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Domination analysis for scheduling on non
preemptive uniformly related machines
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Let S be a problem of non-preemptive scheduling on p uniformly related machines, with total comple-
tion time (Makespan) to be minimized:
Consider the set N = {1, 2, . . . , n}, where each i ∈ N is assigned a positive weight σ(i). For a subset
A ⊆ N let σ(A) =

∑
i∈A σ(i). A p-partition of N is a p-tuple A = (A1, A2, . . . , Ap) of subsets of N

such that A1 ∪A2 ∪ . . . ∪Ap = N , and Ai ∩Aj = ∅, for all 1 ≤ i < j ≤ p.
For a set U = {u1, u2, . . . , up}, with uj > 0 for each j = 1, . . . , p, define

T (A) = max
1≤j≤p

σ(Aj)

uj
.

The scheduling problem S is, given a triple (N, σ, U) with |U | = p, find a p-partition that minimizes
T (A) over all p-partitions A = (A1, A2, . . . , Ap) of N .

The problem S is a known NP-complete problem. The special case of two identical machines U =
{1, 1} is the well known partition problem, which is known to be NP-complete. We therefore settle for
polynomial time heuristics, that produce suboptimal solutions. These are sometimes called approximation
algorithms, and are usually compared by their performance ratio. Another way of evaluating approxima-
tion algorithms is Domination Analysis (DA):

The domination number (ratio) of an algorithm H for a combinatorial optimization problem P is the
maximum number (fraction) of all feasible solutions that are not better than the solution found by H for
any instance of P of size n. An algorithm has Asymptotic Domination Ratio One (ADRO) if it is of
polynomial time complexity, and the limit of its domination ratio when n→∞ is 1.

Gutin, Jensen and Yeo [Domination analysis for minimum multiprocessor scheduling, Discrete Appl.
Math., 154(18):2613-2619, 2006] proved that the minimum multiprocessor problem (that is, the special
case of u1 =, . . . ,= uj) admits an ADRO algorithm. We adjust their algorithm to the any {u1, . . . , uj},
and prove that this algorithmH also has ADRO.

Let s denote the size of the instance (N, σ, U). The algorithmH is as follows:
If s ≥ pn then we simply solve S optimally. If s < pn, then sort the elements of the sequence
σ(1), σ(2), . . . , σ(n). For simplicity of notation, assume that σ(1) ≥ σ(2) ≥ · · · ≥ σ(n). Compute
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r = dlog n/ log pe, and solve S for ({1, 2, . . . , r}, σ, U) to optimality. Suppose we have obtained a p-
partition A = (A1, . . . , Ap) of {1, 2, . . . , r}. Now for i from r+ 1 to n, add i to the set Aj of the current
p-partition A with the smallest σ(Aj ∪ {i})/uj .

Define V =
∑p
j=1 uj (i.e, V is the sum of all speeds). Let σ̃ = σ(N)

V . We say that a p-partition
A = (A1, A2, . . . , Ap) of N is balanced if

for allj ∈ {1, . . . , p} σ(Aj) < uj σ̃ +
uj(p− 1)

V
,

Proposition 1 Let P be a scheduling problem on p machines with instance (N, σ, U) and σ(1) ≥ σ(2) ≥
· · · ≥ σ(n) = 1. Then any p-partition that is better than the one obtained by the algorithm H is a
balanced p-partition.

Proposition 2 Let P be a scheduling problem on p machines with instance (N, σ, U) and σ(1) ≥ σ(2) ≥
· · · ≥ σ(n) = 1. Then The number g of balanced p-partitions is less than

pn ×

(√
8p

nπ

)p−1√
4

π
.

Using Propositions (1) and (2) we state that:

Theorem 3 The algorithmH for S has

lim
n→∞

domr(H, n) = 1.

Remark. If the number of processors p and the speeds {uj} are not fixed, and depend on the number
of jobs n, this can not work. We can give an example that shows that the number g can be bigger than
(n− 2)n. In this case, we can not apply the same methods for proving H has ADRO. Note that this does
not imply that H is not an ADRO algorithm. As a matter of fact, in this special example H gives an
optimal solution. But we can not use the same tools to analyze the domination ratio ofH.


