a < b (i.e., Ψ(a) < Ψ(b)) and let r be the first position in whichΨ(a) and Ψ(b) differ.
ThenΨ(a)(r) = 0 andΨ(b)(r) = 1. Assume by contrary thatϕ(a) ≥ ϕ(b), i.e., ϕ(a) > ϕ(b) as implied
by Property 3.2.2. ThenΨ(ϕ(a)) > Ψ(ϕ(b)). Considering Proposition 3.2.1, this meansµ(Ψ(a)) >
µ(Ψ(b)). Theorem 2.3.2 implies thatµ(Ψ(a)) andµ(Ψ(b)) have a common prefix of length 2r. Moreover,
the “correction” caused by the functionχ must take place at position 2r, since otherwiseµ(Ψ(a))(2r) =
Ψ(a)(r) < Ψ(b)(r) = µ(Ψ(b))(2r) and, consequently,µ(Ψ(a)) < µ(Ψ(b)). Therefore 2r = 2kt +[w]2 for
somet ≥ 0 and Lemma 3.2.3 implies that[w]2 is a multiple of 2s+1- a contradiction to the maximality of
s. ✷

Corollary 3.2.5 ϕ is strictly growing onΣ∞.

The following Corollary 3.2.6 follows from Property 3.2.1.

Corollary 3.2.6 µ is strictly growing on{Ψ(x);x∈ Σ∞}.

In the remaining part of the paper we will provide the characterization of the Lyndon factorization of the
sequencetw for four different shapes of the wordw.

4 Factorization of four types of generalized words of Thue.
We consider here four types of generalized Thue sequences, based on the shape of the underlying word
w. For each type we provide a theorem describing the Lyndon factorization of the sequencetw. Typically,
the Lyndon factorization oftw starts by an initial finite sequence of Lyndon factors (we will call this part
the “preamble” of the factorization) , followed by a product of a recurrently described infinite sequence of
Lyndon factors (the “body” of the factorization). The length of the preamble may grow with the increasing
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length of the wordw. The recurrent description of the body is based on the generating substitutionµw.
Proofs of the theorems from this section can be found in Section 5.

Each theorem is followed by an example of factorization of one sequencetw of the particular type,
together with the corresponding mappingsµw andϕw. In the examples, we include spaces to increase
readability oftw. The first symbol of each Lyndon factor oftw is underlined. The morphismϕw is given
for arguments of the form〈α,0〉 only. The values for arguments of the form〈α,1〉 can be obtained by
replacing each 0 or 1 in the second position by the complementary value.

4.1 Case w = 0k−11

Theorem 4.1.1 Let w= 0k−11. Then tw = ∏∞
i=0wi where w0 = 012k

, w1 = 012k−1, wi+1 = 1−1µ(1wi1−1)1
for i > 1. For i ≥ 0, the word wi is a Lyndon word and wi > wi+1.

Example 4.1.2 w = 001 (k = 3)
t001

0
¯

1111111 10
¯

111111 10
¯

001111 10111111 10
¯

000000 10111111 10001111 10111111
10
¯

000000 01000000 10001111 10111111 10000000 10111111 10001111 10111111
10
¯

000000 01000000 01110000 01000000 10000000 10111111 10001111 10111111
10000000 01000000 10001111 10111111 10000000 10111111 10001111 10111111
10
¯

000000 01000000 01110000 01000000 01111111 01000000 01110000 01000000
10000000 01000000 10001111 10111111 10000000 10111111 10001111 10111111
10000000 01000000 01110000 01000000 10000000 10111111 10001111 10111111
10000000 01000000 10001111 10111111 10000000 10111111 10001111 10111111
10
¯

000000 01000000 01110000 01000000 01111111 01000000 01110000 01000000
01111111 10111111 01110000 01000000 01111111 01000000 01110000· · ·

µ001

0000 7→ 0100 0000 11117→ 1011 1111
0100 7→ 0111 0000 10117→ 1000 1111
0111 7→ 0111 1111 10007→ 1000 0000

ϕ001

〈λ,0〉 7→ 〈0,0〉〈λ,0〉
〈0,0〉 7→ 〈00,0〉〈λ,0〉
〈00,0〉 7→ 〈00,0〉〈λ,1〉

4.2 Case w = 10k−21

Theorem 4.2.1 Let w= 10k−21, k≥ 3‡. Then tw = ∏∞
i=0wi where

w0 = 02k−1+1102k−1
1202k−1−31;

w1 =

{

061012021201 if k = 3;

02k−1+21402k−1−7102k−1
1202k−1−31 if k > 3;

wi+1 = 02k−1−2µ((02k−1−2)−1wi0
2k−1−2)(02k−1−2)−1 for i ≥ 1.

For i ≥ 0, the word wi is a Lyndon word and wi > wi+1.

Example 4.2.2 w = 1001 (k = 4)

‡ The casek = 2 yields a different Lyndon factorization—see Section 4.3.
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t1001

0
¯

0000000 01000000 00110000 010
¯

00000 00001111 01000000 00110000 010
¯

00000
00000000 10111111 00110000 01000000 00001111 01000000 00110000 010

¯
00000

00000000 01000000 11001111 10111111 00001111 01000000 00110000 01000000
00000000 10111111 00110000 01000000 00001111 01000000 00110000 010

¯
00000

00000000 01000000 00110000 01000000 11110000 10111111 11001111 10111111
00000000 10111111 00110000 01000000 00001111 01000000 00110000 01000000
00000000 01000000 11001111 10111111 00001111 01000000 00110000 01000000
00000000 10111111 00110000 01000000 00001111 01000000 00110000 010

¯
00000

00000000 01000000 00110000 01000000 00001111 01000000 00110000 01000000
11111111 01000000 11001111 10111111 11110000 10111111 11001111· · ·

µ1001

000000007→ 00000000 01000000 111111117→ 11111111 10111111
010000007→ 00110000 01000000 101111117→ 11001111 10111111
001100007→ 00001111 01000000 110011117→ 11110000 10111111
000011117→ 00000000 10111111 111100007→ 11111111 01000000

ϕ1001

〈λ,0〉 7→ 〈λ,0〉〈1,0〉
〈1,0〉 7→ 〈10,0〉〈1,0〉
〈10,0〉 7→ 〈100,0〉〈1,1〉
〈100,0〉 7→ 〈λ,0〉〈1,1〉

4.3 Case w = 1k.

Theorem 4.3.1 Let w= 1k,. k≥ 2. Then tw = ∏∞
i=0wi where w0 = 02k−1102k−2

1,
w1 = w−1

0 µ2(w00)0−1 and wi+1 = 0µ2(0−1wi0)0−1 for i ≥ 1.
For i ≥ 0, the word wi is a Lyndon word and wi > wi+1.

Example 4.3.2 w = 11 (k = 2)
t11

0
¯

0010010
¯

00011101 00010010 11100010
¯

00010010 00011101 11101101 00011101
00010010 00011101 00010010 11100010 11101101 11100010 00010010 11100010

¯
00010010 00011101 00010010 11100010 00010010 00011101 11101101 00011101
11101101 11100010 11101101 00011101 00010010 00011101 11101101 00011101
00010010 00011101 00010010 11100010 00010010 00011101 11101101 00011101
00010010 00011101 00010010 11100010 11101101 11100010 00010010 11100010
11101101 11100010 11101101 00011101 11101101 11100010 00010010 11100010
00010010 00011101 00010010 11100010 11101101 11100010 00010010 11100010

¯
00010010 00011101 00010010 11100010 00010010 00011101 11101101 00011101
00010010 00011101 00010010 11100010 11101101 11100010 00010010· · ·

µ11

00 7→ 00 01 117→ 11 10
01 7→ 00 10 107→ 11 01

ϕ11

〈λ,0〉 7→ 〈λ,0〉〈1,0〉
〈1,0〉 7→ 〈λ,0〉〈1,1〉
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4.4 Case w = 10k−1

Theorem 4.4.1 Let w= 10k−1,k≥ 2. Denote

ρ = µ2k−2(12k−1
)µk−1(02k−1

)(02k−1−1)−1,

j0 = 0,

j1 =
[

10k−1102k−2
]

2

j2 =
[

10k102k−2
]

2
,

and, for1≤ r ≤ k−1, denote

j2r+1 =
[

10k−110k−11r0k−21
]

2
,

j2r+2 =
[

10k10k−11r0k−21
]

2
.

For 0≤ i ≤ 2k−1, let wi be the factor of tw of length ji+1− j i at the position ji and,
for i ≥ 2k, let wi = ρ−1µ(ρwi−1ρ−1)ρ.
Then tw = ∏∞

i=0wi and, for i≥ 0, wi > wi+1, and wi is a Lyndon word.

Example 4.4.2 w = 100 (k = 3)
t100

0
¯

0001000 11001000 11111000 11001000 11110111 11001000 11111000 11001000
11110111 00110111 11111000 11001000 11110111 11001000 11111000 11001000
11110111 00110111 0

¯
0000111 00110111 11110111 11001000 11111000 11001000

11110111 00110111 11111000 11001000 11110111 11001000 11111000 11001000
11110111 00110111 0

¯
0000111 00110111 000010

¯
00 00110111 00000111 00110111

11110111 00110111 11111000 11001000 11110111 11001000 11111000 11001000
11110111 00110111 00000111 00110111 11110111 11001000 11111000 11001000
11110111 00110111 11111000 11001000 11110111 11001000 11111000 11001000
11110111 00110111 00000111 00110111 000010

¯
00 00110111 00000111 00110111

00001000 110010
¯

00 00000111 00110111 00001000 00110111 00000111· · ·

µ100

0000 7→ 0000 1000 11117→ 1111 0111
1000 7→ 1100 1000 01117→ 0011 0111
1100 7→ 1111 1000 00117→ 0000 0111

ϕ100

〈λ,0〉 7→ 〈λ,0〉〈1,0〉
〈1,0〉 7→ 〈10,0〉〈1,0〉
〈10,0〉 7→ 〈λ,1〉〈1,0〉

5 Proofs of the factorization results.
The present part contains proofs of the four theorems from Section 3. In each of the four cases, we start
by observing some specific properties ofϕw,Ψw, Awandµw for the particular shape ofw. The proof of
each of the theorems consists of the following parts:
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Part A. We prove the consistency of the recurrent formula for factorswi and we show that the sequence
tw can be written as a concatenation of the factorswi .

Part B. We prove thatw0,w1, . . . is a decreasing sequence.

Part C. We show that each wordwi is a Lyndon word—separately for the preamble and for the body of
the factorization.

5.1 Case w = 0k−11

Let w = 0k−11, k ≥ 2§. In this cases= 0, Ψ = ψ◦ϕk−1 and each element ofΣ is of the form〈0r ,m〉 for
somer ∈ [k], m∈ [2]. The initial state ofA is 〈0k−1,0〉.

We have a simple equivalent characterization of the order relation onΣ for this case.

Property 5.1.1 Let a,b∈ Σ, a= 〈0p,m〉, b= 〈0q,n〉. Then a< b iff one of the following is true:

1. m< n or

2. m= n = 0 and p< q or

3. m= n = 1 and p> q.

Proof. If 0 = m< n = 1 thenψ(δ∗(a,0k−1)) = 0, ψ(δ∗(b,0k−1)) = 1, anda < b. Now let m= n. For
r ∈ {p,q}, i ∈ [2k−1] we have

Ψ(〈0r ,m〉)(i) = ψ(δ∗(〈0r ,m〉, i[2],k−1)) =

{

m if i = 0 or i ≥ 2r ;

1−m for1≤ i < 2r .
(7)

ThusΨ(〈0r ,m〉) has the prefixm(1−m)2r−1. If m= 0 thena < b iff p < q, if m= 1 thena < b iff
p > q. ✷

The following complete description of the mappingϕ can be easily obtained using Remark 2.1.2.

Property 5.1.2 ϕ(〈0r ,0〉) = 〈0r+1,0〉〈λ,0〉 for 0≤ r < k−1, andϕ(〈0k−1,0〉) = 〈0k−1,0〉〈λ,1〉 .

The first of the next two properties may be obtained, considering Remark 2.1.2, by observing the
shapes of the wordsi[2],k−1, i ∈ [2k−1]. The second is a consequence of the trivial fact that the binary
representation of a position number has suffix 0 iff the position number is even.

Property 5.1.3 Let a∈ Σ. If 02 is a prefix ofΨ(a) then a= 〈λ,0〉. If 02k−1−1 is a suffix ofΨ(a) then
a = 〈λ,0〉 or a = 〈0k−1,1〉.

Property 5.1.4 Let x∈ Σ∗. Then〈λ,0〉 does not occur in any even position ofϕ(x) and〈0k−1,1〉 does not
occur in any odd position ofϕ(x).

§ The casek = 1 corresponds to the sequence of Thue. Though the factorization in this case (see [9]) has the same shape as for
k≥ 2, the proof fork≥ 2 will use the fact thatw contains at least one symbol 0.
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Proof of Theorem 4.1.1
Part A
Lemma 5.1.5 w0w1 is a prefix of tw.

Proof. Observing the shape of the wordsr[2],k+2, for 0≤ r ≤ 2k+1, we find

ψ(δ∗(〈0k−1,0〉, r[2],k+2)) =



















0 if r = 0;

1 if 0 < r ≤ 2k;

0 if r = 2k +1;

1 if 2k +1 < r ≤ 2k+1.

(8)

Thereforetw has the prefix 012
k
012k−1. ✷

Lemma 5.1.6 For i ≥ 1, 11 is a suffix of wi and1wi1−1 = Ψ(ϕi(〈λ,1〉).

Proof. The assertion is true fori = 1 sincew1 = 012k−1 and 1w11−1 is a factor oftw at position 2k, as
implied by Lemma 5.1.5. Assume that the assertion is true for somei ≥ 1. Then 1 is both a prefix and
a suffix of 1wi1−1. Theorem 2.3.2 implies that 1 is both a prefix and a suffix ofµ(1wi1−1) sincew[2] is
neither a suffix of 0[2],k+i nor of (2k+i −1)[2],k+i . Hence 11 is a suffix ofwi+1 = 1−1µ(1wi1−1)1. Using
Property 3.2.1 we obtain

1wi+11−1 = 11−1µ(1wi1
−1)11−1 = µ(1wi1

−1) = µ(Ψ(ϕi(〈λ,1〉)) = Ψ(ϕi+1(〈λ,1〉). (9)

✷

Lemma 5.1.7 tw = ∏∞
i=0wi .

Proof. Sincetw is a fixed point ofµ, the image inµ of the prefix 012
k−1 of length 2k of tw is the prefix of

length 2k+1 of tw. Then

µ(∏∞
i=0wi) = µ(012k

∏∞
i=1wi)

= µ(012k−1∏∞
i=1(1wi1−1))

= µ(012k−1)∏∞
i=1µ(1wi1−1))

= (w0w11−1)∏∞
i=1µ(1wi1−1))

= (w0w11−1)∏∞
i=1(1wi+11−1)

= ∏∞
i=0wi .

(10)

Both sequencestw and∏∞
i=0wi are fixed points ofµ starting by the same prefix of length 2k−1, therefore

tw = ∏∞
i=0wi . ✷

Part B
Lemma 5.1.8 (wi)

∞
i=0 is a decreasing sequence of words.

Proof. Clearlyw0 > w1. Property 5.1.1 implies that〈λ,1〉 > 〈0,1〉〈λ,1〉 = ϕ(〈λ,1〉). Sinceϕ anΨ are
strictly growing, we get, fori ≥ 1, ϕi(〈λ,1〉) > ϕi+1(〈λ,1〉), and, consequently,

wi = 1−1Ψ(ϕi(〈λ,1〉))1 > 1−1Ψ(ϕi+1(〈λ,1〉))1 = wi+1

✷
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Part C
We start by observing the fact thatw0 is strictly smaller than any of its non-empty proper suffixes.

Observation 5.1.9 The word w0 is a Lyndon word.

Lemma 5.1.10 For 1≤ i ≤ k, wi = 02i−112k−2i
xi , where xi does not contain a factor02i−1

Proof. For 0≤ r ≤ k−2, ϕ(〈0r ,0〉) = 〈0r+1,0〉〈λ,0〉 and (forr = k−1) ϕ(〈0k−1,0〉) = 〈0k−1,0〉〈λ,1〉.
An easy induction yields, for 0≤ i ≤ k−1,

ψ(ϕi(〈λ,0〉)) = ψ(〈0i ,0〉〈λ,0〉ϕ(〈λ,0〉)ϕ2(〈λ,0〉) · · ·ϕi−1(〈λ,0〉)) = 02i
.

For 1≤ i ≤ k,
ψ(ϕk−1+i(〈λ,1〉)) = xy (11)

where

x = ψ(〈0k−1,1〉〈λ,0〉ϕ(〈λ,0〉)· · ·ϕi−1(〈λ,0〉)ϕi(〈λ,1〉)· · ·ϕk−1(〈λ,1〉))

= 1020+21+···2(i−1)
12i+2i+1+···2k−1

and

y = ψ(ϕk−1+1(〈λ,1〉)· · ·ϕk−1+i−1(〈λ,1〉))

= Ψ(ϕ(〈λ,1〉))· · ·Ψ(ϕi−1(〈λ,1〉)).

Hence, following Lemma 5.1.6,

wi = 1−1ψ(ϕk−1+i(〈λ,1〉))1

= 02i−112k−2i
(1w11−1)· · ·(1wi−11−1)1

= 02i−112k−2i
w1· · ·wi−1,

(12)

wherew1· · ·wi−1 does not contain a factor 02i−1, the latter fact follows by induction. ✷

Corollary 5.1.11 w1, . . .,wk are Lyndon words

Lemma 5.1.12 For i ≥ k+1, 02k
is a prefix of wi .

Proof. It is enough to prove the assertion forwk+1, since, by Lemma 5.1.8, fori > k+1, wk+1 > wi . From
Lemma 5.1.6 we obtain

wk+1 = 1−1Ψ(ϕk+1(〈λ,1〉))1

= 1−1Ψ(〈0k−1,1〉〈λ,0〉〈0,0〉x)1

= 1−1102k−1−102k−1
0102k−1−2Ψ(x) = 02k

y

(13)

wherex∈ Σ∗,y∈ [2]∗ are suitable words. ✷

Lemma 5.1.13 For i ≥ 1, w1 is a primitive word.
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Proof. Denoteω= Ψ(ϕi(〈λ,1〉)). By Lemma 5.1.6,wi = 1−1ω1. Assume thatwi is not primitive. Then
neither isω. Since the length ofω is a positive power of 2,ω is a concatenation of two equal factors,
implying ϕ(b1) = aa for some symbola∈ Σ - a contradiction to Proposition 2.3.5. ✷

Lemma 5.1.14 For i ≥ k, wi is a Lyndon word.

Proof. By induction. Fori = k the assertion follows from Corollary 5.1.11. Leti > k. Assume thatwi−1

is a Lyndon word. By Lemma 5.1.13,wi is not primitive. Assume thatwi is not minimal in its conjugacy
class. Letwi = uvwherevu< wi is the smallest conjugate ofwi . The minimality ofvu implies that the last
symbol ofu is 1. The wordvu, as a conjugate ofω, is of the formξ0x1x2yξ′0, ξ0 6= λ, whereξ′0ξ0 = Ψ(c0),
x1 = Ψ(c1), x2 = Ψ(c2) for somec0,c1,c2 ∈ Σ andξ′0ξ0x1x2y= Ψ(c0c1c2z) for some conjugatec0c1c2zof

ϕi(〈λ,1〉). Since 02
k

is a prefix ofwi , 02k
must be a prefix ofvu. The last symbol ofv is 1 (the last symbol

of wi) therefore 02
k

is a prefix ofv. Henceξ0x1 ∈ 0∗, and, consequently,x1 = 02k−1
andc1 = 〈λ,0〉.

Property 5.1.4 implies thatc0 6= 〈λ,0〉, c2 6= 〈λ,0〉, otherwise〈λ,1〉 occurs in two neighbor positions.
As a consequence of Property 5.1.3,x1x2 has the prefix 02

k−1+11 or 02k−1
1 . Thereforeξ0 has the suffix

02k−1−1 and, again by Property 5.1.3,c0 = 〈0k−1,1〉 andξ′0 = 1. We have

Ψ(c0c1c2z) = ξ′0ξ0x1x2y = 1vu1−1 < 1wi1
−1 = Ψ(ϕi(〈λ,1〉)) (14)

yieldingc0c1c2z< ϕi(〈λ,1〉).
The wordc0c1c2z= 〈0k−1,1〉〈λ,0〉c2z is a conjugate ofϕi(〈λ,1〉), hence either〈0k−1,1〉〈λ,0〉c2z or

〈λ,0〉c2z〈0k−1,1〉 is an image inϕ of some word fromΣ∗, the latter case contradicting Property 5.1.4.
Thus〈0k−1,1〉〈λ,0〉c2z= ϕ(z′) for some conjugatez′ of ϕi−1(〈λ,1〉) where the initial symbol ofz′ is

either〈0k−1,1〉 or 〈0k−2,1〉, in both cases the first symbol ofΨ(z′) is 1. Sinceϕ(z′) < ϕi(〈λ,1〉), we have
z′ < ϕi−1(〈λ,1〉) andΨ(z′) < Ψ(ϕi−1(〈λ,1〉)) implying

1−1Ψ(z′)1 < 1−1Ψ(ϕi−1(〈λ,1〉))1 = wi−1 (15)

where the left-hand side is a conjugate ofwi−1 - a contradiction to the inductive hypothesis thatwi−1 is a
Lyndon word. ✷

Theorem 4.1.1 now follows from Lemma 5.1.7, Lemma 5.1.8, Observation 5.1.9, Corollary 5.1.11 and
Lemma 5.1.14. ✷

5.2 Case w = 10k−21
Let w = 10k−21, k≥ 3. In this cases= 0, Ψ = ψ◦ϕk−1 and each element ofΣ is of the form〈10r ,m〉 for
somer ∈ [k−1], m∈ [2]. The initial state ofA is 〈λ,0〉 .

The first of the following two properties may be observed applying Remark 2.1.2. The second one
follows from the fact that the only proper prefix ofw finished by 1 is 1.

Property 5.2.1 for r ∈ [k−1],

ψ(ϕr(〈λ,0〉)) = ψ(ϕr(〈1,0〉)) = 02r
,

and

Ψ(〈λ,0〉) = 02k−1
,

Ψ(〈10r ,0〉) = 02r
12r

02k−1−2r+1
.
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Property 5.2.2 If a symbol a∈ Σ occurs in an odd position of a word of the formϕ(x), x ∈ Σ∗, then
a = 〈1,0〉 or a = 〈1,1〉.

Proof of Theorem 4.2.1

Part A
Lemma 5.2.3 w0w1 is a prefix of tw and w1 = 02k−1−2Ψ(ϕ2(〈1,0〉))(02k−1−2)−1.

Proof. The sequencetw has the prefix

Ψ(ϕ3(〈λ,0〉)) =

{

Ψ(〈λ,0〉〈1,0〉〈10,0〉〈1,0〉〈λ,0〉〈1,1〉〈10,0〉〈1,0〉) if k = 3;

Ψ(〈λ,0〉〈1,0〉〈10,0〉〈1,0〉〈100,0〉〈1,0〉〈10,0〉〈1,0〉) if k > 3.
(16)

In both cases Property 5.2.1 implies

Ψ(ϕ2(〈λ,0〉〈1,0〉)) = w0w102k−1−2 and (17)

(02k−1−2)−1w102k−1−2 = Ψ(ϕ2(〈1,0〉)) (18)

since the latter word is a factor oftw of the length 2k+1 starting at position 2k+1. ✷

Lemma 5.2.4 For i ≥ 1, 02k−1−2 is a suffix of µ((02k−1−2)−1wi02k−1−2) and

wi = 02k−1−2Ψ(ϕi+1(〈1,0〉))(02k−1−2)−1.

Proof. Theorem 2.3.2 implies that the stringµ(x02k−1−2), wherex02k−1−2 is a string of a length, which
is a multiple of 2k−1, ends in a string of length 2k−4 containing 0 in all positionsi except those where
i[2],⌈logi⌉ ends inw. This is not true for the last 2k−1 − 2 position numbers, therefore 0 occurs in these
positions. The proof of the latter part of the assertion of the lemma is a simple induction where Lemma
5.2.3 provides the basic step and Property 3.2.1 is applied in the inductive step. ✷

Lemma 5.2.5 tw = ∏∞
i=0wi .

Proof. Sincetw is a fixed point ofµ, the image inµ of the prefixw002k−1−2 of length 2k+1 of tw is the
prefixw0w102k−1−2of length 2k+2 of tw. Applying Lemma 5.2.4 and Property 3.2.1 we obtain

µ(∏∞
i=0wi) = µ(w002k−1−2∏∞

i=1(0
2k−1−2)−1wi02k−1−2)

= µ(w002k−1−2∏∞
i=1Ψ(ϕi+1(〈1,0〉)))

= µ(w002k−1−2)∏∞
i=1µ(Ψ(ϕi+1(〈1,0〉)))

= w0w102k−1−2∏∞
i=1Ψ(ϕi+2(〈1,0〉))

= (w0w102k−1−2)∏∞
i=1(0

2k−1−2)−1wi+102k−1−2)
= ∏∞

i=0wi

(19)

Both sequencestw and∏∞
i=0wi are fixed points ofµ starting by the same prefix of length 2k−1, therefore

tw = ∏∞
i=0wi . ✷
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Part B
Lemma 5.2.6 For i ≥ 0, wi > wi+1.

Proof. Clearly,w0 > w1. Let i ≥ 1. Property 5.2.1 implies that

Ψ(〈1,0〉) > Ψ(〈10,0〉),

therefore
〈1,0〉 > 〈10,0〉〈1,0〉 = ϕ(〈1,0〉),

and Lemma 5.2.4 implies

wi = 02k−1−2Ψ(ϕi+1(〈1,0〉))(02k−1−2)−1 > 02k−1−2Ψ(ϕi+2(〈1,0〉))(02k−1−2)−1 = wi+1.

✷

Part C
Lemma 5.2.7 For i ∈ [k−1], wi is a Lyndon word.

Proof. Applying Property 5.2.1, for 2≤ i ≤ k−2, we obtain

(02k−1−2)−1wi02k−1−2 = Ψ(ϕi+1(〈1,0〉))
= ψ(ϕk+i(〈1,0〉))
= ψ(ϕi+2(〈10k−2,0〉〈1,0〉ϕ(〈1,0〉)· · ·ϕk−3(〈1,0〉)))
= ψ(ϕi+1(〈λ,0〉〈1,1〉ϕ(〈1,0〉)· · ·ϕk−2(〈1,0〉))).

(20)

If i < k−2 then

(02k−1−2)−1wi02k−1−2 = 02i+1
12i+1ψ(ϕi+2(〈1,0〉)· · ·ϕk+i−1(〈1,0〉))

= 02i+1
12i+1

xyz
(21)

where
x = ψ(ϕi+2(〈1,0〉)· · ·ϕk−2(〈1,0〉))

= 02i+2+···+2k−2

= 02k−1−2i+2

y = ψ(ϕk−1(〈1,0〉)ϕk(〈1,0〉))
= Ψ(〈1,0〉〈10,0〉〈1,0〉)

= (0102k−1−2)(021202k−1
)(0102k−1−2)

z = ψ(ϕk+1(〈1,0〉)· · ·ϕk+i−1(〈1,0〉))

= (02k−1−2)−1w1· · ·wi−102k−1−2

(22)

and, consequently,wi = 02k−1+2i+1−212i+1
02k−1

102k−1
1202k−1+11w1· · ·wi−1.

If i = k−2 then

(02k−1−2)−1wi02k−1−2 = Ψ(〈λ,0〉〈1,1〉ϕ(〈1,0〉)ϕ2(〈1,0〉)· · ·ϕk−2(〈1,0〉))
= xy

(23)
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where
x = Ψ(〈λ,0〉〈1,1〉Ψ(ϕ(〈1,0〉))

= (02k−1
)(1012k−1−2)(021202k−1−40102k−1−2)

y = Ψ(ϕ2(〈1,0〉))· · ·Ψ(ϕk−2(〈1,0〉))

= (02k−1−2)−1w1· · ·wi−102k−1−2

(24)

and, consequently,wi = 02k−21012k−1−2021202k−1−31w1· · ·wi−1.
In both cases, denote asα the prefix ofwi satisfyingwi = αw1· · ·wi−1. Let us now prove the assertion

of the lemma by induction. Each of the wordsw0,w1 is smaller than any of its non-empty proper suffixes,
therefore they are Lyndon words. Let us now assume thatw0, . . .,wi−1, 2≤ i ≤ k−2, are Lyndon words.
If β 6= λ is a proper suffix ofα then 02

k+2i+1−2 is not a factor ofβ, hencewi < β < βw1· · ·wi−1. If β 6= λ
is a proper suffix of somew j , j ∈ [i], then Lemma 5.4.7 implieswi < w j < β < βw1· · ·wi−1 sincew j is
a Lyndon word. Moreover,wi < w j < w j · · ·wi−1 for j ∈ [i]. Thereforewi is a Lyndon word, since it is
smaller than any of its non-empty proper suffixes. ✷

Lemma 5.2.8 If 〈λ,0〉x ∈ Σ∗ is a conjugate of a wordϕ2(y) for some y∈ Σ∗ then〈λ,0〉x = ϕ2(y′) for
some conjugate y′ of y and the last symbol ofϕ(y′) is 〈1,0〉.

Proof. Assume the smallest numberr, 0≤ r ≤ 2, such that〈λ,0〉x = ϕ2−r(z) for some conjugatez of
ϕr(y). If r > 0 then, as implied by Property 5.2.2,z starts either by〈1,0〉 or by 〈1,1〉. Consequently,
〈λ,0〉x = ϕ2−r(z) starts by

〈

102−r ,0
〉

or by
〈

102−r ,1
〉

- a contradiction. The second assertion of the
lemma follows from the observation, that if, for somea∈ Σ, ϕ(a) ends in〈1,0〉 then eithera=

〈

10k−2,1
〉

or a = 〈1,0〉. As follows from Property 5.2.2, the former case is not possible ifa is the last symbol of
ϕ(y′). ✷

Lemma 5.2.9 For i ≥ 1, w1 is a primitive word.

Proof. Analogous to the proof of Lemma 5.1.13. ✷

Lemma 5.2.10 For i ≥ k−2, wi is a Lyndon word.

Proof. We proceed by induction. Fori = k−2 the assertion follows from Lemma 5.2.7.
Let i ≥ k− 1 and letwi−1 be a Lyndon word. Lemma 5.2.9 states thatwi is not primitive. Assume

that wi is not minimal in its conjugacy class. Letwi = uv wherevu < wi is the smallest conjugate of
wi (and ofω). The minimality ofvu implies that the last symbol ofu is 1. The wordvu, as a conju-
gate ofwi , is of the formξ0x1x2yξ′0, ξ0 6= λ, whereξ′0ξ0 = Ψ(c0), x1 = Ψ(c1), x2 = Ψ(c2) for some
c0,c1,c2 ∈ Σ and ξ′0ξ0x1x2y = Ψ(c0c1c2z) for some conjugatec0c1c2z of ϕi+1(〈1,0〉). The prefix of

(02k−1−2)−1wi is Ψ(ϕi+1−(k−1)(〈λ,0〉)) being a prefix of length 2i+1 ≥ 2k of tw. Thereforewi has the
prefix 02k−1−202k−1+11 = 02k−11. This must be a prefix ofvu, as well.

Eitherξ0x1 ∈ 0∗ or x1 = 02k−1−11, the latter case is not possible due to Property 5.2.1, hencex1 = 02k−1

and c1 = 〈λ,0〉. Property 5.2.2 implies thatc0 6= 〈λ,0〉, and, again using Property 5.2.1,c0 = 〈1,0〉,
ξ0 = 02k−1−2, ξ′0 = 01, andc2 = 〈1,0〉.

Following Lemma 5.2.8,c1c2zc0 = ϕ2(y′) for some conjugatey′of ϕi−1(〈1,0〉) where the last symbol
of ϕi(y′) is 〈1,0〉. We have

Ψ(c1c2zc0) = x1x2yξ′0ξ0 = ξ−1
0 vuξ0 < ξ−1

0 wiξ0 = Ψ(ϕi+1(〈1,0〉))
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yielding ϕ2(y′) = c1c2zc0 < ϕi+1(〈1,0〉) andϕ(y′) < ϕi(〈1,0〉). Since the suffix〈1,0〉 is preserved byϕ,
the strings on both sides of the last inequality are finished by〈1,0〉 , thereforeΨ(ϕ(y′)) < Ψ(ϕi(〈1,0〉))
and the strings on both sides of the last inequality are finished byΨ(〈1,0〉) = 0102k−1−2.

Hence
02k−1−2Ψ(ϕ(y′))(02k−1−2)−1 < 02k−1−2Ψ(ϕi(〈1,0〉))(02k−1−2)−1 = wi−1

- a contradiction, since the left-hand side is a conjugate ofwi−1 andwi−1 is a Lyndon word. ✷

Theorem 4.1.1 now follows from Lemma 5.2.5, Lemma 5.2.6, Lemma 5.2.7 and Lemma 5.2.10.

5.3 Case w = 1k.

Let w = 1k, k≥ 2 . In this cases= 0, Ψ = ψ◦ϕk−1 and each element ofΣ is of the form〈1r ,m〉 for some
r ∈ [k], m∈ [2]. The initial state ofA is a0 = 〈λ,0〉 .

The first of the following two properties follows from Remark 2.1.2. The second is based on the fact
that the last symbol of each non-empty prefix ofw is 1.

Property 5.3.1 for r ∈ [k−1],

ψ(ϕr(〈λ,0〉)) = ψ(ϕr(〈1,0〉)) = 02r
,

and

Ψ(〈λ,0〉) = 02k−1
,

Ψ(〈1,0〉) = 02k−1−11,

and, for k≥ 3, r ≥ 2,

Ψ(〈1r ,0〉) = 02k−1−2r−1
12r−2

02r−3
12r−4

02r−5
· · ·d20

(1−d)

where d= 0 if r is odd and d= 1 if r is even.

Property 5.3.2 If a symbol a∈ Σ occurs in an even position of a word of the formϕ(x), x ∈ Σ∗, then
a = 〈λ,0〉 or a = 〈λ,1〉. No symbol fromΣ can occur both in an even and in an odd position ofϕ(x).

Proof of Theorem 4.3.1

Part A
Lemma 5.3.3 w0w1 is a prefix of tw, w1 = 0Ψ(ϕ2(〈1,0〉)ϕ3(〈1,0〉))0−1 and02k

1 is a prefix of w1.

Proof. Property 5.3.1 implies that

w0 = Ψ(〈λ,0〉〈1,0〉〈λ,0〉〈1,1〉)0−1i if k = 2

and
w0 = Ψ(〈λ,0〉〈1,0〉〈λ,0〉〈11,0〉)0−1 if k≥ 3.
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In both cases,w0 =.Ψ(ϕ2(〈λ,0〉))0−1. The sequencetw has the prefixΨ(ϕ2(〈λ,0〉)) = w00. Using Prop-
erty 3.2.1 we obtain

w0w10 = w0[(w0)
−1
0 µ2(w00)]

= µ2(w00)

= Ψ(ϕ4(〈λ,0〉)))

= Ψ(ϕ2(〈λ,0〉〈1,0〉))Ψ(ϕ3(〈1,0〉))

= w00Ψ(ϕ2 〈1,0〉))Ψ(ϕ3(〈1,0〉)).

(25)

Thusw0w1is a prefix oftw,
w1 = 0Ψ(ϕ2(〈1,0〉ϕ3(〈1,0〉)0−1

andw1 has the prefix

0Ψ(〈λ,0〉〈1,0〉) = 002k−1
02k−1−11 = 02k

1,

as implied by Property 5.3.1. ✷

Lemma 5.3.4 For i ≥ 1,
wi = 0Ψ(ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉))0−1 (26)

and the last symbol of the word µ2(0−1wi−10) is 0.

Proof. Theorem 2.3.2 implies, that the last symbol ofµ(x) is complementary to the last symbol ofx.
Thereforeµ2 preserves the last symbol of its argument.
The assertion of the lemma is true fori = 1 as follows from Lemma 5.3.3.
Now let the assertion be true for somei −1≥ 1. Then

wi = 0µ2(0−1wi−10)0−1

= 0µ2(0−1(0Ψ(ϕ2i−2(〈1,0〉)ϕ2i−1(〈1,0〉))0−1)0)0−1

= 0Ψ(ϕ2(ϕ2i−2(〈1,0〉)ϕ2i−1(〈1,0〉)))0−1

= 0(Ψ(ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉)))0−1.

(27)

✷

Lemma 5.3.5 tw = ∏∞
i=0wi

Proof. It is enough to prove that the sequence∏∞
i=0wi , having the same prefixw00 of length 2k+1 astw, is

a fixed point ofµ2. Applying Lemma 5.3.3 we obtain

µ2(
∞

∏
i=0

wi) = µ2(w00
∞

∏
i=1

(0−1wi0))

= w0(w
−1
0 µ2(w00)

∞

∏
i=1

(0−1wi+10) =
∞

∏
i=0

wi .

(28)

✷
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Part B
Lemma 5.3.6 For i ≥ 0, wi > wi+1.

Proof. By Lemma 5.3.3,w1 has the prefix 02
k
1, thereforew0 > w1. Let i ≥ 1. Property 5.3.1 implies that

Ψ(〈1,0〉) > Ψ(〈λ,0〉), (29)

therefore

〈1,0〉 > 〈λ,0〉 (30)

and

〈1,0〉 > ϕ2(〈1,0〉) (31)

since the first symbol ofϕ2(〈1,0〉) is 〈λ,0〉. Corollary 3.2.5 and Lemma 5.3.3 imply

wi = 0Ψ(ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉))0−1 > 0Ψ(ϕ2i+2(〈1,0〉)ϕ2i+3(〈1,0〉))0−1 = wi+1. (32)

✷

Part C
Lemma 5.3.7 For i ≥ 2, 02k

is a prefix of wi .

Proof. An easy application of Theorem 2.3.2. ✷

Lemma 5.3.8 For i ≥ 1, wi is a primitive word.

Proof. Denoteω= 0−1w10 = Ψ(ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉)) = Ψ(ϕ2i−1(〈λ,0〉a〈λ,0〉〈1,0〉bc))

where











a = 〈1,1〉 , b = 〈λ,1〉 , c = 〈1,0〉 if k = 2;

a = 〈11,0〉 , b = 〈λ,0〉 , c = 〈11,1〉 if k = 3;

a = 〈11,0〉 , b = 〈λ,0〉 , c = 〈111,0〉 if k > 3.

(33)

If wi is not primitive then neither isω. The length ofω is 3·22i , thereforeω is a concatenation of either
two or three identical factors. Since bothΨ andϕ are strictly growing, this implies〈λ,0〉 = 〈1,0〉 in the
former case anda = 〈1,0〉 in the latter case. ✷

Lemma 5.3.9 For i ≥ 1, wi is a Lyndon word.

w0 is clearly a Lyndon word, since it is smaller than any of its non-empty proper suffixes. It is easy to
check, thatw1 is of the form

w1 =







































0Ψ(x〈λ,0〉〈1,0〉x〈λ,0〉〈1,1〉x〈λ,1〉〈1,1〉)0−1 = 0−1041031031021041021 if k = 2;

0Ψ(x〈λ,0〉〈12,1〉x〈λ,0〉〈12,0〉x〈λ,1〉〈12,1〉)0−1 = 0810412010710610815021 if k = 3;

0Ψ(x〈λ,0〉〈13,0〉x〈λ,0〉〈12,0〉x〈λ,0〉〈13,1〉)0−1 =

016101212010151014101610814021 if k = 4;

0Ψ(x〈λ,0〉〈13,0〉x〈λ,0〉〈12,0〉x〈λ,0〉〈14,0〉)0−1 =

02k
102k−4120102k−1102k−2102k

102k−814021 if k > 4.

(34)
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In each case,wi is smaller than any of its non-empty proper suffix.
Let now i ≥ 2. By Lemma 5.3.4,

wi = 0Ψ(ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉))0−1 = 0Ψ(ϕ2i−1(〈λ,0〉〈〈1,0〉)ϕ2i+1(〈1,0〉))0−1, (35)

therefore 0−1wi has the same prefix 02k−11 astw andwi has the prefix 02
k
1. Lemma 5.3.8 implies that

wi is a primitive word. The wordwi is a conjugate ofΨ(ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉)). Assume thatwi is
not minimal in its conjugacy class. Letwi = uv wherevu < wi is the smallest conjugate ofwi . The
minimality of vu implies that the last symbol ofu is 1. The wordvu is of the formξ0x1x2yξ′0, ξ0 6= λ,
whereξ′0ξ0 = Ψ(c0), x1 = Ψ(c1), x2 = Ψ(c2) for somec0,c1,c2 ∈ Σ andξ′0ξ0x1x2y = Ψ(c0c1c2z) for

some conjugatec0c1c2z of ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉). Since 02
k

is a prefix ofwi , 02k
must be a prefix of

vu. Thereforeξ0x1 ∈ 0∗, x1 = 02k−1
and, consequently,c1 = 〈λ,0〉. Property 5.3.2 then implies thatc0 6=

〈λ,0〉, c2 6= 〈λ,0〉 and from Property 5.3.1 we obtain thatΨ(c2) does not have the prefix 02k−1
. Hence

Ψ(c0) has the suffix 10, thereforeξ0 = 0.

This further implies thatx2 = 02k−1−11 andc2 = 〈1,0〉. Now eitherc0c1c2z or c1c2zc0 is of the form
ϕ(z′) wherez′ is a conjugate ofϕ2i−1(〈1,0〉)ϕ2i(〈1,0〉).

The former case is not possible, since, by Property 5.3.2,c1 = 〈λ,0〉 can occur only at even positions.
If z′ = az′′ wherea∈ Σ thenϕ(a) = c1c2 = 〈λ,0〉〈〈1,0〉, hencea = 〈λ,0〉 . Now eitheraz′′ = ϕ(y′) or

z′′a = ϕ(y′) for somey′ ∈ Σ∗ being a conjugate ofϕ2i−2(〈1,0〉)ϕ2i−1(〈1,0〉). Considering Property 5.3.2
again,a must appear inϕ(y′) at an even position, thus the former case takes place and

0−1vu0 = x1x2yξ′0ξ0 = Ψ(ϕ(z′)) = Ψ(ϕ2(y′)). (36)

Moreover, sincea = 〈λ,0〉, the first symbol of ϕk−1(y′) is 〈λ,0〉, and the first symbol ofΨ(y′) is 0.
Sincevu< wi ,

Ψ(ϕ2(y′)) = 0−1vu0 < 0−1wi0 = Ψ(ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉)). (37)

Thus
ϕ2(y′) < ϕ2i(〈1,0〉)ϕ2i+1(〈1,0〉), (38)

y′ < ϕ2i−2(〈1,0〉)ϕ2i−1(〈1,0〉) (39)

and
0−1Ψ(y′)0 < 0−1Ψ(ϕ2i−2(〈1,0〉)ϕ2i−1(〈1,0〉))0 = wi−1. (40)

However, the left-hand side is a conjugate of the right-hand side and we have a contradiction to the
inductive hypothesis thatwi−1 is a Lyndon word. This concludes the proof of Theorem 4.1.1

Theorem 4.3.1 follows from Lemma 5.3.5, Lemma 5.3.6, and Lemma 5.3.9..

5.4 Case w = 10k−1

Let w = 10k−1, k ≥ 2 . In this cases= k−1, Ψ = ψ◦ϕ2k−2 and each element ofΣ is of the form〈λ,m〉
or 〈10r ,m〉 for somer ∈ [k−1], m∈ [2]. The initial state ofA is a0 = 〈λ,0〉 .

The first of the next two properties may be observed applying Remark 2.1.2. The second follows from
the fact that the only prefix ofw, which ends in 1 is 1.
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Property 5.4.1

(i) ϕ(〈λ,0〉) = 〈λ,0〉〈1,0〉, ϕ(〈1,0〉) = 〈λ,1〉〈1,0〉,

(ii) ψ(ϕk−1(〈λ,0〉)) = 02k−1
and, for r∈ [k−1], ψ(ϕk−1(〈10r ,0〉)) = 12r

02k−1−2r
.

Property 5.4.2 If a symbol a∈ Σ occurs in an odd position of a word of the formϕ(x), x ∈ Σ∗, then
a = 〈1,0〉 or a = 〈1,1〉.

Proof of Theorem 4.4.1

Part A
Lemma 5.4.3

(i) µk−1(02k−1
) has the suffix02k−1−1.

(ii) ρ = Ψ(ϕk−1(〈λ,1〉))Ψ(〈λ,0〉)(02k−1−1)−1.

(iii) For i ≥ 0, Ψ(ϕ2k−1+i(〈1,0〉)) has the prefixρ02k
1.

(iv) w2k−2 has the suffixρ.

(v) For i ≥ 2k−1, wi = ρ−1Ψ(ϕi(〈1,0〉))ρ and µ(ρwiρ−1) has the prefixρ.

Proof.

(i) Property 2.3.3 implies

µk−1(02k−1
) = µk−1(ψ(ϕk−1(〈λ,0〉))) = ψ(ϕ2k−2(〈λ,0〉)) = ψ(ϕk−1(ϕk−1(〈λ,0〉))). (41)

Using Remark 2.1.2 it is easy to observe that the last symbol ofϕk−1(〈λ,0〉) is 〈1,0〉. Hence
µk−1(02k−1

) has the suffixψ(ϕk−1(〈1,0〉)) = 102k−1
.

(ii) Again applying Property 2.3.3 we obtainµ2k−2(12k−1
)= Ψ(ϕk−1(〈λ,0〉)) andµk−1(02k−1

)= Ψ(〈λ,0〉)
and, consequently,ρ = Ψ(ϕk−1(〈λ,1〉))Ψ(〈λ,0〉)(02k−1−1)−1.

(iii) Let i ≥ 0. Denotev = Ψ(ϕ2k−1+i(〈1,0〉)) = Ψ(ϕk−1(ϕi(ϕ(ϕk−1(〈1,0〉))))). The wordϕk−1(〈1,0〉)
has the prefix〈λ,1〉 thereforev has the prefix

Ψ(ϕk−1(ϕi(ϕ(〈λ,1〉)))) = Ψ(ϕk−1(ϕi(〈λ,1〉〈1,1〉))).

Now either
i = 0 andϕi(〈λ,1〉〈1,1〉) = 〈λ,1〉〈1,1〉 (42)

or
i > 0 andϕi(〈λ,1〉)has the prefix〈λ,1〉〈1,1〉 , (43)

in either casev has the prefix= Ψ(ϕk−1(〈λ,1〉))Ψ(ϕk−1(〈1,1〉)). Thusv has the prefix

Ψ(ϕk−1(〈λ,1〉))Ψ(〈λ,0〉〈1,1〉)

having the prefix(ρ02k−1−1)02k−1+11, sinceϕk−1(〈1,1〉) starts by〈λ,0〉〈1,1〉.
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(iv) w2k−2 is the factor oftw of length j2k−1− j2k−2 at positionj2k−2. The length ofρ is

23k−3 +22k−2−2k−1 +1.

The suffix ofw2k−2 of length|ρ| is a factor oftw at position

j2k−2 + |w2k−1|− |ρ| = j2k−1−|ρ| = 24k−3.

This is the starting position of the factorΨ(ϕ2k−1(〈1,0〉)), which by (iii) has the prefixρ.

(v) We will prove the assertion by induction. Let firsti = 2k−1. The factor of length|ρ| preceding the
factor w2k−1 in tw starts at positionj2k−1− |ρ| = 24k−3. This is the starting position of the factor
Ψ(ϕ2k−1(〈1,0〉)), which by (iii) has the prefixρ. Thus the first part of the assertion has been proved
in (iii).

Since|w2k−1| = j2k−1 − |ρ| = 24k−3, the wordρw2k−1ρ−1 is identical withΨ(ϕ2k−1(〈1,0〉)) and
w2k−1 = ρ−1Ψ(ϕ2k−1(〈1,0〉))ρ. Now

µ(ρw2k−1ρ−1) = µ(Ψ(ϕ2k−1(〈1,0〉))) = Ψ(ϕ2k(〈1,0〉)) (44)

having the prefixρ by (iii).

Assume now that the assertion is true for somei ≥ 2k−1. Then

wi+1 = ρ−1µ(ρwiρ−1)ρ = ρ−1µ(Ψ(ϕi(〈1,0〉)))ρ = ρ−1Ψ(ϕi+1(〈1,0〉))ρ (45)

and

µ(ρwi+1ρ−1) = µ(Ψ(ϕi+1(〈1,0〉))) = Ψ(ϕi+2(〈1,0〉)) (46)

has the prefixρ according to (iii).

✷

Lemma 5.4.4 tw = ∏∞
i=0wi

Proof. Sincetw is a fixed point ofµwith the prefixw0 of length greater than 2k−1, it is enough to prove that
the sequence∏∞

i=0wi having the same prefix is a fixed point ofµ as well. From the definition of the words
w0, w2k−1, ρ we can observe thatw0w1· · ·w2k−2w2k−1 is a prefix oftw, the length ofw0w1· · ·w2k−2ρ−1 is
twice the length ofw0w1· · ·w2k−2ρ−1 and the length of the latter word is a multiple of 2k−1.We obtain:

µ(∏∞
i=0wi) = µ(w0w1· · ·(w2k−2ρ−1)ρw2k−1ρ−1)∏∞

i=2k(ρwiρ−1))
= µ(w0w1· · ·w2k−2ρ−1)µ(ρw2k−1ρ−1)∏∞

i=2k µ(ρwiρ−1)
= (w0w1· · ·w2k−2w2k−1ρ−1)ρw2kρ−1∏∞

i=2k(ρwi+1ρ−1)
= ∏∞

i=0wi .

(47)

since|w0w1· · ·(w2k−2ρ−1)| = 24k−3 and|w0w1· · ·w2k−2(w2k−1ρ−1)| = 24k−2. ✷
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Part B
Lemma 5.4.5 For 0≤ i ≤ 2k−1 the last symbol in wi is 1.

Proof. The last symbol ofwi occurs at positionj i+1−1 in tw. The binary representation of eachj i+1−1
contains an odd number of occurrences ofw. ✷

Lemma 5.4.6

w0 has the prefix02k−1
1,

w1, w2, have the prefix02k−1+11, for 1≤ r ≤ k−2,

w2r+1 and w2r+2 have the prefix02k−1−1+2r
1 and

w2k−1 has the prefix02k
1.

Proof. A simple observation of the shape of binary representation of the position numbers followingj i ,
0≤ i ≤ 2k. ✷

Lemma 5.4.7 For 0≤ i ≤ 2k−2, wi > wi+1.

Proof. Lemma 5.4.6 implies thatw0 > w1 and, for 2≤ r ≤ k−1, w2r > w2r+1.
Let 0≤ r ≤ k−2. The wordw2r+1 occurs as a factor of length 23k−2+r in tw at position

j2r+1 = 23k−2+r +22k−2+r +2k−1+r −2k−1 +d

whered = 0 if r = 0 andd = 1 otherwise.
Therefore the suffix of

v = ψ(ϕ3k−2+r(〈1,0〉)) = Ψ(ϕr(ϕk(〈1,0〉))

at position
22k−2+r +2k−1+r −2k−1 +1

is a prefix ofw2r+1.
Sinceϕk(〈1,0〉) starts by〈λ,1〉〈1,1〉b whereb = 〈10,0〉 if k ≥ 3 andb = 〈λ,1〉 if k = 2, the suffix of

Ψ(ϕr(〈1,1〉b)) at position 2k−1+r −2k−1 +d is a prefix ofw2r+1.
In a similar way, the suffix of

v = ψ(ϕ3k−2+r+1(〈1,0〉)) = Ψ(ϕr(ϕk+1(〈1,0〉))

at position 22k−2+r +2k−1+r −2k−1 +d is a prefix ofw2r+2.
Sinceϕk+1(〈1,0〉) starts by〈λ,1〉〈1,1〉c wherec = 〈10,1〉 if k≥ 3 andc = 〈λ,0〉 if k = 2, the suffix of

Ψ(ϕr(〈1,1〉c)) at position 2k−1+r −2k−1 +d is a prefix ofw2r+2. In any case,Ψ(b) starts by 1 andΨ(c)
starts by 0, hencew2r+1 > w2r+2.

We still have to prove thatw2 > w3 for k≥ 3.
Sinceϕk−1(〈1,1〉) has the prefix〈λ,0〉〈1,1〉〈10,1〉〈1,1〉, the suffix of Ψ(〈1,1〉〈10,1〉) at position

2k−1+0−2k−1 +0 = 0 has the prefix

(02k−1
)(012k−1−1)(0212k−1−2)(012k−1−1)
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andw2 has the prefix 02
k−1+112k−1−1.

The wordϕ(〈1,1〉〈10,0〉) has the prefix〈10,1〉〈1,1〉 andϕk−1(〈10,1〉〈1,1〉) has the prefix

〈λ,0〉〈1,0〉〈10,1〉〈1,1〉 .

Therefore the suffix of
Ψ(ϕ(〈1,1〉〈10,0〉))

at position
2k−1+1−2k−1 +1 = 2k−1 +1

has the prefix

(02k−1
)(102k−1−1)(0212k−1−2)(012k−1−1)

andw3 has the prefix

02k−1+112k−1−2012k−1−1.

Clearly,w2 > w3. ✷

Lemma 5.4.8 For i ≥ 2k−1, wi > wi+1

Proof. Using Remark 2.1.2, it is not difficult to observe thatΨ(〈1,0〉) has the prefix 12
k−1+1 while

Ψ(〈λ,1〉) has the prefix 12
k−1

0. HenceΨ(〈1,0〉) > Ψ(〈λ,1〉) and〈1,0〉 > 〈λ,1〉. Property 5.4.1 implies
that〈1,0〉 > ϕ(〈1,0〉) and v of Lemma 5.4.3 implieswi > wi+1. ✷

Part C
Lemma 5.4.9 Let τ= limn→∞ ϕn(〈λ,0〉).

(i) The first two occurrences of the factor〈λ,0〉 in τ are at positions⌊ j0/2k−1⌋ and⌊ j1/2k−1⌋.

(ii) The first two occurrences of the factor〈λ,0〉〈1,1〉 in τ are at positions⌊ j1/2k−1⌋ and⌊ j2/2k−1⌋.

(iii) For 1≤ r ≤ k−2, the first two occurrences of the factor〈1,0〉〈10r ,1〉 are at positions⌊ j2r+1/2k−1⌋
and⌊ j2r+2/2k−1⌋.

(iv) The first two occurrences of the factor〈1,0〉〈λ,0〉〈1,1〉 in τ are at positions⌊ j2k−1/2k−1⌋ and
⌊ j2k/2k−1⌋.

(v) The first occurrence of the factor〈1,0〉〈λ,0〉〈1,0〉 in τ is at a position greater than⌊ j2k−1/2k−1⌋.

Proof.

(i) The first occurrence of〈λ,0〉 after position 0= ⌊ j0/2k−1⌋ is at the position
(10k−110k−1)[2] = ⌊ j1/2k−1⌋.

(ii) If the factor 〈λ,0〉〈1,1〉 occurs inτ at (an even) positionj then the symbol at positionj/2 is
〈10k−2,1〉. This must be a prefix of a factorϕk−2(〈1,1〉). Since the first two occurrences of
〈1,1〉 in τ are at positions(10k−11)[2] = 2k + 1 and(10k1)[2] = 2k+1 + 1, the first two occurrences
of the factor〈λ,0〉〈1,1〉 in τ are at positions(2k + 1).2k−2.2 = 22k−1 + 2k−1 = ⌊ j1/2k−1⌋ and
(2k+1 +1).2k−2.2 = 22k +2k−1 = ⌊ j2/2k−1⌋.
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(iii) If the factor 〈1,0〉〈10r ,1〉 occurs inτ then〈10r ,1〉 is the prefix of a factorϕr(〈1,1〉). In that case
〈1,0〉 is a suffix of someϕr(b), b∈ Σ. Thenb = 〈α,0〉 whereα 6= 1, sinceb〈1,1〉 is a factor ofτ
and〈1,1〉 must be in an odd position. Thenb〈1,1〉 = ϕ(c) for somec∈ Σ. This is only possible if
c = 〈10k−2,1〉 andc is a prefix of a factorϕk−2(〈1,1〉). Since the first two occurrences of〈1,1〉 in τ
are at positions(10k−11)[2] = 2k +1 and(10k1)[2] = 2k+1 +1, the first two occurrences of the factor
〈1,0〉〈10r ,1〉 in τ are at positions

(2k +1).2k−2.2.2r +2r −1 = 22k−1+r +2k−1+r +2r −1 = ⌊ j2r+1/2k−1⌋ (48)

and

(2k+1 +1).2k−2.2.2r +2r −1 = 22k+r +2k−1+r +2r −1 = ⌊ j2r+2/2k−1⌋. (49)

(iv) Let the factor〈1,0〉〈λ,0〉〈1,1〉 occur in τ at (an odd) positionj. Then the factor of length 2 at
position⌊ j/2⌋ is 〈1,0〉〈10k−2,1〉 and in the same way (takingr = k−2) as in the proof of iii we
deduce that⌊ j/2⌋corresponds to the position 2(2k−2−1)+1 of a factorϕ1+(k−2)+1+(k−2)(〈1,1〉) ,
hence the first two occurrences of the factor〈1,0〉〈λ,0〉〈1,1〉 in τ are at positions

(2k +1).2.2k−2.2.2k−2 +2k−1−1 = 23k−2 +22k−2 +2k−1−1 = ⌊ j2k+1/2k−1⌋ (50)

and

(2k+1 +1).2.2k−2.2.2k−2 +2k−1−1 = 23k−1 +22k−2 +2k−1−1 = ⌊ j2k+2/2k−1⌋. (51)

(v) Let the factor〈1,0〉〈λ,0〉〈1,0〉 occur inτ for the first time at (an odd) positionj. Then the factor
of length 3 at position⌊ j/2⌋ is either〈1,0〉〈λ,0〉〈1,0〉 or 〈1,0〉〈λ,0〉〈1,1〉. The former case would
mean an earlier occurrence of the factor, hence the latter case take place. The factor〈1,0〉〈λ,0〉〈1,0〉
hence occurs later than〈1,0〉〈λ,0〉〈1,1〉.

✷

Lemma 5.4.10 For 0≤ i ≤ 2k−1, wi is a Lyndon word.

Proof. The binary representation of eachj i+1−1 contains an odd number of occurrences of 10k−1, and
therefore the last symbol of eachwi is 1. To prove thatwi is a Lyndon word, we will show thatwi besides
in its prefix 0p1 (as described by Lemma 5.4.6), does not contain any occurrence of the factor 0p. We will
use Lemma 5.4.9, which will imply in each particular case that the next occurrence of 0p in t, after the
prefix ofwi , is in some of the following factorsw j .

1. i = 0. Property 5.4.1 implies that a factor 02k−1
occurs intw at some positionj only if either〈λ,0〉 or,

for somer ≥ s≥ 0, 〈10s,0〉〈10r ,1〉 occurs at position⌊ j/2k−1⌋ of τ=limn→∞ ϕn(〈λ,0〉). Property 5.4.2
implies that in the latter case exactly one ofr,s must be equal to 0, hencer > s= 0 and the factor has
the form〈1,0〉〈10r ,1〉 for somer ≥ 1. We apply i and iii of Lemma 5.4.9.

2. i = 1 or i = 2. A factor 02
k−1+1 occurs intw at positionj only if either〈λ,0〉〈1,1〉 or 〈1,0〉〈10r ,1〉, for

somer ≥ 1, or〈1,0〉〈λ,0〉 occurs at position⌊ j/2k−1⌋ of τ. We apply ii and iii of Lemma 5.4.9.
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3. i = 3 or i = 4, k≥ 3. As shown in the proof of Lemma 5.4.7,w3 has the prefix 02
k−1+112k−1−2012k−1−1

andw4 the same or smaller prefix. If a factor 02k−1+1 occurs inw3 or w4 at the positionj of tw then the
factor〈λ,0〉〈1,1〉 occurs at position⌊ j/2k−1⌋ of τ. Hence 02

k−1+1 occurs inw3 or w4 as a prefix of the
factor 02k−1

012k−1−1 > 02k−1+112k−1−2012k−1−1.

4. i = 2r + 1 or i = 2r + 2, 2≤ r ≤ k−2. A factor 02
k−1−1+2r

, occurs intw at position j only if either
〈1,0〉〈λ,0〉 or 〈1,0〉〈10r ,1〉occurs at position⌊ j/2k−1⌋ of τ. If the factor〈1,0〉〈λ,0〉 occurs inτ, then
it is a prefix of the factor〈1,0〉〈λ,0〉〈1,1〉 or 〈1,0〉〈λ,0〉〈1,0〉. We apply iii and iv and v of Lemma
5.4.9.

5. i = 2k−1. A factor 02
k

occurs intw at position j only if 〈1,0〉〈λ,0〉〈1,1〉 occurs at position⌊ j/2k−1⌋
of τ. We apply iv of Lemma 5.4.9.

✷

Lemma 5.4.11 For i ≥ 2k−1, w1 is a primitive word.

Proof. Analogous to the proof of Lemma 5.1.13. ✷

Lemma 5.4.12 For i ≥ 2k−1, wi is a Lyndon word.

Proof. We proceed by induction. The assertion fori = 2k−1 is implied by Lemma 5.4.10.
Let the assertion be true for somei −1 ≥ 2k−1. Lemma 5.4.11 implies thatwi is a primitive word.

By Lemma 5.4.3,wi is a conjugate ofΨ(ϕi(〈1,0〉)). Assume thatwi is not minimal in its conjugacy
class. Letwi = uvwherevu< wi is the smallest conjugate ofwi . According to Lemma 5.4.8,wi < w2k−1,

hencewi , andvu have the same prefix 02k
1 asw2k−1 because no conjugate ofΨ(ϕi(〈1,0〉)) may contain

the factor 02
k+1, as one easily observes using Property 5.4.1. The wordvu is of the formξ0x1x2xξ′0,

ξ0 6= λ, whereξ′0ξ0 = ψ(ϕk−1(c0)), x1 = ψ(ϕk−1(c1)), x2 = ψ(ϕk−1(c2)) for somec0,c1,c2 ∈ Σ and
ξ′0ξ0x1x2x = ψ(ϕk−1(c1c2x′c0) for some conjugatec1c2x′c0 of ϕk−1+i(〈1,0〉).

Property 5.4.1 in combination with Property 5.4.2 implies that the only possibility isξ0 = 02k−1−1,
ξ′0 = 1, x1 = 02k−1

, x2 = 012k−1−1, c0 = 〈1,0〉 , c1 = 〈λ,0〉 andc2 = 〈1,1〉 .
A repeated application of Property 5.4.2 leads to the conclusion thatc1c2x′c0 is a conjugate of

ϕk−1+i(〈1,0〉) of the formϕk−1(〈1,1〉y〈α,0〉),

where〈1,1〉y〈α,0〉 is a conjugate ofϕi(〈1,0〉), sincec1c2 may occur only as a prefix ofϕk−1(〈1,1〉).
Henceξ−1

0 vuξ0 = x1x2zξ′0ξ0 = Ψ(〈1,1〉y〈α,0〉) for a conjugate〈1,1〉y〈α,0〉 of ϕi(〈1,0〉). Property
5.4.2 now implies that〈α,0〉〈1,1〉y = ϕ(y′) for some conjugatey′ of ϕi−1(〈1,0〉).

Again, the only possibility is thatα = λ and 〈λ,0〉〈1,1〉y = ϕk−1(〈1,1〉by′′) for some conjugate
〈1,1〉by′′ of ϕi−(k−1)(〈1,0〉) whereb is some symbol fromΣ occurring at an even position and there-
fore different from〈1,0〉 and〈1,1〉. We will use the fact that, sinceb 6= 〈1,0〉 andb 6= 〈1,1〉, ϕk−2(b)
starts byc∈ Σ where eitherc = 〈λ,0〉 or c = 〈λ,1〉. Hencey′ = ϕk−2(〈1,1〉)czfor somez∈ Σ∗.

We have〈λ,0〉〈1,1〉y = ϕk−1(〈1,1〉)ϕ(cz), where eitherc = 〈λ,0〉 or c = 〈λ,1〉 andϕk−2(〈1,1〉)cz is a
conjugate ofϕi−1(〈1,0〉).
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Furthermore,ξ−1
0 vuξ0 = Ψ(〈1,1〉y〈λ,0〉) and, finally,ρ = Ψ(ϕk−1(〈λ,1〉)〈λ,0〉)ξ−1

0 as stated by ii of
Lemma 5.4.3. We get

vu < wi = ρ−1Ψ(ϕi(〈1,0〉))ρ
ρvu < Ψ(ϕi(〈1,0〉))ρ

(ρξ0)(ξ−1
0 vuξ0) < Ψ(ϕi(〈1,0〉))ρξ0

Ψ(ϕk−1(〈λ,1〉)〈λ,0〉)Ψ(〈1,1〉y〈λ,0〉) < Ψ(ϕi(〈1,0〉)))Ψ(ϕk−1(〈λ,1〉)〈λ,0〉)

ϕk−1(〈λ,1〉)〈λ,0〉〈1,1〉y〈λ,0〉 < ϕi(〈1,0〉)ϕk−1(〈λ,1〉)〈λ,0〉

ϕk−1(〈λ,1〉)ϕk−1(〈1,1〉)ϕ(cz) < ϕi(〈1,0〉)ϕk−1(〈λ,1〉)

ϕk−2(〈λ,1〉ϕk−2(〈1,1〉)cz < ϕi−1(〈1,0〉)ϕk−2(〈λ,1〉)

ϕk−2(〈λ,1〉〈1,1〉)cz < ϕi−1(〈1,0〉)ϕk−2(〈λ,1〉)

ϕk−1(〈λ,1〉)cz < ϕi−1(〈1,0〉)ϕk−2(〈λ,1〉)

ϕk−1(〈λ,1〉)cz < ϕi−1(〈1,0〉)ϕk−2(〈λ,1〉)

Ψ(ϕk−1(〈λ,1〉)cz) < Ψ(ϕi−1(〈1,0〉)ϕk−2(〈λ,1〉))

The wordΨ(ϕi−1(〈1,0〉)) = ρwi−1ρ−1 has the prefixρ = Ψ(ϕk−1(〈λ,1〉))Ψ(〈λ,0〉ξ−1
0 . The latter in-

equality therefore implies that the first symbol ofΨ(c) is not greater than 0 being the first symbol of
Ψ(〈λ,0〉)ξ−1

0 . The wordΨ(〈λ,0〉) starts by 0 andΨ(〈λ,1〉) starts by 1, hencec = 〈λ,0〉. Then

Ψ(ϕk−1(〈λ,1〉)〈λ,0〉z) < Ψ(ϕi−1(〈1,0〉)ϕk−2(〈λ,1〉))

Ψ(ϕk−1(〈λ,1〉))Ψ(〈λ,0〉)Ψ(z) < Ψ(ϕi−1(〈1,0〉))Ψ(ϕk−2(〈λ,1〉))

ρξ0Ψ(z(ϕk−2(〈1,1〉)〈λ,0〉)ξ−1
0 < Ψ(ϕi−1(〈1,0〉))ν

where

ν = Ψ(ϕk−2(〈λ,1〉))Ψ(ϕk−2(〈1,1〉)〈λ,0〉)ξ−1
0

= Ψ(ϕk−1(〈λ,1〉)〈λ,0〉)ξ−1
0

= ρ.

Therefore

ξ0Ψ(zϕk−2(〈1,1〉)c))ξ−1
0 < ρ−1Ψ(ϕi−1(〈1,0〉))ρ

ξ0Ψ(zϕk−2(〈1,1〉)c)ξ−1
0 < wi−1

where the left-hand side is a conjugate ofΨ(ϕi−1(〈1,0〉)) and hence ofwi−1. This contradicts to the
inductive hypothesis thatwi−1 is a Lyndon word. ✷

Theorem 4.4.1 follows from Lemma 5.4.4, Lemma 5.4.7, Lemma 5.4.8, Lemma 5.4.10 and Lemma 5.4.12.

6 Concluding remarks
Out of the four subclasses of the generalized Thue sequences, for three subclasses the canonical Lyndon
factors grow proportionally with applications of the substitutionµ. In the only case, whenw = 1k, the
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factors are growing withµ2. This fact prevents us from trying to make any kind of conjecture on the
general shape of the Lyndon factors for the whole class of generalized sequences of Thue. A study of the
Lyndon factorization of further subclasses will be necessary to have a kind of general result. We hope that
Definition 3.1.2 together with Lemma 3.2.4 may be equally useful as they proved to be in the investigation
of the four subclasses in the present work.
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