
AofA’12 DMTCS proc. AQ, 2012, 81–82

Domination analysis for scheduling on non
preemptive uniformly related machines

Idan Eisner1† and Alek Vainshtein2

1Department of Mathematics, University of Haifa, Israel
2Department of Mathematics and Department of Computer Science, University of Haifa, Israel

Let S be a problem of non-preemptive scheduling on p uniformly related machines, with total comple-
tion time (Makespan) to be minimized:
Consider the set N = {1, 2, . . . , n}, where each i ∈ N is assigned a positive weight σ(i). For a subset
A ⊆ N let σ(A) =

∑
i∈A σ(i). A p-partition of N is a p-tuple A = (A1, A2, . . . , Ap) of subsets of N

such that A1 ∪A2 ∪ . . . ∪Ap = N , and Ai ∩Aj = ∅, for all 1 ≤ i < j ≤ p.
For a set U = {u1, u2, . . . , up}, with uj > 0 for each j = 1, . . . , p, define

T (A) = max
1≤j≤p

σ(Aj)

uj
.

The scheduling problem S is, given a triple (N, σ, U) with |U | = p, find a p-partition that minimizes
T (A) over all p-partitions A = (A1, A2, . . . , Ap) of N .

The problem S is a known NP-complete problem. The special case of two identical machines U =
{1, 1} is the well known partition problem, which is known to be NP-complete. We therefore settle for
polynomial time heuristics, that produce suboptimal solutions. These are sometimes called approximation
algorithms, and are usually compared by their performance ratio. Another way of evaluating approxima-
tion algorithms is Domination Analysis (DA):

The domination number (ratio) of an algorithm H for a combinatorial optimization problem P is the
maximum number (fraction) of all feasible solutions that are not better than the solution found by H for
any instance of P of size n. An algorithm has Asymptotic Domination Ratio One (ADRO) if it is of
polynomial time complexity, and the limit of its domination ratio when n→∞ is 1.

Gutin, Jensen and Yeo [Domination analysis for minimum multiprocessor scheduling, Discrete Appl.
Math., 154(18):2613-2619, 2006] proved that the minimum multiprocessor problem (that is, the special
case of u1 =, . . . ,= uj) admits an ADRO algorithm. We adjust their algorithm to the any {u1, . . . , uj},
and prove that this algorithmH also has ADRO.

Let s denote the size of the instance (N, σ, U). The algorithmH is as follows:
If s ≥ pn then we simply solve S optimally. If s < pn, then sort the elements of the sequence
σ(1), σ(2), . . . , σ(n). For simplicity of notation, assume that σ(1) ≥ σ(2) ≥ · · · ≥ σ(n). Compute

†Email: eisner@math.haifa.ac.il

1365–8050 c© 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAQind.html


82 Idan Eisner and Alek Vainshtein

r = dlog n/ log pe, and solve S for ({1, 2, . . . , r}, σ, U) to optimality. Suppose we have obtained a p-
partition A = (A1, . . . , Ap) of {1, 2, . . . , r}. Now for i from r+ 1 to n, add i to the set Aj of the current
p-partition A with the smallest σ(Aj ∪ {i})/uj .

Define V =
∑p
j=1 uj (i.e, V is the sum of all speeds). Let σ̃ = σ(N)

V . We say that a p-partition
A = (A1, A2, . . . , Ap) of N is balanced if

for allj ∈ {1, . . . , p} σ(Aj) < uj σ̃ +
uj(p− 1)

V
,

Proposition 1 Let P be a scheduling problem on p machines with instance (N, σ, U) and σ(1) ≥ σ(2) ≥
· · · ≥ σ(n) = 1. Then any p-partition that is better than the one obtained by the algorithm H is a
balanced p-partition.

Proposition 2 Let P be a scheduling problem on p machines with instance (N, σ, U) and σ(1) ≥ σ(2) ≥
· · · ≥ σ(n) = 1. Then The number g of balanced p-partitions is less than

pn ×

(√
8p

nπ

)p−1√
4

π
.

Using Propositions (1) and (2) we state that:

Theorem 3 The algorithmH for S has

lim
n→∞

domr(H, n) = 1.

Remark. If the number of processors p and the speeds {uj} are not fixed, and depend on the number
of jobs n, this can not work. We can give an example that shows that the number g can be bigger than
(n− 2)n. In this case, we can not apply the same methods for proving H has ADRO. Note that this does
not imply that H is not an ADRO algorithm. As a matter of fact, in this special example H gives an
optimal solution. But we can not use the same tools to analyze the domination ratio ofH.


