
Discrete Mathematics and Theoretical Computer Science5, 2002, 227–262

A Unified Framework to Compute over Tree
Synchronized Grammars and Primal
Grammars

Fréd́eric Saubion and Igor Stéphan

LERIA, Universit́e d’Angers, 2, Bd Lavoisier
49045 Angers Cedex 01, France
{Frederic.Saubion,Igor.Stephan}@univ-angers.fr

received Mar 27, 2001, accepted Nov 17, 2002.

Tree languages are powerful tools for the representation and schematization of infinite sets of terms for various
purposes (unification theory, verification and specification ...). In order to extend the regular tree language framework,
more complex formalisms have been developed. In this paper, we focus on Tree Synchronized Grammars and Primal
Grammars which introduce specific control structures to represent non regular sets of terms. We propose a common
unified framework in order to achieve the membership test for these particular languages. Thanks to a proof system,
we provide a full operational framework, that allows us to transform tree grammars into Prolog programs (as it already
exists for word grammars with DCG) whose goal is to recognize terms of the corresponding language.

Keywords: Tree Grammars, Proof Systems, Prolog Implementation

1 Introduction
Tree languages [3, 6] have been extensively studied and have many applications in various areas such as
term rewriting, term schematization, specification and verification ... Languages can be handled either
from the generation point of view (i.e. grammars) or from the recognition point of view (i.e. automata).
Regular tree languages [3, 6] are very close to regular word grammar with tree (ie terms†) as basic ob-
jects. They have nice closure properties (concerning complementation, union and intersection) and the
membership test and the emptiness test are decidable. Moreover they can be defined using a notion of
finite automata which can be easily used to test the membership of a term to a given language. Therefore,
from a practical point of view, tree automata appear to be easily implementable tools for recognition. But,
these notions are not sufficient to describe more complex sets of terms (non regular tree languages).
In this paper, we focus on two particular non regular classes of tree languages defined by their associated
notion of tree grammars: Tree Synchronized Grammars and Primal Grammars. The purpose of this paper
is to define a uniform and operational framework to describe and implement a membership test procedure
for these languages.

† In the following and without any loss of generality, we consider always terms as the basic elements of tree languages

1365–8050c© 2002 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/

228 Fréd́eric Saubion and Igor Stéphan

Tree Synchronized Grammars (TSG) [13] and Primal Grammars (PG) [11] are issued from theE-unification
framework. E-unification [17] is known to be undecidable in general, but, as explained in [14], some
decidable classes can be characterized by using such tree languages. Due to their specific definitions in-
troducing control in the derivation process, a notion of automata can not be easily derived for these two
classes of tree languages. Their expressive power can be highlighted by the two following simple exam-
ples.

Example 1 (TSG) We want to define the language corresponding to{ f (sn(z),s2n(z)) | n∈ N} which is
obviously not a regular language.
The language description problem lies in the fact that, informally, each time a function symbols is pro-
duced in the first argument off one has to produce two in the second argument. In fact, the growth of the
first argument has to be synchronized with the second. Tree Synchronized Grammars take this control into
account by allowing packs of synchronized production rules instead of usual single grammar productions
rules.

Example 2 (PG) In this second example, we want to describe the language of all the integer lists[n, . . . ,0].
Integer are represented withz (for the zero integer) and successor functions and lists are built thanks to
the binary constructor∗ and the empty list⊥ (i.e. the list[2,1,0] is obtained as∗(s(s(z)),∗(s(z),∗(z,⊥))).
This language is also not regular.

The main problem here is the relation between the different arguments of the list you are constructing.
Once you have generated an elementsn(z), next element of the list must besn+1(z). It appears that you
have to count the depth of successive argument. By introducing counters variables in the production rules,
Primal Grammars are able to handle this language.
One has to remark that the language of the first example cannot be generated usingPGwhile the language
of the second example cannot be described by aTSG. Due to these two specific control mechanisms
(synchronization and counter variables), the standard notion of automata does not appear clearly.
Inspired by the implementation of Definite Clause Grammars [2] that allows to write word grammars as
Horn clauses in a Prolog environment, our aim is to propose a similar approach for these particular tree
languages. The key idea is to define a proof framework to describe the behavior of tree grammars and
therefore to provide a proof theoretical semantics for grammar derivations. In this context, we change
from syntactic generation of trees to logical deduction (i.e. productions rules are translated into logical
formulas and grammar derivations into logical inferences). Then, the membership test, for a language
described by a grammar, just consists in proving a particular formula in a sequent calculus using a proof
system. This approach provides a uniform framework for the definition and use of both type of grammars.
The method can be briefly described as follows;
Production rules are translated into logical formulas built over linear logic syntax [8] to handle the problem
of synchronization (this idea was already investigated in [10]. Then, a sequent calculus proof system,
inspired by the proof system of D. Miller [16], allows us to translate derivations into proof searches. The
same job can be adapted for Primal Grammars.
The equivalence between the notion of grammar computation and our notion of proof is established by a
correctness and completeness result. The last part of our work consists in refining this initial proof system

Computing over TSG and PG 229

in order to introduce a notion of strategy in the proof search and thus to get a goal directed procedure. At
this step, both transformation function and logical inference system can be easily translated into Prolog
Horn clauses. Of course, it should be noticed that our system also works for Regular Tree Languages,
since they are included inTSG. Note that an alternative algorithm has been proposed for the membership
test of a TTSG in [9].
This paper is an extension of the previous work [18] and is organized as follows. Section 2 presents basic
definitions of Tree Synchronized Grammars, Primal Grammars and proof systems. Section 3 described
how the different formalism can be translated into linear logic formulas. The proof system is defined and
refined in Section 4. Section 5 is the implementation issue of our work and we conclude in Section 6.

2 Preliminaries
In this paper, we recall here some notions about tree grammars and linear logic proof systems. We refer
the reader to [3, 6, 7, 8, 13, 16] for more details.
We first introduce the two specific grammar formalisms we deal with in this paper. The original for-
malisms have been adapted to unify and simplify the presentation.

2.1 Tree Synchronized Grammars
Let L be a finite set of symbols (a signature),T(L) denotes the first-order algebra of ground terms over
L . L is partitioned in two parts: the setF of terminal symbols, and the setN of non terminal symbols.
Upper-case letters denote elements ofN . t|u denotes the subterm oft at occurrenceu and t[u← v]
denotes the term obtained by replacing int the subtermt|u by v. t[v] denotes a term containing a subterm
v at a particular occurrence andO(t) denotes the set of occurrences int. C(X1, ...,Xn) denotes a term with
occurrences:{1...n} such thatC(X1, ...,Xn)|i = Xi . C will be called a context. We first define the notion
of productions forTSG. We require thatF ∩N = /0 and that each element ofF ∪N has a fixed arity. We
refer the reader to [4] for more details on these basic notions.

Definition 1 (Productions) A production is a rule of the form X⇒ t where X∈N and t∈ T(L) . A pack
of productions is a set of productions denoted{X1⇒ t1, . . . ,Xn⇒ tn}.

• When the pack is a singleton of the form{X1⇒ C(Y1, . . . ,Yn)} where C is a context of terminal
symbols and Y1, . . . ,Yn non terminals. The production is said free, and is written more simply
X1⇒C(Y1, . . . ,Yn).

• When the pack is of the form{X1⇒Y1, . . . ,Xn⇒Yn} where Y1, . . . ,Yn are terminals or non termi-
nals. The productions of the pack are said synchronized.

We can then define the notion ofTSG.

Definition 2 (TSG) A TSG is defined by a 4-tuple(F ,N ,PP,TI) where

• F is the set of terminals,

• N is the finite set of non terminals,

• PP is a finite set of packs of productions,

230 Fréd́eric Saubion and Igor Stéphan

• TI is the axiom of the TSG denoted(I ,#) where I is a non terminal and# a new symbol added to
the signature.

Note that, the axiom is a pair due to the control of synchronizations. Basically, counters are associated to
non terminal symbols to ensure the integrity of the application of synchronized productions.

Back to example 1, we wanted to define the language corresponding to{ f (sn(z),s2n(z)) | n ∈ N}. The
correspondingTSGconsists of the following production rules:

R0 : I ⇒ f (X,Y)
R1 : X⇒ z
R2 : Y⇒ z
P1 : {R3 : X⇒ s(X),R4 : Y⇒ s(s(Y))}

whereX,Y are non terminal symbols andf ,s,z terminal symbols.P1 : {R3,R4} denotes that, using the
pack of productionP1, R3 andR4 have to be applied at the same time (synchronization).

Definition 3 (Computations of aTSG) The set of computations of a TSG Gr= (F ,N ,PP,TI), denoted
Comp(Gr), is the smallest set defined by:

• TI is in Comp(Gr),

• if t is in Comp(Gr), t|u = (X,c) and the free production X⇒C(Y1, . . . ,Yn) is in PP
then t[u←C((Y1,c), . . . ,(Yn,c))] is in Comp(Gr),

• if t is in Comp(Gr) and there exists n pairwise different occurrences u1, . . . ,un of t such that∀i ∈
[1,n] t|ui = (Xi ,ci) and ci = a and the pack of productions{X1 ⇒ Y1, . . . ,Xn ⇒ Yn} ∈ PP, then
t[u1← (Y1,b)] . . . [un← (Yn,b)] (where b is a new symbol) is in Comp(Gr).

The symbol⇒ denoting also the above two deduction steps, a derivation of Gr is a sequence of computa-
tions T I⇒ t1⇒ . . .⇒ tn.

Always following Example 1, one possible derivation of this grammar is thus (wherea is a new symbol):

(I ,#)⇒R0 f ((X,#),(Y,#))⇒P1 f (s((X,a)),s(s((Y,a))))

⇒R1 f (s(z),s(s(Y,a)))⇒R2 f (s(z),s(s(z)))

As mentioned in the introduction, counters are introduced to control the application of the synchronized
production rules. The previous definition imposes that only non terminals having the same control symbol
can be used in a synchronized production. It should be noticed thatTSGwere originally defined using
tuple of counters. Here, as we already did, concerning tuples of terms in the definition of the axiom,
we consider a single counter to control synchronization in order to simplify the presentation of the basic
concepts. The second step of this derivation clearly illustrates the notion of synchronized production rules.

Definition 4 (Recognized Language)The language recognized by a TSG Gr, denoted Rec(Gr), is the
set of trees composed of terminal symbols Comp(Gr)∩T(F).

Computing over TSG and PG 231

2.2 Primal Grammars

In this section, we recall definitions related to primal grammars which have been introduced by M. Her-
mann and R. Galbavý in [11]. To avoid too long developments, some notations have been modified to fit
ours. More details can be found in [11].
The control mechanism introduced by Hermann and Galbavý is based on the notion of counter variables
which are variables having integer values.

Definition 5 A counter expression is an expression built over0, successor function s and a set of counter
variablesCnt. s(c) means1+ c if c is a counter expression. The ground counter expression sn(0) is
interpreted as the integer n.

Now, we recall the notion of primal term.

Definition 6 (Primal Algebra) The algebra of primal terms is defined over a set of functionsD (whose
elementsf̃ are called defined functions and have a counter aritycar(f̃) and a standard arityar(f̃)), a set
of constructor symbolsF , a set of ordinary variablesX and a set of counter variablesCnt. This is the
smallest set such that

• each ordinary variable ofX is a primal term,

• if c1, . . . ,ck are counter expressions, t1, . . . , tn are primal terms and̃f ∈D such that car(f̃) = k and
ar(f̃) = k+n, thenf̃ (c1, . . . ,ck; t1, . . . , tn) is a primal term,

• if t1, . . . , tn are primal terms and c is a constructor with the arity ar(c) = n the c(t1, . . . , tn) is a
primal term.

The schematization is achieve by introducing a particular type of rewrite system.

Definition 7 (Presburger rewrite system) A Presburger rewrite systemcontains for each defined func-
tions f̃ the following pair of Presburger rewrite rules:
• basic rule

f̃ (0,c;x)→Pbg t1

• and the inductive rule which have one of the following forms:

f̃ (n+1,c;x)→Pbg t2[u← f̃ (n,c;x)]

f̃ (n+1,c;x)→Pbg t2[u← f̃ (n,c1, ...,ci−1,ci +1,ci+1, ...,cn;x)]

wherec is a vector of counter variables,x a vector of ordinary variables and u∈O(t2),

To simplify the presentation, we omit here some additional conditions that are needed to ensure decidabil-
ity properties ofPG. We refer the reader to [11] for more details.
From the previous definitions, we can now define a primal grammar and its associated language.

232 Fréd́eric Saubion and Igor Stéphan

Definition 8 (Primal term grammar) Aprimal term grammar(or primal grammarfor short) is a quadru-
ple G= (F ,D,R , t) whereC is a set of constructors,D the set of defined functions,R is a Presburger
rewrite system and t a primal term calledaxiom.
The language generated by such a primal term grammar is the set of terms L(G) = {σt ↓R | σ affects a
ground integer value to each counter variable of t}. Note that, as usual,σt ↓R represents the normal
form ofσt w.r.t. the systemR (see [5] for details on rewriting).

Intuitively, a PG generates terms thanks to a rewrite systemR which is controlled by counter variables.
Elements of the schematized language are then obtained by completely instantiating the terms with ground
substitutions if needed.

Back to the introducing Example 2, letG be a primal grammar defined byF = {suc,z,∗}, D = { f̃ , g̃}, R

is composed by the 4 Presburger rewrite rules

g̃(0)→Pbg z,

g̃(s(n))→Pbg s(g̃(n)),

f̃ (0)→Pbg z,

f̃ (s(n))→Pbg g̃(s(n))∗ f̃ (n)

and the axiomf̃ (c).

To simplify the notation,(,) are omitted in the use of binary function∗ and moreover, the list reduced
to one element∗(z,⊥) is simply denoted asz. Using the precedencẽf ≻ g̃, our Presburger rules fit
Definition 7.

f̃ (1)→Pbg g̃(1)∗ f̃ (0)→Pbg g̃(1)∗z→Pbg s(g̃(0))∗z→ s(z)∗z.

SoL(G) = {z,s(z)∗z, . . . ,sucn(z)∗sucn−1(z)∗ · · · ∗z, . . .}

2.3 Linear Logic and Sequent Calculus
We recall here some basic notations and notions related to first order and linear logics [8, 7], and proof
systems in sequent calculus [16].
Let us consider a first order logic signatureΣ with V a countable set of variables,ΣF a finite set of function
symbols with fixed arity andΣN a finite set of predicate symbols.T(ΣF ,V) denotes the first order term
algebra built overΣF andV andT (ΣF) denotes the set of ground terms. Atoms are, as usual, built over
predicates symbols and terms. A substitution is a mapping fromV to T(ΣF ,V) which is extended to
T(ΣF ,V) . A substitution assigningt to a variablex will be denoted{x← t}. We introduce some linear
logic‡ notations:◦− denotes the linear implication and⊗ denotes the multiplicative conjunction (see [8, 7]
for the precise definitions of these connectives).
A formula A◦−B1⊗ ...⊗Bn will be called a clause. The setΣ f ormula is the set ofΣ-formulas built using
atoms and the logic connectives.
We recall basic notations for sequent calculus.
‡ Intuitively, the key idea of linear logic we use here is that, when performing logical inferences, some hypothesis can be consumed.

This means that, along a proof, some formulas are persistent (as in usual first order logic) but some formulas can only be used
once.

Computing over TSG and PG 233

Definition 9 (Sequent) A sequent will be written asΣ : ∆→ G whereΣ is the signature,∆ a multiset of
Σ-formulas and G aΣ-formula.

From these sequents we can built proof systems.

Definition 10 (Proof System) A proof system consists of a set of inference rules between sequents. An
inference rule is presented here as:

Σ : ∆→G
Σ′ : ∆′→G′

We use the classical notion of proof (i.e. there is a proof of a sequent in a proof system if this sequent is
the root of a proof tree constructed using inference rules with empty leaves).

3 From TSG and PG Computation to Proof Search
In this section, we define the translation of grammar production rules into linear logic formulas. Then,
designing a particular proof system, we show that usual grammar computations as defined in Definitions 3
and 8 can be reduced to proof searches using this system.

3.1 Transformation of TSG into Linear Logic Formulas
Given aTSG(F ,N ,PP,TI), the setPP of production rules is partitioned intoPPf ree the set of free
production rules andPPsync the set of packs of synchronized production rules. We define now a trans-
formation functionΨ which is decomposed into two different mappings (corresponding respectively to
the transformation of free and synchronized production rules). A predicate symbol and a variable will be
associated to each non terminal.

Definition 11 (Transformation Function ΨTSG)

Let σN : N → ΣN be the mapping that translates every non terminal symbol into a predicate symbol
(to simplify, we will writeσN (N) = n). Let σV : N → V be the mapping that transforms every non
terminal symbol into a logical variable (we will writeσV (N) = N). For the sake of readability, universal
quantifications have been omitted when clear.
LetσPPf ree : PPf ree→ Σ f ormula be the mapping that translates every free production rule into aΣ-formula
andσPPsync : PPsync→ Σ f ormula the mapping that translates every pack of synchronized production rules
into aΣ-formula.
Free productions
Let N→ g(N1, . . . ,Np) and N→ t in PPf ree.

σPPf ree(N→ g(N1, . . . ,Np))

= n(g(N1, . . . ,Np),c)◦−n1(N1,c)⊗ . . .⊗np(Np,c)

σPPf ree(N→ t) = n(t,c)◦−1

Synchronized Productions
Let S = {R | P∈ PPsync∧R∈ P} and{R1; . . . ;Rn} ∈ PPsync :

234 Fréd́eric Saubion and Igor Stéphan

σPPsync({R1, . . . ,Rn}) = ∀c∃nc(σS (R1,c,nc)⊗ . . .⊗σS (Rn,c,nc))

whereσS : S ×C×C→ Σ f ormula is defined§, for N→ g(N1, . . . ,Np) and N→ t in S , as:

σS (N→ g(N1, . . . ,Np),c,nc)
= n(g(N1, . . . ,Np),c)◦−n1(N1,nc)⊗ . . .⊗np(Np,nc)

σS (N→ t,c,nc) = n(t,c)◦−1

Let ΣΨ = ΣF ∪ΣN andΨ((F ,N ,PP,TI)) = σPPf ree(PPf ree)∪σPPsync(PPsync) (in the following,Ψ will
denote a set of formulas obtained from aTSGand will be called aTSGprogram). At this step, a particular
sequent calculus defines the semantics ofΨ.

A similar transformation function can be defined for primal grammars.

3.2 Transformation of PG into Linear Logic Formulas

We suppose in the following that Presburger rewrite systems are such that each definite symbol not ap-
pearing in the left hand side of a rule must also appear linearly in the right hand side. This is not in fact a
restriction since multiple occurrences of a same symbol can be replaced by a new symbol with the same
definition. This transformation does not modify the primal grammar definition.

Given a primal grammar(F ,D,R ,A), the functionσD : D → ΣD maps each defined symbolN to a
predicate symbol (we will use the notationσD(N) = n). σV : D → V is the function that maps each
defined symbolN to a logical variable (σV (N) = N). We use the notation~c = (c1, . . . ,carc(N)−1), ~c′ =
(c1, . . . ,ci−1,s(ci),ci+1, . . . ,carc(N)−1) and∀i ∈ [1..p],~ci ⊑~c.

σR : R → Σ f ormule is the function that maps to each Presburger rewrite rule a formula:

§ The setC denotes a set of counters (i.e. new symbols which are not in the current signature).

Computing over TSG and PG 235

∀(N(0)→ t) ∈ R ,

σR (N(0)→ t)

= n(0, t)◦−1

∀(N(0,~c)→ g(N1(~c1), . . . ,Np(~cp))) ∈ R ,

σR (N(0,~c)→ g(N1(~c1), . . . ,Np(~cp)))

= n(g(N1, . . . ,Np,0,~c))◦−n1(N1,~c1)⊗ . . .⊗np(Np, ~cp)

∀(N(s(c0),~c)→ g(N1(~c1), . . . ,Np(~cp))[N(c0,~c)]) ∈ R ,

σR (N(s(c0),~c)→ g(N1(~c1), . . . ,Np(~cp))[N(c0,~c)])

= n(g(N1, . . . ,Np)[N],c0,~c)◦−n1(N1,~c1)⊗ . . .⊗np(Np, ~cp)⊗n(N,c0,~c)

∀(N(s(c0),~c)→ g(N1(~c1), . . . ,Np(~cp))[N(c0,~c′)]) ∈ R ,

σR (N(s(c0),~c)→ g(N1(~c1), . . . ,Np(~cp))[N(c0,~c′)])

= n(g(N1, . . . ,Np)[N],s(c0),~c)◦− n1(N1,~c1)⊗ . . .⊗np(Np, ~cp)⊗n(N,c0,~c′)

As previously defined forTSG, we get the notion ofPG programΨ from the above definition. After
these syntactic transformations, there is no more need to distinguish the two different types of grammar
definition. We propose a uniform proof system which allows us to handle both formalisms at once.

3.3 The Proof System FG

In this section, we define a sequent calculus proof system inspired by the system Forum of D. Miller [16].
Our proof systemFG (Forum forGrammars) is defined by the following inference rules and defines the
basic proof theoretical semantics of aTSG(resp.PG) programΨ. In order to simplify the presentation,
we have omittedΨ in the sequents since, of course, it does not change.

Definition 12 (FG system)

[1]

Σ :→ 1

[Sync]

Σ,α : C1θ, . . . ,Crθ,∆→G
Σ : ∆→G

where∀c∃nc(C1⊗ . . .⊗Cr) ∈Ψ, θ = {c← β,nc← α}, β∈ Σ, α 6∈ Σ.

236 Fréd́eric Saubion and Igor Stéphan

[Back!]

Σ : ∆1→ A1σ . . . Σ : ∆p→ Apσ
Σ : ∆1, . . . ,∆p→G

where C= (H ◦−A1⊗ . . .⊗Ap) ∈Ψ and Hσ = G.

[Back?]

Σ : ∆1→ A1σ . . . Σ : ∆p→ Apσ
Σ : (H ◦−A1⊗ . . .⊗Ap),∆1, . . . ,∆p→G

where Hσ = G.

Comments:It should be noticed that we distinguish free production rules and synchronized production
rules (see the definition of the transformation functionΨ in Section 3.1). Clearly free productions appear
as clausesH ◦−A1⊗ ...⊗An and packs of synchronized productions appear as formulas∀c∃nc(C1⊗ ...⊗
Cn) where theCi ’s areH ◦−A1⊗ ...⊗An and are called linear clauses (in the following linear clause will
always refer to a clause generated by synchronization rules). Clauses corresponding to free productions
in Ψ are persistent along the proof and are used in the inference[Back!] (this corresponds to a step of the
grammar derivation using this free production). The treatment of a pack of synchronization is performed
thanks to the rules[Sync] and [Back?]. The first step consists in generating the formula corresponding
to this pack in∆ (rule [Sync]). The control is ensured by the instantiation of the counter variables with
new symbols added to the signatureΣ in rule [Sync]. Since∆ is the linear logic part of our system,
the linear clauses will be consumed when used by rule[Back?] (in the philosophy of linear logic). This
ensures the integrity of the synchronization and the control of the simultaneous application of the different
productions of this pack.[Back?] and[Back!] lead to branching in the search tree.

As a consequence, our systemFG is a subset of Forum (i.e. our rules can be expressed in Forum).

Proof: The rules of FORUM used in this proof can be found in [16]. We introduce the programΨ in the
proof to keep the initial FORUM presentation.

Proof of the correctness of 1 w.r.t. FORUM
Let 1≡⊥◦−⊥ in

Σ : Ψ;
⊥
→

[⊥L]

Σ : Ψ;⊥→
[decide1]

Σ : Ψ;⊥→⊥
[⊥R]

[◦−R]

Σ : Ψ;→ 1

Computing over TSG and PG 237

Proof of the correctness of[Sync] w.r.t. FORUM
Let C⊗C′ ≡ (⊥◦− ((⊥◦−C)

&

(⊥◦−C′))) and[⊗L] :

Σ : Ψ;C,C′,∆−→G

Σ : Ψ;C,C′,∆−→⊥,G
[⊥R]

Σ : Ψ;C,∆−→⊥◦−C′,G
[◦−R]

Σ : Ψ;C,∆−→⊥,⊥◦−C′,G
[⊥R]

Σ : Ψ;∆−→⊥◦−C,⊥◦−C′,G
[◦−R]

Σ : Ψ;∆−→ (⊥◦−C)

&

(⊥◦−C′),G
[

&

R]
Σ : Ψ;

⊥
→

[⊥L]

[◦−L]

Σ : Ψ;∆ C⊗C′
−→ G

and∃xB≡ (∀xB⊥)⊥ ≡⊥◦− (∀x(⊥◦−B)) and[∃L] (y 6∈ Σ):

y,Σ : Ψ;∆,B{x← y}→G

y,Σ : Ψ;∆,B{x← y}→⊥,G
[⊥R]

y,Σ : Ψ;∆→⊥◦−B{x← y},G
[◦−R]

[∀R]

Σ : Ψ,∃xB;∆→∀x(⊥◦−B),G Σ : Ψ;
⊥
→

[⊥L]

[◦−L]

Σ : Ψ;∆ ∃xB
→ G

in

Σ,β,α : Ψ;C1{c← β,nc← α}, . . . ,Cn{c← β,nc← α},∆→G
[⊗L]n−1

Σ,β,α : Ψ;∆
C1{c← β,nc← α}⊗...⊗Cn{c← β,nc← α}

−→ G
[∃L]

Σ,β : Ψ;∆
∃nc(C1{c← β}⊗...⊗Cn{c← β})

−→ G
[∀L]

Σ,β : Ψ;∆
∀c∃nc(C1⊗...⊗Cn)

−→ G

Σ,β : ∀c∃nc(C1⊗ . . .⊗Cn) ∈Ψ;∆→G
[decide2]

with α(6= β) 6∈ Σ.

Proof of the correctness of[Back!] and [Back?] w.r.t. FORUM
Let t1, . . . , tn ∈ T(ΣF), ρ = {x1← t1, . . . ,xn← tn} with Hρ = G
andδ⊗ =

Σ : Ψ;∆p−1→Ap−1ρ Σ : Ψ;∆p→Apρ
...

Σ : Ψ;∆1→A1ρ Σ : Ψ;∆2, . . . ,∆p→A2ρ⊗ . . .⊗Apρ
Σ : Ψ;∆1, . . . ,∆p→A1ρ⊗ . . .⊗Apρ

andC⊗C′ ≡ (⊥◦− ((⊥◦−C)

&

(⊥◦−C′))) and

238 Fréd́eric Saubion and Igor Stéphan

Σ : Ψ;∆→C Σ : Ψ;
⊥
→

[⊥L]

[◦−L]
Σ : Ψ;∆′→C′ Σ : Ψ;

⊥
→

[⊥L]

[◦−L]

Σ : Ψ;∆
(⊥◦−C)
−→ Σ : Ψ;∆′

(⊥◦−C′)
−→

[

&

L]

Σ : Ψ;∆,∆′
(⊥◦−C)

&

(⊥◦−C′)
−→

Σ : Ψ;∆,∆′,((⊥◦−C)

&

(⊥◦−C′))→
[decide1]

Σ : Ψ;∆,∆′,((⊥◦−C)

&

(⊥◦−C′))→⊥
[⊥R]

[◦−R]

Σ : Ψ;∆,∆′→C⊗C′

in
δ⊗

Σ : Ψ;∆1, . . . ,∆p→A1ρ⊗ . . .⊗Apρ Σ : Ψ;
Hρ
−→G

[initial]

[◦−L]

Σ : Ψ;∆1, . . . ,∆p
Hρ◦−A1ρ⊗...⊗Apρ

−→ G
[∀L]n

Σ : Ψ;∆1, . . . ,∆p
∀x1...xn(H◦−A1⊗...⊗Ap)

−→ G

Σ : Ψ;(∀x1 . . .xn(H ◦−A1⊗ . . .⊗Ap)),∆1, . . . ,∆p→G
[decide2]

and
δ⊗

Σ : Ψ;∆1, . . . ,∆p→A1ρ⊗ . . .⊗Apρ Σ : Ψ;
Hρ
−→G

[initial]

[◦−L]

Σ : Ψ;∆1, . . . ,∆p
Hρ◦−A1ρ⊗...⊗Apρ

−→ G
[∀L]n

Σ : Ψ;∆1, . . . ,∆p
∀x1...xn(H◦−A1⊗...⊗Ap)

−→ G

Σ : Ψ;(∀x1 . . .xn(H ◦−A1⊗ . . .⊗Ap)),∆1, . . . ,∆p→G
[decide2]

✷

3.4 Correctness and Completeness of FG
The correctness and completeness of the systemFG is ensured by two theorems: one w.r.t. theTSGand
the other w.r.t.PG.

3.4.1 Correctness and Completeness of FG w.r.t. TSG
We have to prove the following theorem.

Theorem 1 (Correctness and Completeness ofFG w.r.t. TSG)
Given a TSG(F ,N ,PP,(I ,#)), the corresponding TSG programΨ and t∈T(ΣF), (ΣΨ,# :→σN (I)(t,#))

has a proof in FG w.r.t. the TSG programΨ if and only if((I ,#)
∗
⇒ t).

Prologue to the proof of Correctness and completeness ofFG w.r.t. TSG.
The set of instantiated productions of a computation of aTSG Gr= (F ,N ,PP,TI) denotedIP(Gr) is the
smallest set defined by:

Computing over TSG and PG 239

• if t is in Comp(Gr), t|u = (X,β), andR= (X→g(Y1, . . . ,Yn)) is in PPf ree

thenR(β) = ((X,β)⇒g((Y1,β), . . . ,(Yn,β))) is in IP(Gr),

• if t is in Comp(Gr) and there existsn pairwise different occurrencesu1, . . . ,un of t such that∀i ∈
[1,n], t|ui = (Xi ,ci) andci = β and the pack of productionsP= {R1 = X1→g1(Y1

1 , . . . ,Y1
n1

), . . . ,Rr =
Xr→gr(Yr

1 , . . . ,Yr
nr

)} ∈ PP (whereα is a new symbol)
thenP(α,β) = {(X1,β)⇒g1((Y1

1 ,α), . . . ,(Y1
n1

,α)), . . . ,(Xr ,β)⇒gn((Yr
1 ,α), . . . ,(Yr

nr
,α))}

= {R1(α,β), . . . ,Rr(α,β)} is included inIP(Gr).

Let σI : IP(Gr)→ Σ f ormula be the mapping that translates every instantiated productions into aΣ f ormula:

σI ((X,β)⇒g((Y1,α), . . . ,(Yn,α)))

= x(g(Y1, . . . ,Yn),β)◦−y1(Y1,α)⊗ . . .⊗yn(Yn,α)

A presynchronised production is a production of the form(X,β)→C((Y1,α), . . . ,(Yn,α)) whereC is a
context of terminal symbols,β, α two new symbols andY1, . . . ,Yn non terminals.
The set of computations of aTSG Grenlarged by presynchronised productionsΦ is Comp(Gr) plus

• t[u← C((Y1,α), . . . ,(Yn,α))] if t is in the computation ofGr enlarged withΦ, t|u = (X,β) and
((X,β)→g((Y1,α), . . . ,(Yn,α))) is in Φ.

If s is the number of instances of packs of productions used during aTSGderivation(t
∗
⇒ t ′):

• ΣΨ∪{#} plus the set of counters used during the derivation is denotedΣ(t
∗
⇒ t ′) and

• the set of instances of synchronized productions is denotedΦ(t
∗
⇒ t ′).

If s is the number of instances of packs of productions used during aTSGderivation((I ,#)
∗
⇒ t):

• thehth pack of productions used during thisTSGderivation is denotedPh(βh,αh), 1≤ h≤ s,

• the family of sets{Σh}0≤h≤s is defined by induction:Σ0 = ΣΨ∪{#} and∀h,0≤ h < s,
Σh+1 = Σh∪{αh+1},

• the family of sets{∆h}0≤h≤s is defined by induction:∆0 = /0 and ∀h,0 ≤ h < s, ∆h+1 = ∆h ∪

{R1, . . . ,Rp/{R1, . . . ,Rp}= σI (Ph+1(βh+1,αh+1))} (Remark:∆s = σI (Φ((I ,#)
∗
⇒ t))).

Proof of FG⇒ TSG.
First, we prove by structural induction that if there exists aFG proof (with only instances of the[Back!],
[Back?] and[1] rules) for(Σs : ∆s→n(t,β)) then there is a derivation((N,β)

∗
⇒ t) for theTSGenlarged

by the set of presynchronised productionsΦs with σI (Φs) = ∆s.

Base Cases:Only the case[Back?]+ [1] is treated, the case[Back!]+ [1] is similar.

Σs :→1
[1]

Σs : (n(t,β)◦−1)→n(t,β)
[Back?]

with the linear clause(n(t,β)◦−1) from a presynchronised production((N,β)→t). Then(N,β)⇒t
for theTSGenlarged with{((N,β)→t)} andσI ({(N,β)⇒t)}) = {(n(t,β)◦−1)}.

240 Fréd́eric Saubion and Igor Stéphan

Induction cases: Only the case[Back?] is treated, the case[Back!] is similar.

∇ 1 . . . ∇ p

Σs : ∆1→n1(t1,α) Σs : ∆p→np(tp,α)

Σs : ∆1, . . . ,∆p,n(g(N1, . . . ,Np),β)◦−n1(N1,α)⊗ . . .⊗np(Np,α)→n(t,β)
[Back?]

with α 6∈ Σs.

By induction hypothesis∀i,1≤ i ≤ p, there exists a derivation(Ni ,β)
∗
⇒ ti for the TSGenlarged

with the set of presynchronised productionsΦi and∆i = σI (Φi). Then there exists a derivation
(N,β)

∗
⇒ t for theTSGenlarged with the presynchronised productions

p⋃

i=1

Φi ∪{(N,β)→g((N1,α), . . . ,(Np,α))}

and

∆s =
p⋃

i=1

σI (Φi)∪{σI ((N,β)→g((N1,α), . . . ,(Np,α)))}.

✷

Synchronization Rule Introduction: We begin with a definition.

Definition 13 (RestrictedFG proof) A FG proof is inrestrictedform if all the instances of the
[Sync] rule are at the root of the proof.

First, we prove by induction onk if there exists a restrictedFG proof for(ΣΨ,# :→i(t,#)):

∇
Σs : ∆s→i(t,#)

[Sync]s

...

ΣΨ,# :→i(t,#)
[Sync]1

then there exists a restrictedFG proof for (Σk : ∆k→i(t,#)):

∇
Σs : ∆s→i(t,#)

[Sync]s

...

Σk : ∆k→i(t,#)
[Sync]k+1

The casek = 0 is trivial. Now we assume 0< k≤ s. By induction hypothesis, there exists aFG

Computing over TSG and PG 241

proof for (Σk−1 : ∆k−1→i(t,#)) with s−k+1 instances of the[Sync] rule, then :

∇
Σs : ∆s→i(t,#)

[Sync]s

...

Σk−1,α : ∆k−1,σS (R1,c,nc)θ, . . . ,σS (Rp,c,nc)θ→i(t,#)
[Sync]k+1

[Sync]k

Σk−1 : ∆k−1→i(t,#)

with Pk = {R1, . . . ,Rp}, p > 1 andβ ∈ Σk−1, α 6∈ Σk−1 andθ = {c← β,nc← α} and a derivation
(I ,#)⇒t) for theTSGenlarged withΦk−1, σI (Φk−1) = ∆k−1.

But ∆k = ∆k−1∪{σS (R1,c,nc)θ, . . . ,σS (Rp,c,nc)θ} andΣk = Σk−1∪{α} then

∇
Σs : ∆s→i(t,#)

[Sync]s

...

Σk : ∆k→i(t,#)
[Sync]k+1

Finally, we prove by induction onk that if there exists a restrictedFG proof for (ΣΨ,# :→i(t,#)):

∇
Σs : ∆s→i(t,#)

[Sync]s

...

ΣΨ,# :→i(t,#)
[Sync]1

then there exists a derivation((I ,#)
∗
⇒ t) for theTSGenlarged withΦk, σI (Φk) = ∆k.

The casek = s is a consequence of the previous result. Now we assume that 0≤ k < s. By induction
hypothesis on the proof (withPk+1 = {R1, . . . ,Rp}, p > 1):

∇
Σs : ∆s→i(t,#)

[Sync]s

...
Σk,α : ∆k+1→i(t,#)

[Sync]k+1

Σk : ∆k→i(t,#)
...

ΣΨ,# :→i(t,#)
[Sync]1

there exists a derivation((I ,#)
∗
⇒ t) for the TSGenlarged withΦk+1 andσI (Φk+1) = ∆k+1. But

∆k+1 = ∆k ⊎ {σS (R1,c,nc)θ, . . . ,σS (Rp,c,nc)θ} (θ = {c← β,nc← α}) so in the derivation, the
presynchronised productions{Ri(β,α)}1≤i≤p can be replaced by the instancePk+1(β,α) of the
packPk+1. ✷

242 Fréd́eric Saubion and Igor Stéphan

Proof of TSG⇒ FG.
First, we prove by induction on the structure of derivation: if there exists a derivation

g((N1,β), . . . ,(Nl ,β))
∗
⇒ g(t1, . . . , tl) (1)

for aTSGthen there exists for everyk, 1≤ k≤ l , aFG proof for

(Σ((Nk,β)
∗
⇒ tk) : σI (Φ((Nk,β)

∗
⇒ tk))→ nk(tk,β)) (2)

Base cases:Only the case with a pack of productions is treated, the case with a free production is similar.
Let{N1→ t1, . . . ,Nr→ tr} ∈PPsyncand the derivation(g((N1,β), . . . ,(Nr ,β))⇒ g(t1, . . . , tr)). Then
for everyk,1≤ k≤ r there exists aFG proof:

ΣΨ,β :→ 1
ΣΨ,β : (nk(tk,β)◦−1)→ nk(tk,β)

with

Φ((Nk,β)⇒ tk) = {(Nk,β)⇒ tk}

σI (Φ((Nk,β)⇒ tk)) = {nk(tk,β)◦−1}

Φ(g((N1,β), . . . ,(Nr ,β))⇒ g(t1, . . . , tr)) = {(n1(t1,β)◦−1), . . . ,(nr(tr ,β)◦−1)}.

Induction cases: Only the case with a pack of productions is treated, the case with a free production is
similar. Let

{N1→ g1(N
1
1 , . . . ,Np1

1), . . . ,Nr → gr(N
1
r , . . . ,Npr

r)} ∈ PPsync (3)

and a derivation

(g((N1,β), . . . ,(Nr ,β))

⇒ g(g1((N
1
1 ,α), . . . ,(Np1

1 ,α)), . . . ,gr((N
1
r ,α), . . . ,(Npr

1 ,α))))
∗
⇒ g(g1(t

1
1, . . . , t p1

1), . . . ,gr(t
1
r , . . . , t pr

1)))

Then by induction hypothesis, for everyk,1≤ k≤ r andik,1≤ ik ≤ pk there exists aFG proof:

δik
k =

∇ ik
k

Σ((Nik
k ,α)⇒ t ik

k) : σI (Φ((Nik
k ,α)⇒ t ik

k))→ nik
k (t ik

k ,α)

For everyk,1≤ k≤ r,

σI (Φ((Nk,β)
∗
⇒ gk(t

1
k , . . . , t pk

k)))

= σI (
pk⋃

i=1

Φ((Nik
k ,α)

∗
⇒ t ik

k)∪{(Nk,β)⇒ gk((N
1
k ,α), . . . ,(Npk

k ,α))})

=
pk⋃

i=1

σI (Φ((Nik
k ,α)

∗
⇒ t ik

k))∪{σI ((Nk,β)⇒ gk((N
1
k ,α), . . . ,(Npk

k ,α)))}

=
pk⋃

i=1

σI (Φ((Nik
k ,α)

∗
⇒ t ik

k))∪{nk(gk(N
1
k , . . . ,Npk

k),β)◦−n1
k(N

1
k ,α), . . . ,npk

k (Npk
k ,α)}

Computing over TSG and PG 243

Then for everyk,1≤ k≤ r there exits aFG proof (the signatures ofδik
k , 1≤ ik≤ pk, are augmented

with β):

δ1
k . . . δpk

k

Σ((Nk,β)
∗
⇒ gk(t1

k , . . . , t pk
k)) : σI (Φ((Nk,β)

∗
⇒ gk(t1

k , . . . , t pk
k)))→ nk(gk(t1

k , . . . , t pk
k),β)

Σ((Nk,β)
∗
⇒ gk(t

1
k , . . . , t pk

k)) =
pk⋃

ik=1

Σ((Nik
k ,α)

∗
⇒ t ik

k)∪{β}

and

Φ(g((N1,β), . . . ,(Nr ,β))
∗
⇒g(g1(t

1
1, . . . , t p1

1), . . . ,gr(t
1
r , . . . , t pr

1)))=
r⋃

k=1

Φ((Nk,β)
∗
⇒gk(t

1
k , . . . , t pk

k))).

By the result above, we have the following corollary:

Corollary 1 If there exists a derivation((I ,#)
∗
⇒ t) for a TSG then there exists a FG proof for(Σs : ∆s→

i(t,#)).

Now we prove by induction onh: if there exists aFG proof for (Σs : ∆s→ i(t,#)) then there exists anFG
proof for (Σh : ∆h→ i(t,#)).
The base caseh = 0 is trivial, now we assume that 0< h≤ s. Σh+1 = Σh∪{αh+1} and∆h+1 = ∆h∪
{Rh+1

1 , . . . ,Rh+1
p /{Rh+1

1 , . . . ,Rh+1
p } = σI (Ph+1(βh+1,αh+1))}. By induction hypothesis, there exists aFG

proof for:
∇

Σh,αh+1 : ∆h,Rh+1
1 , . . . ,Rh+1

p → i(t,#)

so there exists aFG proof:

∇
Σh,αh+1 : ∆h,Rh+1

1 , . . . ,Rh+1
p → i(t,#)

[Sync]

Σh : ∆h→ i(t,#)

✷

This achieves the first part of the correctness and completeness of our transformation. We now have to
provide a similar theorem for Primal Grammars.

3.4.2 Correctness and Completeness of FG w.r.t. PG
Theorem 2 (Correctness and Completeness ofFG w.r.t. PG)
Given a PG(F ,D,R ,A), the corresponding PG programΨ and~c∈ N

arc(A) and t∈ T(F). (ΣΨ : Ψ;→
σD(A)(t,~c)) has a proof in FG if and only if(A(~c)

∗
⇒ t).

244 Fréd́eric Saubion and Igor Stéphan

Proof of PG =⇒ FG.
We prove by induction on the length of aPGderivation if there exists aPGderivation
(f̃ (m0,~m)

∗
⇒Pbg t), with f̃ ∈D andm0 ∈N and~m∈N

ar(f̃)−1 then there exists aFG proof for (ΣΨ : Ψ;→
f (t,m0,~m))
The right hand-side of the sequent(ΣΨ : Ψ;) does not vary and is omitted.

Casel = 1: f̃ (m0,~m)⇒Pbgt thenm0 = 0 and there exists a basic rule(f̃ (0,~c)→ t)∈R and a linear clause
(∀~c(f (t,0,~c)◦−1)) ∈Ψ and aFG proof:

→1
[1]

→ f (t,0,~m)
[Back!]

Casel > 1: Only the case with the last applied rule as an instance of the second inductive rule¶ is treated,
the case for the first inductive rule is similar. Som0 = s(m−1) and there exists a contextC with
t = C(t1, . . . , tp)[t ′] and an inductive rule(f̃ (s(c0),~c)→PbgC(f̃1(~c1), . . . , f̃p(~cp))[f̃ (c0, ~c+)]) ∈ R .

So∀i ∈ [1..p], f̃i(~mi)
ki≤l
⇒Pbg ti , f̃ (m−1, ~m+)

k′≤l
⇒Pbg t ′ andΣp

i=1ki + k′ = l −1. Then by induction hy-
pothesis, there existFG proofs for∀i ∈ [1..p],(→ fi(ti , ~mi)):

δi

→ fi(ti , ~mi)

and there exists aFG proof for (→ f (t ′,m−1, ~m+)):

δ′

→ f (t ′,m−1, ~m+)

Moreover,

σR (f̃ (s(c0),~c)→PbgC(f̃1(~c1), . . . , f̃p(~cp))[f̃ (c
0, ~c+)]) =

∀c0∀~c∀F1 . . .∀Fp∀F(f (C(F1, . . . ,Fp)[F],s(c0),~c)

◦− f1(F1,~c1)⊗ . . .⊗ fp(Fp, ~cp)⊗ f (F,c0, ~c+))

Then there exists aFG proof for (→ f (C(t1, . . . , tp)[t ′],s(m−1),~m)):

δ1 δp δ′

→ f1(t1, ~m1) . . . → fp(tp, ~mp) → f (t ′,m−1, ~m+)
[Back!]

→ f (C(t1, . . . , tp)[t ′],s(m−1),~m)

¶ We write k = ar(f̃) and ~c = (c1, . . . ,ck) and ~m = (m1, . . . ,mk) and ~c+ = (c1, . . . ,ci−1,s(ci),ci+1, . . . ,ck) and ~m+ =
(m1, . . . ,mi−1,s(mi),mi+1, . . . ,mk) and∀i ∈ [1..p],~ci is a subsequence of~c and~mi is a subsequence of~m on the same positions.

Computing over TSG and PG 245

✷

Proof of PG⇐ FG.
We prove by induction on the structure of aFG proof if there exists aFG proof for

(ΣΨ : Ψ;→ f (t,m0,~m)), (4)

with f̃ ∈D andm0 ∈ N and~m∈ N
ar(f̃)−1 then there exists aPGderivation(f̃ (m0,~m)

∗
⇒Pbg t)

The right hand-side of the sequent(ΣΨ : Ψ;) does not vary and is omitted.

Base case:There exists a proof of→ f (t,m0,~m)

1 som0 = 0 and there exists a linear clause∀~c(f (t,0,~c) ◦−

1) ∈Ψ and a basic rulẽf (0,~c)→ t ∈ R). Then f̃ (0,~m)⇒Pbgt.

Induction cases: There exists aFG proof for (→ f (t,m0,~m)). The only possible inference rule applied
at the root of the proof is an instance of the[Back!] rule. Only the case for a linear clause obtained
from the second inductive rule‖ is treated, the cases for the basic rule or the first inductive rule are
similar.

We have aFG proof of shape
δ1 . . . δp δ′ [Back!]

→ f (t,s(m−1),~m)

with the linear clause

∀c0∀~c∀F1 . . .∀Fp∀F(f (C(F1, . . . ,Fp)[F],s(c0),~c)◦−

f1(F1,~c1)⊗ . . .⊗ fp(Fp, ~cp)⊗ f (F,c0, ~c+) ∈Ψ

(obtained from the rulẽf (s(c0),~c)→C(f̃1(~c1), . . . , f̃p(~cp))[f̃ (c0, ~c+)]∈R) with t =C(t1, . . . , tp)[t ′]

and∀i ∈ [1..p] δi a proof with the root(→ fi(ti , ~mi)) andδ′ a proof with the root(→n(t ′,m−1, ~m+)).

For all proofsδi , i ∈ [1..p], by induction hypothesis, there existPG derivations f̃i(~mi)⇒Pbgti and

for the proofδ′, by induction hypothesis, there exists aPG derivation f̃ (m−1, ~m+)⇒Pbgt ′. Then by

the inductive rulef̃ (s(c0),~c)→PbgC(f̃1(~c1), . . . , f̃p(~cp))[N(c0, ~c+)] ∈ R , f̃ (m0,~m)⇒Pbgt.

✷

3.4.3 Application
We address here Example 1 onTSGto illustrate how the transformation and proof systemFG work. We
build the derivation tree for theTSGprogramΨ. ΣΨ is omitted in the left hand side of the sequents of the
following proof in order to simplify the notation, we only mention the new symbols added to the signature
along the proof and universal quantifiers are omitted in the sequents:

‖ We denotek = ar(f̃) and ~c = (c1, . . . ,ck) and ~m = (m1, . . . ,mk) and ~c+ = (c1, . . . ,ci−1,s(ci),ci+1, . . . ,ck) and ~m+ =
(m1, . . . ,mi−1,s(mi),mi+1, . . . ,mk) and∀i ∈ [1..p],~ci is a subsequence of~c and~mi a subsequence of~m on the same positions.

246 Fréd́eric Saubion and Igor Stéphan

{ F0 : ∀c(∀X∀Y(i(f (X,Y),c)◦−x(X,c)⊗y(Y,c))),

F1 : ∀c(x(z,c)◦−1),

F2 : ∀c(y(z,c)◦−1),

F3 : ∀c∃nc((∀X(x(s(X),c)◦−x(X,nc)))⊗ (∀Y(y(s(s(Y)),c)◦−y(Y,nc)))) }

δ1 δ2

[Back!] F0

#,β : x(s(X),#)◦−x(X,β),y(s(s(Y)),#)◦−y(Y,β)→ i(f (s(z),s(s(z))),#)
[Sync] F3

:→ i(f (s(z),s(s(z))),#)

where

δ1 :

1
[Back!] F1

#,β :→ x(z,β)
[Back?]

#,β : x(s(X),#)◦−x(X,β)→ x(s(z),#)

and

δ2 :

1
[Back!] F2

#,β :→ y(z,β)
[Back?]

#,β : y(s(s(Y)),#)◦−y(Y,β)→ y(s(s(z)),#)

4 From Linear Logic to Prolog
From now on, there is no more need to distinguishTSGand PG since they have been embedded into the
same formalism (i.e. linear logic formulas). From an operational point of view, it appears clearly that the
previous systemFG does not provide any strategy for a proof search (especially concerning the use of the
rule [Sync]). Furthermore, a refinement will help us to get the implementation of the system. Therefore,
we define a goal directed proof systemFGdir with the following inference rules.
We define the set operator⊎ as⊎1≤i≤nAi = ∪1≤i≤nAi such that∀1≤ i, j ≤ n, i 6= j,Ai ∩A j = /0.

Computing over TSG and PG 247

Definition 14 (FGdir system)

[Back!dir]

Σ : ((∆1→G1), . . . ,(∆i−1→Gi−1),

(∆′1→ A1σ), . . . ,(∆′p→ Apσ),

(∆i+1→Gi+1), . . . ,(∆n→Gn))

Σ : ((∆1→G1), . . . ,(∆n→Gn))

if H ◦−A1⊗ . . .⊗Ap ∈Ψ, there exists a substitutionσ such that Hσ = Gi and∆i = ⊎1≤k≤p∆′k.

[Back?dir]

Σ :((∆1→G1), . . . ,(∆i−1→Gi−1),

(∆′1→ A1σ), . . . ,(∆′p→ Apσ),

(∆i+1→Gi+1), . . . ,(∆n→Gn))

Σ : ((∆1→G1), . . . ,(∆n→Gn))

if C = (H ◦−A1⊗ . . .⊗Ap) ∈ ∆i , there exists a substitutionσ such that Hσ = Gi and ∆i \ {C} =
⊎1≤k≤p∆′k.

[Sync+dir]

Σ,α :((∆1∪∆′′1→G1), . . . ,(∆i−1∪∆′′i−1→Gi−1),

(∆′1∪∆′′′1 → A1σ), . . . ,(∆′p∪∆′′′p → Apσ),

(∆i+1∪∆′′i+1→Gi+1), . . . ,(∆n∪∆′′n→Gn))

Σ :((∆1→G1), . . . ,(∆n→Gn))

if

∀c∃nc(C1⊗ . . .⊗Cr) ∈Ψ,1≤ j ≤ r,

Cjθ = (H ◦−A1⊗ . . .⊗Ap),

Hσ = Gi ,∆i = ⊎1≤k≤p∆′k,
{C1θ, . . . ,Cj−1θ,Cj+1θ, . . . ,Crθ}= (⊎1≤k(6=i)≤n∆′′k)⊎ (⊎1≤k≤p∆′′′k),

β∈ Σ,α 6∈ Σandθ = {c← β,nc← α}.

[Sync1dir]
Σ,α : ((∆1∪∆′1→G1), . . . ,(∆i−1∪∆′i−1→Gi−1)

(∆i+1∪∆′i+1→Gi+1), . . . ,(∆n∪∆′n→Gn))
Σ : ((∆1→G1), . . . ,(∆n→Gn))

248 Fréd́eric Saubion and Igor Stéphan

if

∀c∃nc(C1⊗ . . .⊗Cr) ∈Ψ,1≤ j ≤ r,Cjθ = (H ◦−1),

Hσ = Gi ,∆i = /0,

C1θ, . . . ,Cj−1θ,Cj+1θ, . . . ,Crθ = (⊎1≤k(6=i)≤n∆′k),

β∈ Σ,α 6∈ Σandθ = {c← β,nc← α}.

[Axiom!dir]

Σ : ((∆1→G1), . . . ,(∆i−1→Gi−1),
(∆i+1→Gi+1), . . . ,(∆n→Gn))

Σ : ((∆1→G1), . . . ,(∆n→Gn))

if H ◦−1 ∈Ψ, ∆i = /0 and there exists a substitutionσ such that Hσ = Gi .

[Axiom?dir]

Σ : (∆1→G1), . . . ,(∆i−1→Gi−1),
(∆i+1→Gi+1), . . . ,(∆n→Gn)

Σ : (∆1→G1), . . . ,(∆n→Gn)

if ∆i = {H ◦−1}, there exists a substitutionσ such that Hσ = Gi .

The main difference introduced by this system is that synchronizations and reduction are led by the goal to
be solved. We now have to prove that this system is equivalent to our initial systemFG. The equivalence
of the two systems is ensured by the following theorem:

Theorem 3 (FGdir ⇔ FG) There exists a proof of a sequent in the system FG if and only if there exists a
proof of this sequent in the system FGdir .

Proof: This proof is inspired by [19].
The transformation of aFG proof tree into aFGdir proof derivation is achieved by recombining the
different branches of the proof into a single derivation and then collapsing the synchronization rule with
its first corresponding linear clause. The intermediate systemFGlin is needed to achieve the first part of
the proof.

Definition 15 (FGlin System)

[Back! lin]

(Σ1 : ∆1→G1), . . . ,(Σi−1 : ∆i−1→Gi−1),
(Σi : ∆′1→ A1σ), . . . ,(Σi : ∆′p→ Apσ),

(Σi+1 : ∆i+1→Gi+1), . . . ,(Σn : ∆n→Gn)
(Σ1 : ∆1→G1), . . . ,(Σn : ∆n→Gn)

where(H ◦−A1⊗ . . .⊗Ap) ∈Ψ, Hσ = Gi and∆i = ⊎1≤k≤p∆′k.

Computing over TSG and PG 249

[Back?lin]
(Σ1 : ∆1→G1), . . . ,(Σi−1 : ∆i−1→Gi−1),

(Σi : ∆′1→ A1σ), . . . ,(Σi : ∆′p→ Apσ),
(Σi+1 : ∆i+1→Gi+1), . . . ,(Σn : ∆n→Gn)

(Σ1 : ∆1→G1), . . . ,(Σn : ∆n→Gn)

where C= (H ◦−A1⊗ . . .⊗Ap) ∈ ∆i , Hσ = Gi and∆i \{C}= ⊎1≤k≤p∆′k.

[Synclin]
(Σ1 : ∆1→G1), . . . ,(Σi−1 : ∆i−1→Gi−1),

(Σi ,α : C1θ, . . . ,Crθ,∆i →Gi),
(Σi+1 : ∆i+1→Gi+1), . . . ,(Σn : ∆n→Gn)

(Σ1 : ∆1→G1), . . . ,(Σn : ∆n→Gn)

where∀c∃nc(C1⊗ . . .⊗Cr) ∈Ψ, α 6∈ Σi , β∈ Σi andθ = {c← β,nc← α}.

[Axiom! lin]
(Σ1 : ∆1→G1), . . . ,(Σi−1 : ∆i−1→Gi−1),
(Σi+1 : ∆i+1→Gi+1), . . . ,(Σn : ∆n→Gn)

(Σ1 : ∆1→G1), . . . ,(Σn : ∆n→Gn)

where(H ◦−1) ∈Ψ, ∆i = /0 and Hσ = Gi .

[Axiom?lin]
(Σ1 : ∆1→G1), . . . ,(Σi−1 : ∆i−1→Gi−1),
(Σi+1 : ∆i+1→Gi+1), . . . ,(Σn : ∆n→Gn)

(Σ1 : ∆1→G1), . . . ,(Σn : ∆n→Gn)

where∆i = {(H ◦−1)} and Hσ = Gi .

Lemma 1 (FG⇔ FGlin) There exists proofs of the sequents∀i,1≤ i ≤ n,(Σi : ∆i →Gi) in the system
FG if and only if there exists a proof of the sequent(Σ1 : ∆1→G1) . . .(Σn : ∆n→Gn) in the system FGlin .

Proof of FG => FGlin .
We prove by induction on the structure of aFG proof if ∀i, 1≤ i ≤ n there exists aFG proof of (Σi : ∆i →
Gi) then there exists aFGlin proof of (Σ1 : ∆1→G1), . . . ,(Σn : ∆n→Gn).

Base case[Back?]+ [1]: TheFG proof is as follows:

Σ :→ 1
Σ : H ◦−1→G with Hσ = G

Then the derivation:

(Σ :→G)
[Axiom! lin]

is aFGlin proof.

250 Fréd́eric Saubion and Igor Stéphan

Base case[Back!]+ [1]: This case is similar to the[Back?]+ [1] base case.

Induction case[Sync]: The inference at the root of the proof is an instance of the[Sync] rule:

∇
α,Σ : C1θ, . . . ,Crθ,∆→G

[Sync]

Σ : ∆→G

with (∀c∃nc(C1⊗ . . .⊗Cr)) ∈Ψ, β∈ Σ,α 6∈ Σ andθ = {c← β,nc← α}.
By induction hypothesis, for theFG proof tree:

∇
α,Σ : C1θ, . . . ,Crθ,∆→G

there exists aFGlin proof:
D

(α,Σ : C1θ, . . . ,Crθ,∆→G)

Then the following derivation:

D

(α,Σ : C1θ, . . . ,Crθ,∆→G)

(Σ : ∆→G)

is aFGlin proof.

Induction case[Back?]: The inference at the root of the proof is an instance of the[Back?] rule:

∇ 1 ∇ p

Σ : ∆1→ A1σ . . . Σ : ∆p→ Apσ
Σ : H ◦−A1⊗ . . .⊗Ap,∆1, . . . ,∆p→G with Hσ = G.

By induction hypothesis for every 1≤ i ≤ n there is aFGlin proof:

Sl i
...

{Sj} j∈Ii
...

(Σ : ∆i → Aiσ)

Let give the followingFGlin derivation∀i,1≤ i ≤ p:

Sl i ,{(Σ : ∆k→ Akσ)}i<k≤p

Di

...
{Sj} j∈Ii ∪{(Σ : ∆k→ Akσ)}i<k≤p

...
(Σ : ∆i → Aiσ),{(Σ : ∆k→ Akσ)}i<k≤p

Computing over TSG and PG 251

Then the derivation:
Slp
Dp

(Σ : ∆p→ Apσ)

Slp−1,(Σ : ∆p→ Apσ)

...
D1<i≤p

(Σ : ∆i → Aiσ),{(Σ : ∆k→ Akσ)}1<i≤k≤p

Sl i−1,{(Σ : ∆k→ Akσ)}1<i<k≤p
...

D1

(Σ : ∆1→ A1ρ),{(Σ : ∆k→ Akσ)}1<k≤p

(Σ : ∆1, . . . ,∆p→G)

is aFGlin proof.

Induction case[Back!]: This case is similar to the[Back?] case.

✷

Proof of FGlin => FG.
We prove by induction on the structure of aFGlin proof if there exists aFGlin proof of (Σ1 : ∆1 →
G1), . . . ,(Σn : ∆n→Gn) then∀i, 1≤ i ≤ n there existFG proofs for(Σi : ∆i →Gi).

Base case[Axiom?lin]: TheFGlin proof is as follows:

(Σ : H ◦−1→G)
[Axiom?lin]

with Hσ = G.

The proof tree:

Σ :→ 1
[1]

Σ : H ◦−1→G
[Back?]

is aFG proof.

Base case[Axiom! lin]:]

This case is similar to the[Axiom?] base case.

Induction case[Back?lin]: The inference at the root of the proof is an instance of the[Back?lin] rule
(without loss of generalityi = 1):

D

(Σ1 : ∆′1→ A1σ), . . . ,(Σ1 : ∆′p→ Apσ),(Σ2 : ∆2→G2), . . .(Σn : ∆n→Gn)

(Σ1 : ∆1,H ◦−A1⊗ . . .⊗Ap→G1),(Σ2 : ∆2→G2), . . .(Σn : ∆n→Gn)

252 Fréd́eric Saubion and Igor Stéphan

with Hσ = G1. By induction hypothesis,∀ j, 1≤ j ≤ p, there exists aFG proof:

∇ ′j
Σ1 : ∆′j → A jσ

and∀i, 2≤ i ≤ n, there exists aFG proof:

∇ i

Σi : ∆i →Gi

Then the proof tree:
∇ ′1 ∇ ′p

Σ1 : ∆′1→ A1σ . . . Σ1 : ∆′p→ Apσ
Σ1 : ∆′1, . . . ,∆

′
p→G1

is aFG proof.

Induction cases[Axiom! lin], [Axiom?lin] and [Back! lin]: The cases[Axiom! lin], [Axiom?lin] and[Back! lin]
are similar to the[Back?lin] induction case.

Induction case[Synclin]: The inference at the root of the proof is an instance of the[Synclin] rule (without
loss of generalityi = 1):

D

(Σ1,α : C1θ, . . . ,Crθ,∆1→G1),(Σ2 : ∆2→G2), . . . ,(Σn : ∆n→Gn)

(Σ1 : ∆1→G1), . . . ,(Σn : ∆n→Gn)

with ∀c∃nc(C1⊗ . . .⊗Cr) ∈Ψ, β∈ Σ1, α 6∈ Σ1 andθ = {c← β,nc← α}. By induction hypothesis,
there exist∀i , 2≤ i ≤ n, aFG proof:

∇ i

Σi : ∆i →Gi

and aFG proof:
∇ 1

Σ1,α : C1θ, . . . ,Crθ,∆1→G1

Then the proof tree:
∇ 1

Σ1,α : C1θ, . . . ,Crθ,∆1→G1

Σ1,α : ∆1→G1

is aFG proof.

✷

The following definitions and lemmas are technical ones to establish the equivalence betweenFGlin and
FGdir systems.

Computing over TSG and PG 253

Lemma 2 (FG Restriction Lemma)
If there exists a FG proof then there exists a restricted FG proof.

Proof of the FG restriction.
By (a double) induction on the distance between the closer instance of the[Sync] rule to the root and the
root, (and the number of instances of[Sync] rule which is straight forward), we prove that if there exists a
FG derivation then there exists a restrictedFG derivation with the same first and last resolvents.

Base case:An instance of the[Sync] rule is already at the root.

Induction case: The instance of the rule at the root of the derivation is either an instance of[Back!],
[Back?] or [1] rules. The[1] is trivial. The[Back?] case is only treated, the[Back!] is similar. The
derivation is of the form (without loss of generalityi = 1):

∇
Σ : ∆1→ A1σ . . .Σ : ∆p→ Apσ

Σ : ∆→G

with

C = (H ◦−A1⊗ . . .⊗Ap) ∈ ∆,

Hσ = G,

∆\{C} = ⊎1≤k≤p∆p.

By induction hypothesis, there exists aFG derivation ∇ ′ with an instance of the[Sync] rule at
the root, the same number of instances of the[Sync] rule and the same first and last resolvents as
∇ . A restrictedFG derivation is obtained by permuting this instance of the[Sync] rule and the
instance of the[Back?] rule and inserting in the signature of every sequents of the descendants of
(Σ : ∆k→ Akσ) (∀k,1≤ k≤ p) in the derivation∇ ′ the constantα inserted by the instance of the
[Sync] rule.

✷

At this stage, we need more intermediate definitions to continue the proof.

Definition 16 (RestrictedFGlin proof)
A FGlin proof is inrestrictedform if all the instances of the[Synclin] rule are at the root of the proof.

Definition 17 (Initial instance)
The initial instance w.r.t. an instance of the[Synclin] rule is the instance of[Back?lin] or [Axiom?lin] rules
which uses for the first time one of the linear clauses introduced by the[Synclin] rule.

Definition 18 (Ordered FGlin proof)
A FGlin proof is ordered if the order on the Eigenvariables induced by the instances of the[Synclin] rules
is the same as the one induced by their initial instances.

254 Fréd́eric Saubion and Igor Stéphan

Lemma 3 (FGlin Restriction Lemma)
If there exists a FGlin proof then there exists an restricted FGlin proof.

Proof of the restriction lemma for FGlin .
By (a double) induction on the distance between the closer instance of the[Synclin] rule to the root and the
root, (and the number of instances of[Synclin] rule which is straight forward), we prove that if there exists
aFGlin derivation then there exists a restrictedFGlin derivation with the same first and last resolvents.

Base case:An instance of the[Synclin] rule is already at the root.

Induction case: The instance of the rule at the root of the derivation is either an instance of[Back! lin],
[Axiom! lin], [Back?lin] or [Axiom?lin] rules. The[Back?lin] case is only treated, there others are
similar. The derivation is of the form (without loss of generalityi = 1):

∇
(Σ1 : ∆′1→ A1σ), . . . ,(Σ1 : ∆′p→ Apσ),

(Σ2 : ∆2→G2), . . . ,(Σn : ∆n→Gn)

(Σ1 : ∆1→G1), . . . ,(Σn : ∆n→Gn)

with C = (H ◦−A1⊗ . . .⊗Ap) ∈ ∆1, Hσ = G1 and∆1 \ {C} = ⊎1≤k≤p∆′p. By induction hypoth-
esis, there exists aFGlin derivation∇ ′ with an instance of the[Synclin] rule at the root, the same
number of instances of the[Synclin] rule and the same first and last resolvents as∇ . A restricted
FGlin derivation is obtained by permuting this instance of the[Synclin] rule and the instance of the
[Back?lin] rule and inserting in the signature of every sequents of the descendants of(Σ1 : ∆′k→Akσ)
(∀k,1≤ k≤ p) in the derivation∇ ′ the constantα inserted by the instance of the[Synclin] rule.

✷

Lemma 4 (Ordered Lemma)
If there exists a FGlin proof then there exists a restricted, ordered FGlin proof.

Proof of the order lemma for FGlin .
By the restriction lemma, for anyFGlin proof there exists a restrictedFGlin proof. The existential in-
troduction induces a partial order on the Eigenvariables. The order on the initial instances respects this
partial order. Two instances of[Synclin] rule can be permuted if this permutation respects the partial order.
The order of the initial instances can be chosen as the order of introduction of the Eigenvariables.✷

Lemma 5 (FGlin ⇔ FGdir)
There exists a proof of the sequent(Σ1 : ∆1→ G1) . . .(Σn : ∆n→ Gn) in the system FGlin if and only if
there exists a proof of the sequent(Σ1 : ∆1→G1) . . .(Σn : ∆n→Gn) in the system FGdir .

Proof of FGlin => FGdir .
We prove by induction on the number of instances of the[Synclin] rule if there exists a restricted, ordered
FGlin derivation of(# :→G) then there exists aFGdir derivation of(# :→G) with the same last resolvent.

Computing over TSG and PG 255

Casel = 0: TheFGlin derivation contains no instance of[Synclin] rule so this derivation is also aFGdir

derivation.

Casel > 0: The restricted, orderedFGlin derivation is composed of two parts:

• a derivationR containing only instances of the[Back! lin], [Axiom! lin], [Back?lin] and[Axiom?lin]
rules:

∇
(Σ,α : ∆,C1θ, . . . ,Crθ→G)

• and a derivationS containing onlyl instances of[Synclin] rule with the last applied on

∀c∃nc(C1⊗ . . .⊗Cr) ∈Ψ,θ = {c← β,nc← α},β∈ Σ,α 6∈ Σ : (5)

(Σ,α : ∆,C1θ, . . . ,Crθ→G)
(Σ : ∆→G)

...
(# :→G)

By induction hypothesisR contains the initial instance corresponding to the instance of this[Synclin].
It can be an instance of the[Back?lin] or [Axiom?lin] rules. The[Back?lin] case is only treated, the
[Axiom?lin] case is similar. The derivationR is of the form (without loss of generalityi = 1):

R ′

∇
(Σ,α : ∆′1∪∆′′′1 → A1σ), . . . ,(Σ,α : ∆′p∪∆′′′p → Apσ),

(Σ,α : ∆2∪∆′′2→G2), . . . ,(Σ,α : ∆n∪∆′′n→Gn)

D ′

(Σ,α : ∆1∪ (
⋃

1≤k≤p∆′′′k)∪{H ◦−A1⊗ . . .⊗Ap}→G1),
(Σ,α : ∆2∪∆′′2→G2), . . . ,(Σ,α : ∆n∪∆′′n→Gn)

...
(Σ,α : ∆,C1θ, . . . ,Crθ→G)

with

C1θ, . . . ,Cj−1θ,Cj+1θ, . . . ,Crθ = (⊎1<k≤n∆′′k)⊎ (⊎1≤k≤p∆′′′k),

⊎1≤k≤p∆′k = ∆1,

Cjθ = H ◦−A1⊗ . . .⊗Ap,

Hσ = G1.

The derivationR is restricted and ordered thenR ′ contains only instances of the[Back ! lin],
[Axiom! lin], [Back?lin] and [Axiom?lin] rules (on non initial instances) then the derivationR ′ is
also aFGdir derivation.

256 Fréd́eric Saubion and Igor Stéphan

Let D ′′ be the same derivation asD ′ without the instancesCkθ, 1≤ k≤ r andα. Since the derivation
R is ordered the derivationD ′′ is still a FGlin derivation. So by induction hypothesis on theFGlin

derivation below formed fromS without the last inference andD ′′:

(Σ : ∆1→G1), . . . ,(Σ : ∆n→Gn)
...

(Σ : ∆→G)
...

(# :→G)

there is aFGdir derivationD ′′′:

(Σ : ∆1→G1), . . . ,(Σ : ∆n→Gn)
...

(# :→G)

So the derivation:

R ′

∇
(Σ,α : ∆′1∪∆′′′1 → A1σ), . . . ,(Σ,α : ∆′p∪∆′′′p → Apσ),

(Σ,α : ∆2∪∆′′2→G2), . . . ,(Σ,α : ∆n∪∆′′n→Gn)

D ′′′

(Σ : ∆1→G1), . . . ,(Σ : ∆n→Gn)
...

(# :→G)

with {C1θ, . . . ,Cj−1θ,Cj+1θ, . . . ,Crθ}= (⊎1<k≤n∆′′k)⊎ (⊎1≤k≤p∆′′′k) and⊎1≤k≤p∆′k = ∆1 in aFGdir

derivation.

✷

Proof of FGdir => FGlin .
We prove by induction on the number of instances of the[Sync+dir] or [Sync1dir] rules if there exists a
FGdir derivation of(# :→G) then there exists aFGlin derivation of(# :→G) with the same last resolvent.

Casel = 0: TheFGdir derivation contains no instance of[Sync+dir] nor [Sync1dir] rule so this derivation
is also aFGlin derivation.

Casel > 0: TheFGdir derivation is composed of two parts:

• a derivationR containing only instances of the[Back!dir], [Axiom!dir], [Back?dir] and[Axiom?dir]
rules;

• and a derivationD containing onlyl instances of[Sync+dir] or [Sync1dir] rule;

Computing over TSG and PG 257

and a link inference of[Sync+dir] or [Sync1dir] betweenR andD applied on∀c∃nc(C1⊗ . . .⊗Cr)∈
Ψ with θ = {c← β,nc← α}, β∈ Σ, α 6∈ Σ.

The[Sync+dir] case is only treated, the[Sync1dir] case is similar.

The derivationD is of the form (without loss of generalityi = 1):

R

∇
(Σ,α : ∆′1∪∆′′′1 → A1σ), . . . ,(Σ,α : ∆′p∪∆′′′p → Apσ),

(Σ,α : ∆2∪∆′′2→G2), . . . ,(Σ,α : ∆n∪∆′′n→Gn)

D ′

(Σ : ∆1→G1), . . . ,(Σ : ∆n→Gn)
...

(# :→G)

with {C1θ, . . . ,Cj−1θ,Cj+1θ, . . . ,Cnθ} = (⊎1<k≤n∆′′k)⊎ (⊎1≤k≤p∆′′′k), ⊎1≤k≤p∆′k = ∆1, Cjθ = H ◦−
A1⊗ . . .⊗Ap andHσ = G1. The derivationR contains only instances of[Back!dir], [Axiom!dir],
[Back?dir] and[Axiom?dir] so it is also aFGlin derivation. By induction hypothesis on theFGdir

derivationD ′ containingl−1 instances of[Sync+dir] or [Sync1dir] rules there exists aFGlin deriva-
tion:

D ′′

(Σ : ∆1→G1), . . . ,(Σ : ∆n→Gn)
...

(Σ : ∆→G)

S

{

...
(# :→G)

Let D ′′′ be the same derivation asD ′′ but for all (Σ′ : ∆′→G′) of D ′′:

• if G′ is an ancestor ofGk, 1< k≤ n, then∆′′k is added to∆′;
• if G′ is an ancestor ofG1 then(

⋃
1≤k≤p∆′′′k)∪{Cjθ} is added to∆′;

• α is added toΣ.

Then the derivation:

R

∇
(Σ,α : ∆′1∪∆′′′1 → A1σ), . . . ,(Σ,α : ∆′p∪∆′′′p → Apσ),

(Σ,α : ∆2∪∆′′2→G2), . . . ,(Σ,α : ∆n∪∆′′n→Gn)

D ′′′

(Σ,α : ∆1∪ (
⋃

1≤k≤p∆′′′k)∪{Cjθ}→G1),
(Σ,α : ∆2∪∆′′2→G2), . . . ,(Σ,α : ∆n∪∆′′n→Gn)

...
(Σ,α : ∆,C1θ, . . . ,Crθ→G)

(Σ : ∆→G)

S

{

...
(# :→G)

is aFGlin derivation. ✷

258 Fréd́eric Saubion and Igor Stéphan

We have to mention here that this system provides a goal directed approach for the recognition of an
element of a tree language. This kind of operation is not practically possible using the initial grammar
definition which gives a method to produce elements of the language but does not give any strategy to
recognize an element.
The introduction of unification and variable renaming in the systemFGdir would also ensure the gener-
ation of the element of the language. This has to be formally proved thanks to a lifting lemma (as it is
done for the SLD resolution of Prolog [15]). As a consequence, the generation is available in the Prolog
implementation of our system described in the next section.
Concerning the decidability of our approach, it is clear that problems encountered with DCG’s appear
here (mainly due to left recursions and empty transitions). Since Prolog is the underlying framework, the
problems related to its depth left first strategy also occur. Thus, termination of our method depends on
this search strategy.

5 Implementation Issue
This section briefly describes how the implementation can be achieved from the previous inference system.
At this time, a library is able, taking aTSG (resp. aPG) as input, to provide, as output, a predicate
phrase_TSG (resp.phrase_PG) which can recognize or generate a term for the defined language from
the axiom. The implementation of the method described along this paper can be divided in two parts: the
translation of the grammar into linear logic formulas (described in Section 3.1) and the implementation
of the proof systemFGdir in Prolog. The following presentation of this implementation is related to
Example 1.

5.1 Management of signature and linear context
The extension of the signature (i.e. new symbols introduced by existential quantifiers of synchro-
nization) is inspired by the management of essentially universal quantifier (quantifierpi in the body of
clauses) ofλProlog [1]: only the cardinality of this extension is needed.

The management of linear clauses is meta-programmed by a linear program continuation LPC (i.e. a
set containing the remaining linear clauses introduced by instances of[Sync+dir] or [Sync1] which have
to be used later). This technique is inspired by the management of intuitionistic implication ofλProlog
[12, 1].

5.2 Transformation Function
Back to Example 1, the transformation is illustrated here by the implementation of the clauseF0 which
corresponds to the free productionR0.

i(C, f(X, Y), SigmaIn, SigmaOut, DeltaIn, DeltaOut) :-
x(C, X, SigmaIn, SigmaInter, DeltaIn, DeltaInter),
y(C, Y, SigmaInter, SigmaOut, DeltaInter, DeltaOut).

SigmaIn, SigmaInter andSigmaOut represent the cardinality of the extension of the signature.
DeltaIn, DeltaInter andDeltaOut represent the LPC.

5.3 Implementation of the Proof System FGdir in Prolog
The inference rules[Back!] and [Axiom!] are handled by the reduction mechanism of Prolog.

Computing over TSG and PG 259

The inference rules[Back?] and [Axiom?] are implemented by a meta-programming of Prolog by the
predicatelinear over the linear program continuation.

linear(PredicatSymbol, C, Term, SigmaIn, SigmaOut,
[C_j|Cj_plus_1_Cm], C1_Cj_minus_1, DeltaOut) :-

C_j = (Head :- Body),
Head =.. [PredicatSymbol, C, Term, SigmaIn, SigmaOut,

C1_Cm_but_Cj, DeltaOut],
append(C1_Cj_minus_1, Cj_plus_1_Cm, C1_Cm_but_Cj),
call(Body).

The linear clauseC_j is meta-interpreted and then discarded from the linear program continuation:
C1_Cm_but_Cj = C1_Cj_minus_1 ⊎ Cj_plus_1_Cm (seeappend predicate).

A recursive prolog clause is added for the program continuation traversal.

The inference rules[Sync+dir] and [Sync1] are implemented in a similar way as respectively[Back!]
and[Axiom!] but with an increase of the linear program continuation by the linear clauses introduced by
the synchronization.

The prolog clause below corresponds to the implementation ofx∗∗ for the translation of the pack of
production{X⇒ s(X),Y⇒ s(s(Y))}:

(∀c∃nc((∀X(x(s(X),c)◦−x(X,nc)))⊗ (∀Y(y(s(s(Y)),c)◦−y(Y,nc))))).

x(C, s(X), SigmaIn, SigmaOut, DeltaIn, DeltaOut) :-
NC is SigmaIn + 1,
Cy = (y(C, s(s(Y)), SI, SO, DI, DO) :- y(NC, Y, SI, SO, DI, DO)),
x(NC, X, NC, SigmaOut, [Cy|DeltaIn], DeltaOut).

The linear clauseσS (Y⇒ s(s(Y)),0,1) = (∀Y(y(s(s(Y)),0)◦−y(Y,1))) is implemented byCy added to
the linear program continuation.

5.4 Reduction strategy

Due to the leftmost selection rule and the depth-first search strategy of Prolog the reduction strategy is a
left-outermost strategy as shown on the trace below for the goalphrase_TSG(f(s(z),s(s(z))),i)
(the clause(y(0, s(s(Y)), SI, SO, DI, DO) :- y(1, Y, SI, SO, DI, DO)) is de-
notedCy). The first column is the (simplified††) prolog trace, the second one contains the linear program
continuation and the third one the term already recognized.

∗∗ There is of course a symmetrical clause fory.
†† In the real system, variables are denoted as in Prolog (i.e. of the form1234). For the sake of readability, explicit names have

been introduced and meta-programming arguments have been discarded.

260 Fréd́eric Saubion and Igor Stéphan

phrase_TSG(f(s(z),s(s(z))),i) LPC
i(0,f(s(z),s(s(z)))) {} (I,0)
x(0,s(z)),y(0,s(s(z))) {} f((X, 0), (Y, 0))
x(1,z),y(0,s(s(z))) {Cy} f(s((X, 1)), (Y, 0))
y(0,s(s(z))) {Cy} f(s(z), (Y, 0))
y(1,z) {} f(s(z), s(s((Y, 1))))

{} f(s(z), s(s(z)))

5.5 Practical Use of the System
We can now illustrate the complete use of our system on PG’s Example 2. The user has only to write as
input the following prolog clause:

pg_with_trace :-
name(FileName, "pg_with_trace.pl"),
open(FileName,write,Stream),
sigma_pg(pg(f,[f,g],[

[(f(0) -> z), (f(s(n)) -> g(s(n))*f(n))],
[(g(0) -> z),(g(s(n)) -> s(g(n)))]

]),Stream),
close(Stream).

in order to provide the description of the PG thanks to the predicatesigma pg. The execution of this
clause produces filepg with trace.pl, containing a predicatephrase pg, which can be loaded and
used for grammar recognition as:

| ?- phrase_pg(s(z)*z,f,[s(0)]).
g*f
s(g)*f
s(z)*f
s(z)*z

yes
| ?-

This execution shows thats(z)∗z belongs to the PG and how it can be generated from the PG.
The source code of this implementation is available at:

http://www.info.univ-angers.fr/pub/stephan/Research/Download.html.

6 Conclusion
In this paper, we describe an implementation scheme for particular types of tree language including spe-
cific control features. The main idea is to provide an uniform framework in order to compute over tree
grammars. As it has been done for word grammars with DCG [2], we propose a transformation method
that allows us to get a set of Prolog Horn clauses from a grammatical definition of a tree language. This
method consists in translating grammar derivation into proof search using a sequent calculus proof system

http://www.info.univ-angers.fr/pub/stephan/Research/Download.html

Computing over TSG and PG 261

based on linear logic. By successive refinements, we get a goal directed procedure implemented in Prolog.
Since such tree languages appear as powerful tools for the schematization of sets of terms to represent
solutions of symbolic computation problems, it seemed necessary to define a method to use these repre-
sentations. Moreover, this approach allows us to embed various formalism into a unique framework, were
computations can include Regular Languages,TSGand PG.

Acknowledgements
We would like to thank Miki Hermann, Śebastien Limet and Piere Réty for fruitful discussions on this
work.

References
[1] P. Brisset.Compilation deλProlog. PhD thesis, Th̀ese de doctorat de l’université de Rennes, 1992.

[2] J. Cohen and T.J. Hickey. Parsing and compiling using prolog.ACM Transactions on Programming
Languages and Systems, 9(2):125–163, 1987.

[3] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi.Tree Automata Tech-
niques and Applications. 1997.

[4] N. Dershowitz and J.P. Jouannaud.Rewrite Systems, volume B, chapter 6, pages 243–309. J. Van
Leeuwen, 1990.

[5] F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge University Press, 1999.

[6] F. Gecseg and M. Steinby.Handbook of Formal Languages, volume 3, chapter Tree Languages,
pages 1–68. Springer-Verlag, 1997.

[7] J.-Y. Girard. Linear logic, its syntax and semantics. In Regnier Girard, Lafont, editor,Advances in
Linear Logic, number 222 in London Mathematical Society Lecture Notes Series, pages 355–419.
Cambridge University Press, 1993.

[8] Jean-Yves Girard. Linear Logic.Theoretical Computer Science, (50):1–102, 1987.

[9] V. Gouranton, P. Ŕety, and H. Seidl. Synchronized Tree Languages Revisited and New Applications.
In Proceedings of the 6th Conference on Foundations of Science and Computation Structures, LNCS,
Genova (Italy), 2001. Springer Verlag.

[10] P. De Groote and G. Perrier. A Note on Kobayashi’s and Yonezawa’s ”Asynchronous Communica-
tion Model Based on Linear Logic”.Formal Aspects of Computing, 10, 1998.

[11] M. Hermann and R. Galbavy. Unification of infinite sets of terms schematized by primal grammars.
Theoretical Computer Science, 176, 1997.

[12] J. S. Hodas and D. Miller. Logic Programming in a Fragment of Intuitionistic Linear Logic. In
Proceedings of LICS’91, pages 32–42, 1991.

262 Fréd́eric Saubion and Igor Stéphan

[13] S. Limet and P. Ŕety. E-Unification by Means of Tree Tuple Synchronized Grammars.Discrete
Mathematics and Theoretical Computer Science, 1:69–98, 1997.

[14] S. Limet and F. Saubion. Primal Grammars forR-unification. InPLILP/ALP’98, number 1490 in
LNCS. Springer-Verlag, 1998.

[15] J.W. Lloyd. Foundations of Logic Programming. Symbolic Computation series. Springer Verlag,
1987.

[16] Dale Miller. A Multiple-Conclusion Meta-Logic. InLICS 1994, pages 272–281, 1994.

[17] G. Plotkin. Building-in equational theories.Machine Intelligence, 7:73–90, 1972.

[18] F. Saubion and I. Stephan. On Implementation of Tree Synchronized Languages. InProceedings of
10th Conference on Rewriting Techniques and Applications, LNCS. Springer Verlag, 1999.

[19] I. Stéphan.Nouvelles fondations pour la programmation en logique disjonctive. PhD thesis, Th̀ese
de doctorat de l’université de Rennes, 1995.

	Introduction
	Preliminaries
	Tree Synchronized Grammars
	Primal Grammars
	Linear Logic and Sequent Calculus

	From TSG and PG Computation to Proof Search
	Transformation of TSG into Linear Logic Formulas
	Transformation of PG into Linear Logic Formulas
	The Proof System FG
	Correctness and Completeness of FG
	Correctness and Completeness of FG w.r.t. TSG
	Correctness and Completeness of FG w.r.t. PG
	Application

	From Linear Logic to Prolog
	Implementation Issue
	Management of signature and linear context
	Transformation Function
	Implementation of the Proof System FGdir in Prolog
	Reduction strategy
	Practical Use of the System

	Conclusion

