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Consider a countable alphabet A. A multi-modular hidden pattern is an r-tuple (w1, . . . , wr), where each wi is a

word over A called a module. The hidden pattern is said to occur in a text t when the later admits the decomposition

t = v0w1v1 · · · vr−1wrvr , for arbitrary words vi over A. Flajolet, Szpankowski and Vallée (2006) proved via the

method of moments that the number of matches (or occurrences) with a multi-modular hidden pattern in a random text

X1 · · ·Xn is asymptotically Normal, when (Xn)n≥1 are independent and identically distributed A-valued random

variables. Bourdon and Vallée (2002) had conjectured however that asymptotic Normality holds more generally

when (Xn)n≥1 is produced by an expansive dynamical source. Whereas memoryless and Markovian sequences are

instances of dynamical sources with finite memory length, general dynamical sources may be non-Markovian i.e.

convey an infinite memory length. The technical difficulty to count hidden patterns under sources with memory is

the context-free nature of these patterns as well as the lack of logarithm- and exponential-type transformations to

rewrite the product of non-commuting transfer operators. In this paper, we address a case study in which we have

successfully overpassed the aforementioned difficulties and which may illuminate how to address more general cases

via auto-correlation operators. Our main result shows that the number of matches with a bi-modular pattern (w1, w2)

normalized by the number of matches with the pattern w1, where w1 and w2 are different alphabet characters, is

indeed asymptotically Normal when (Xn)n≥1 is produced by a holomorphic probabilistic dynamical source.
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1 Introduction

The number of occurrences of a word or a set of them in a generic text is an important parameter to

understand the complexity of pattern searching algorithms [14]. The statistics of patterns in random
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text or sequences also lies at the core of various applied fields, ranging from molecular biology [18],

to speech recognition [27] and text mining, among others. Memoryless, Markovian and more recently

hidden Markov models have been proposed in the literature to model from genomic sequences to spoken

utterances [28]. On the other hand, the patterns considered in the literature have ranged from single

words to sets of them described by regular expressions [29] and even certain non-regular languages such

as palindromes. Underlying the assessment of patterns in random sequences is the guiding principle

that exceptional patterns in a text (i.e. patterns observed much more or less frequently than expected by

chance alone) carry useful information, for instance, to identify instructions in a genome that regulate the

translation of DNA into proteins [25, 26], or to set up thresholds to warn of potential security breaks in

secured databases [30, 31].

In what follows, A is a given and denumerable (i.e. finite or countable) set. We call A the alphabet and

A∗ denotes the set of all possible words obtained by concatenating a finite number of alphabet characters.

For u, v ∈ A∗, uv denotes the word in A∗ obtained by concatenating v to the right of u.

The string matching problem is defined by the exact matching of a word in a text (i.e. without gaps

between consecutive characters of the word). More precisely, a word w is said to occur in a text t when

t = v0wv1 for arbitrary words v0, v1 in A∗. Similarly, the approximate string matching problem is defined

by the exact matching of a set of words regarded as close variants of w under a certain metric. (Both of

these problems fall in the more general setting of matching a regular pattern i.e. a subset of words L in A∗

described by a regular expression.) If gaps are allowed between consecutive letters of w, we are led to the

so called hidden pattern matching problem. More generally, a multi-modular hidden pattern is an r-tuple

(w1, . . . , wr), with wi is a word in A∗ called a module. The hidden pattern (w1, w2, . . . , wr) is said to

occur in t when the later admits the decomposition t = v0w1v1w2v2 . . . vt−1wtvt, where the vi’s are

arbitrary words in A∗ called gaps. Variations of this problem allow the modules to be regular languages—

the so called generalized patterns—and may also impose restrictions on the gap lengths. Note that hidden

patterns with unbounded gaps are non-regular types of patterns.

In [9, 10, 11], Guibas and Odlyzko highlighted the role of autocorrelation of a word and correlation

between pairs of words for the string matching problem in the context of memoryless sources. In [17],

Régnier and Szpankowsky proved that the number of occurrences of a word in a text admits a Gaussian

limit law when the text is more generally produced by a Markovian source. Follow up work in [19],

extended this result to the approximate string matching problem but only for memoryless sources. The

Gaussian limit law for the hidden pattern matching problem was obtained by the authors of [7] again in

the memoryless setting.

Memoryless and Markovian sources are instances of more general models called probabilistic dynam-

ical sources, introduced by Vallée in the context of information theory [23]. In [2], Bourdon and Vallée

proved that the Gaussian limit law holds for regular pattern matching problems. In [1], they obtained the

mean and the variance of the number of occurrences of generalized patterns under probabilistic dynamical

sources—encompassing all the aforementioned pattern matching problems. The asymptotic Normality of

hidden patterns for sources with memory was conjectured by the authors of [1], however, it has remained

an open problem due to various technical difficulties. On one hand, hidden patterns with unbounded gaps

are context-free but non-regular, which rules out Markovian embeddings to tackle the problem [32]. On

the other hand, the approach used in [7] and based on the method of moments to settle the Gaussian limit

law for memoryless sources appears rather intractable for sources with memory—even Markovian ones.

Motivated by the above observations we tackle the simplest possible case study associated with Bourdon

and Vallée’s ten-year old conjecture, namely the number of matches with a bi-modular motif of the form
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(a, b), with a, b ∈ A different alphabet characters, renormalized by the number of matches with a, in a

long random text produced by a holomorphic probabilistic dynamical source. The interest of this case

study lies in the methodology of the solution—which is non-trivial—and may illuminate how to address

more general cases with auto-correlation. In fact, the main contribution of the present paper is the use

of analytic and probabilistic ideas to extrapolate spectral information about a transfer operator K(z, u)
defined for all (z, u) in a neighborhood of (0, 1) in the complex plane to identify the dominant singularity

of a generating function derived from the transfer operators

1∏

i=m

K(z, ui/m), with m ≥ 1.

The chief difficulty here is the non-commutativity of the involved operators to rewrite the above product

in terms of logarithm- and exponential-type transformations. We remark that the indices in the above

product range from m down to 1 due to the identity in equation (9). Since transfer operators much like

transfer matrices [6] do not commute in general, the indices cannot be arranged in an arbitrary order.

Plan of the paper. In § 2 we introduce some notation, the problem and describe our main result. In

§ 3–3.2, we review the notions of probabilistic dynamical source and generating operators associated

with languages, as well as results from the spectral theory of linear operators relevant for the asymptotic

analysis of generating functions derived from transfer operators. The general scheme of the proof with all

the important results concerning the operators is addressed in § 4. The complete proof is given in Annex

A and B.

2 Notation and problem

In the sequel, S denotes a probabilistic source over the alphabet A that generates an infinite sequence

(Xn)n≥1 of a A-valued random variables (see § 3 for the precise meaning of this). In addition, a, b ∈ A
are given and different alphabet characters, and the ordered-pair (a, b) is a bi-modular hidden pattern. For

ω ∈ A⋆, we associate the costs

C(ω) = number of occurrences of (a, b) in ω; (1)

|ω|a = number of occurrences of (a) in ω; (2)

Ω(ω) = C(ω)/|ω|a. (3)

All throughout the paper, Ω is called the “normalized” number of occurrences of (a, b). Above it is

understood that Ω(ω) = 0 when |ω|a = 0 and hence C(ω) = 0. Furthermore, the restriction of C and Ω
to An are from now on denoted Cn and Ωn, respectively.

It follows from the analysis in [7] that Cn admits a Gaussian limit law when S is a memoryless source.

We did not succeed in proving the same result for probabilistic dynamical sources, however, as stated

next, we can show that Ωn is asymptotically Gaussian when the source is holomorphic (see Annex A for

the definition). Our result involves the dominant eigenvalue λ(z, u) of some operator K(z, u) defined in

equation (15). Let A(z, u) be the bivariate function

A(z, u) = exp

(∫ 1

0

log λ(z, ut) dt

)
,
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and consider the function σ(u) such that σ(1) = 1 and A(σ(u), u) = 1, for all u in a neighborhood of

u = 1. We now state our main result.

Theorem 2.1 Let Ωn be the “normalized” number of occurrences of the hidden pattern (a, b) in a ran-

dom text of length n produced by an holomorphic dynamical source. The random variable Ωn follows

asymptotically a Gaussian limit law. More precisely, for each x ∈ R, we have that

lim
n→∞

P

[
Ωn − E[Ωn]√

V[Ωn]
≤ x

]
=

1√
2π

∫ x

−∞

e−t2/2 dt,

where the mean and variance of Ωn satisfy

E[Ωn] ∼ −σ′(1) · n;
V[Ωn] ∼

(
σ′(1)2 − σ′(1)− σ′′(1)

)
· n.

As we mentioned in § 1, the chief interest in the above result is in the method of proof that we hope

to adjust for modules with auto-correlation in a follow up paper. Theorem 2.1 is obtained via an analytic

combinatorics approach [6]. A key ingredient is the bivariate generating function H(z, u) relative to the

cost Ω—see equation (11), which we use to prove the pointwise convergence of the Laplace transforms

of the renormalized random variable Ω⋆
n := (Ωn − E[Ωn])/

√
V[Ωn] to that of the Gaussian law.

3 Probabilistic dynamical sources.

In what remains of this manuscript, I denotes the open interval (0, 1). A probabilistic dynamical source

S over the alphabet A is defined by the following elements:

(a) a probability density function f over I;

(b) a topological partition of I into open intervals (Iα)α∈A; in particular, we may define a transforma-

tion σ : ∪α∈AIα → A to satisfy that σ(x) = α if and only if x ∈ Iα; and

(c) a transformation T : I → I such that, for each α ∈ A, the restriction T : Iα → I is bijective and

twice continuously differentiable.

A dynamical source generates a random text in the following way: first, a random variable Y with

probability density function f is drawn and the characters emitted by the source are Xi = σ(T i−1(Y )),
for each i ≥ 1. A probabilistic dynamical source therefore induces a probability measure over A∞ i.e.

the space of infinite sequences of elements in A. This measure corresponds to the probability distribution

of the random sequence X = (Xi)i≥1.

Probabilistic analyses associated with dynamical sources in the context of analysis of algorithms have

been carried via Ruelle operators, as seen e.g. in [24, 23, 2, 4]. In our context, for each α ∈ A, define

hα : I → Iα to be the inverse function of the restriction of T to the interval Iα. In particular:

hα(T (y)) = y, for all y ∈ Iα; (4)

T (hα(y)) = y, for all y ∈ I. (5)
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More generally, for each ω ∈ A∗, define:

hω := (hω1
◦ . . . ◦ hωℓ

), (6)

where ℓ denotes the length of ω i.e. ℓ = |ω|. Due the identities in equations (4)-(5), a straightforward

inductive argument shows that y ∈ hω(I) if and only if σ(T k−1(y)) = ωk, for all 1 ≤ k ≤ |ω|. As a

result, the probability of the event “ω is a prefix of the infinite sequence X” may be computed as

pω =

∣∣∣∣∣

∫

hω(I)

f(y) dy

∣∣∣∣∣ =
∫ 1

0

(Gωf)(s) ds, (7)

where Gω is the linear operator defined as

(Gωf)(s) := (f ◦ hω)(s) · |h′ω(s)|. (8)

Due to the Chain rule, if u, v ∈ A∗ then

Guv = (Gv ◦Gu). (9)

This identity is what permits the use of the symbolic method [6] to specify the generating functions of

languages associated with regular expressions in the setting of probabilistic dynamical sources. Note

how the concatenation of words entails the composition of the associated transfer operators but in reverse

order. This order is important because the operators do not generally commute, except for memoryless

dynamical sources.

3.1 Generating operators.

Consider a language L ⊂ A∗ and cost function c : L → R. The bivariate generating function associated

with L and c is defined as

L(z, u) :=
∑

ω∈L

pω z
|ω| uc(ω).

In the context of symbolic combinatorics, the variable z above is said to mark lengths and u the costs of

words in L. Due to the identity in equation (7), note that

L(z, u) =
∫ 1

0

(
L(z, u)f

)
(s) ds,

where

L(z, u) :=
∑

ω∈L

z|ω| uc(ω)
Gω

is the so called generating or also transfer operator associated with the language L and cost c.
Consider languages L1,L2 ⊂ A∗ and cost functions ci : Li → R for i = 1, 2.

If L1 and L2 are disjoint then the generating operator associated with (L1 ∪ L2) is easily seen to be

L1(z, u) + L2(z, u). Here, the cost function implicitly used over the union of the disjoint languages is

c(ω) = ci(ω) when ω ∈ Li. On the other hand, regardless if the languages are disjoint or not, but under

the assumption that u1v1 = u2v2, with u1, u2 ∈ L1 and v1, v2 ∈ L2, implies that u1 = u2 and v1 = v2,
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the generating operator associated with the product language (L1 × L2) i.e. the set of all words of the

form uv, with u ∈ L1 and v ∈ L2, is L2(z, u) ◦ L1(z, u) by virtue of the linearity of the operators Gω ,

for each ω ∈ A∗, and equation (9). In this case, the cost function defined implicitly over the product is

c(uv) = c1(u) + c2(v) when u ∈ L1 and v ∈ L2.

Consider the language L∗ composed by the empty word—from now on denoted as ǫ—as well as all

words formed by concatenating a finite number of words in L i.e.

L∗ := ∪n≥0Ln,

with L0 := {ǫ}. It is the disjoint union of various Cartesian products so, under the assumption that

each non-empty word ω ∈ L∗ decomposes uniquely in the form ω = ω1 · · ·ωn for certain n ≥ 1 and

ω1, . . . , ωn ∈ L; in particular, ǫ /∈ L, the associated generating operator is the so-called quasi-inverse of

L(z, u), namely

(I− L(z, u))−1 :=
∑

n≥0

L
n(z, u).

Above, I denotes the identity operator i.e. I(f) = f , for all function f . Furthermore, if c denotes

as before the primitive cost over L then the cost function used over L∗ is defined as c∗(ǫ) = 0 and

c∗(ω1 · · ·ωn) = c(ω1) + . . .+ c(ωn), for each n ≥ 1 and ω1, . . . , ωn ∈ L.

3.2 Spectral decompositions.

Although generating functions derived from transfer operators are not typically very explicit, spectral

properties of the later may lead to asymptotic expressions for the coefficients of the former, in the same

lines that asymptotic formulae for paths in graphs [6] and sojourn-times in Markov chains are derived

from spectral properties (usually implied by the Perron-Froebenius theorem [16, 5]) of the associated

adjacency and probability transition matrices, respectively.

To convey the main idea consider a linear operator L. Its spectral properties depend on the Banach

space of functions on which it may act, and a first technical difficulty is to identify such a space on which

a strong quasi-compacity property holds. Precisely, the operator L is expected to have a unique eigenvalue

of maximum modulus— called dominant eigenvalue —isolated from the remainder of the spectrum by a

spectral gap. If λ denotes such a dominant eigenvalue, the operator admits a spectral decomposition of

the form L = λP +R, where P is a projector over the dominant eigenspace, (P ◦R) = (R ◦P) = 0,

and the spectral radius ρ of R is strictly less than |λ|. Since P and R commute, the iterates of L satisfy

L
n = λn P + R

n for each n ≥ 1. In particular, summing over all possible n leads to the following

fundamental relation for the quasi-inverse of the operator zL,

(I− z L)−1 =
P

1− zλ
+R ◦ (I− zR)−1.

The spectral properties of R imply that the quasi-inverse operator (I − zR)−1 may be represented as

the series
∑

n≥0 z
n
R

n, which is absolutely convergent in the operator-norm for |z| < 1/ρ. Because of

this, we say that the operator-valued transformation z → (I − zR)−1 is analytic for |z| < 1/ρ. The

quasi-inverse (I − z L)−1 therefore admits a simple pole in z = 1/λ in the centered open disc of radius

1/ρ. In particular, if f is in the Banach space where L acts on and Pf 6= 0 then, for each 0 < ǫ < (λ−ρ),
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it applies that

[zn] (I− z L)−1f = λn · (Pf) + (Rnf)

= λn · (Pf) +O((ρ+ ǫ)n) = λn · (Pf) · (1 + o(1)).

4 Scheme of proof of the main theorem

In what follows, for each α ∈ A, |ω|α is the number of times that α occurs as a character in ω. Fur-

thermore, for each m,n ≥ 0, let Hn,m denote the language of all words ω ∈ A∗ such that |ω| = n and

|ω|a = m. Define

Hm :=
⋃

n≥0

Hm,n,

and consider the generating functions

Hm(z, u) :=
∑

ω∈Hm

pω z
|ω| uΩ(ω); (10)

H(z, u) :=
∑
m≥0

Hm(z, u) =
∑

ω∈A∗

pω z
|ω| uΩ(ω). (11)

Unless otherwise stated, Ω is the cost function associated with all the involved generating functions and

operators ahead.

To state our first result, consider the sub-alphabets

B := A \ {a};
C := A \ {a, b}.

Theorem 4.1 (Bivariate generating function.)

Hm(z, u) =

∫ 1

0

(
Hm(z, u)f

)
(s) ds, (12)

where

H0(z, u) := (I− zGB)
−1; (13)

Hm(z, u) :=

{
1∏

i=m

K(z, ui/m)

}
◦ (I− zGB)

−1, for all m ≥ 1; (14)

and

K(z, u) := z
(
I− z (GC + uGb)

)−1

◦Ga. (15)

Proof: When m = 0, Hm = B∗ and the result follows from the fact that the transfer operator associated

with the language B∗ is (I− zGB)
−1. On the other hand, if m ≥ 1 then

Hm = B∗ × ({a} × B∗)m. (16)
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Call each word in {a}×B∗ a module; in particular, words in Hm consist of m-modules. Let K0(z, u) be

the transfer operator associated with a single module, where z marks the length of a module as usual, but

u marks now the number of matches with “b” i.e.

K0(z, u) =
∑

ω∈{a}×B∗

z|ω| u|ω|b Gω.

Since B = {b} ∪ C, we obtain:

K0(z, u) =
∑

n≥0

zn(GC + uGb)
n ◦ (zGa) = z

(
I− z (GC + uGb)

)−1

◦Ga = K(z, u).

Next note that each match with the character b in the first module of a word in Hm contributes to a

single match with the pattern (a, b). However, each b in the second module adds two new matches with

(a, b). In general, each b in the i-th module adds i new matches with the pattern (a, b). The transfer

operator K(z, ui/m) therefore keeps track of the length of the i-th module and the amount each b in that

module contributes to a match with (a, b). The result now follows from the symbolic specification in

equation (16). ✷

Our next goal is identify the dominant singularities of the generating functions Hm(z, u) in Theo-

rem 4.1. We will see that these are determined by the singularities of the generating operators in equations

(13)-(14), which we identify via a spectral analysis. Without further hypotheses on the dynamical source,

it is difficult to determine the spectral properties of these operators. Following Vallée [23], we consider

holomorphic dynamical sources whose precise definition is given in Annex A (see Definition 6.1). When

acting on a convenient Banach space of holomorphic functions, the operators GB, GC , Ga and Gb are

compact and admit a unique positive eigenvalue of maximum modulus. In particular, when u > 0, the

same is true for the operator (GC + uGb), whose unique eigenvalue of maximum modulus is from now

on denoted as µ(u); in particular, µ(1) < 1 is the unique dominant eigenvalue of GB.

By perturbation theory [13], there exist a complex neighborhood U1 of the positive real axis such that,

for all u ∈ U1, (GC + uGb) admits also a unique eigenvalue of maximum modulus, denoted as µ(u)
as well, that is isolated from the remainder of the spectrum by a spectral gap. This entails a spectral

decomposition of the form:

(GC + uGb)
n = µ(u)n Pu +R

n
u,

(
I− z (GC − uGb)

)−1
=

Pu

1− zµ(u)
+Ru ◦ (I− zRu)

−1,

for all u ∈ U1 and n ≥ 1, where Pu is the projection over the eigenspace relative to µ(u), (Pu ◦Ru) =
(Ru ◦ Pu) = 0, and the spectral radius of Ru, denoted as ρ(u), is strictly less than |µ(u)|; in particular,

‖Rn
u‖∞ = O((ρ(u) + ǫ)n), for each ǫ > 0. We emphasize that Pu and Ru are compact, µ(u) depends

analytically on u, and ρ(u) is a continuous function of u.

Fix u ∈ U1. Due to the above observations, the operator K(z, u) defined in equation (15) can be

alternatively rewritten as

K(z, u) =
z (Pu ◦Ga)

1− z µ(u)
+ zRu(I− zRu)

−1 ◦Ga.
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Since the quasi-inverse (I − zRu)
−1 is analytic for z inside the centered disc of radius 1/ρ(u), the

operator K(z, u)—which in principle is defined only for |z| < 1/|µ(u)|—admits an analytic extension to

the disk |z| < 1/ρ(u) punctured at the simple pole z = 1/µ(u).

Proposition 4.2 (Dominant singularities of Hm(z, u).) There exists a complex neighborhood U2 ⊂ U1 of

1 such that supu∈U2
µ(u) = µ̄ < 1 and, for each m ≥ 0 and u ∈ U2, Hm(z, u) is analytic for |z| < 1/µ̄.

Our next goal is to make this generating function more explicit so as to have a better handle of the

generating function H(z, u) near its singularities (see equation (11)). This is key if one aims to settle the

asymptotic normality of the random variable Ωn via the identity

E
(
uΩn

)
= [zn]H(z, u).

As previously, K(z, u) is compact and admits for real-pairs (z, u), with u ∈ U2 and |z| < 1/µ̄, a

unique positive eigenvalue of maximum modulus which we denote as λ(z, u). Furthermore, again due to

perturbation theory, K(z, u) has in fact a unique dominant eigenvalue—also to be denoted as λ(z, u)—
isolated from the rest of the spectrum for all (z, u) in a certain complex open neighborhood Z3 × U3 of

(0, 1/µ̄)× {1}, with U3 ⊂ U2. Hence, there are operators P(z, u) and R(z, u) such that

K(z, u) = λ(z, u) · [P(z, u) +R(z, u)] ,

for all (z, u) in the open neighborhood Z3 × U3. Above, P(z, u) is the projection over the eigenspace

relative to λ(z, u), P(z, u) ◦ R(z, u) = R(z, u) ◦ P(z, u) = 0, and the spectral radius of R(z, u), to

be denoted as ρ(z, u), is strictly less than 1. Note that all the operators or spectral objects are analytic in

(z, u) due to the analyticity of K(z, u).
We may first use Lemma 7.2, Lemma 7.1 and Proposition 6.6 (see annexes), to represent Hm more

explicitly as follows:

1∏

j=m

K(z, uj/m)[f ] =

m∏

j=1

λ(z, uj/m)

1∏

j=m

P(z, uj/m)[f ] (1 +O(1/m)) ,

= A(z, u)m(B(z, u)[f ] +Cm(z, u)[f ]), (17)

with ‖Cm(z, u)‖ = O(1/m), B(z, u) a bounded linear operator and

A(z, u) = exp

(∫ 1

0

log λ(z, ut) dt

)
. (18)

(The function A(z, u) is obtained from the Euler-Maclaurin formula when applied to
∏m

j=1 λ(z, u
j/m).)

Back to the definition of Hm(z, u), we can now conclude with the Corollary 6.7 (see Annex A) that

says the following: on a convenient complex neighborhood W1 of u = 1 and 0 < z < 1/µ̄, there exist

analytic functions A, B and Cm such that

Hm(z, u) = A(z, u)m[B(z, u) + Cm(z, u)], with ‖Cm‖ = O(1/m),

with a uniform constant in the O-term. Summing over all the possible m’s gives

H(z, u) =
B(z, u)

1−A(z, u)
+O

(
log

1

1− |A(z, u)|

)
. (19)
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The final step in the analysis requires extracting the coefficients of this generating function.

It is known that A(1, 1) = λ(1, 1) = 1 and the implicit function theorem implies the existence of an

analytic function σ, defined on a convenient complex-neighborhood of u = 1, such that A(σ(u), u) = 1.

Furthermore, when u is real, σ(u) is the only singularity of both parts of relation (19) inside the disk of

convergence |z| < σ(u). Note that for complex u, it is difficult if not impossible to find such disk due to

the lack of information on the generating function Cm(z, u).
The coefficient extraction of the meromorphic part on the right hand-side of equation (19) is very

classical and we obtain

[zn]
B(z, u)

1−A(z, u)
=

B(σ(u), u)

A′
z(σ(u), u)

σ(u)−(n+1) (1 +O(ρ̄n)) ,

with ρ̄ < 1 and the O-term uniform in u. On the other hand, the coefficient extraction of the second term

can be performed using a saddle point strategy. Up to technical details described in Annex A, we obtain

[zn]
∑

m≥0

A(z, u)mCm(z, u) = [zn]
∑

m≥φn

A(z, u)mCm(z, u) +O(ρ̃n),

= O(σ(u)−1n− 1
2
+ξ log n),

where ρ̃ < 1.

Combining both extractions, we finally obtain that

E[uΩn ] = α(u)β(u)n (1 +O(ǫn)),

uniformly for u real in a neighborhood of 1, with ǫn → 0 as n → ∞. This quasi-power property entails

the convergence of the Laplace transforms of (Ωn − β̄′(0) ·n)/(β̄′′(0) ·n)1/2 to the Laplace transform of

a Gaussian law, where β̄(s) := log β(es), as long as the variability condition β̄′′(0) 6= 0 holds. We prove

the later in Annex A.

5 Conclusions and open problems

For the first time, we prove that the number of occurrences of a bi-modular pattern (after a normalization)

in a random text produced by a correlated source admits a Gaussian limit law. Of course, the strong

restriction on the structure of the pattern (that avoids correlations and auto-correlations) has simplified a

lot the analysis. Unfortunately, due to the lack of information on the bivariate generating function H(z, u)
associated with the cost Ω when u is complex (see equation (11)), we did not succeed in applying results

such as Hwang’s quasi-power theorem [12] to obtain information on the speed of convergence to the

Gaussian distribution. It may still be possible to fill this gap using a Berry-Esseen like inequality for

Laplace transforms [22].

On the other hand, the normalization of the cost function C(ω) by the number of occurrences of the

character a in a word ω (see equations (1)-(3)) has greatly simplified our analysis. Indeed, the expression

in equation (17) involves operators of the form K(z, us) which are amenable to a spectral perturbation

analysis because this normalization keeps the term us in a bounded neighborhood of 1. A more direct

analysis of the cost C(ω) may be also possible when normalizing by |ω| instead of |ω|a. However, this
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creates technical difficulties we have not been able to fully address as the generating function A(z, u) in

equation (18) would now also depend on the ratio |ω|a/|ω| = m/n and would have to be replaced by

Am,n(z, u) = exp

(
n

∫ m
n

0

log λ(z, ut) dt

)
.

The extraction of coefficients is far more intricate in this case. Similar difficulties arise when attempting

to analyze joint distributions via the trivariate generating function:

∑

ω∈A∗

pω z
|ω| uC(ω) v|ω|a ,

associated with the costs C(ω) and |ω|a.

To conclude, we note that extensions of Theorem 2.1 are foreseeable to all bi-modular hidden patterns

in which the modules cannot overlap (neither with themselves nor with each other). Due to the proof of

Theorem 4.1, any such case should be reduced in principle to identifying the asymptotically dominant

singularity of an operator of the form
∏1

i=m K(z, ui/m), with m ≥ 1, which we now know how. We

hope however that the techniques used to solve this “toy–problem” may be further developed to deal with

auto-correlated patterns in the context of correlated sources.
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6 Annex A

6.1 Holomorphic dynamical sources

In what follows, we use the notation of § 3. For the sake of simplicity, we consider complete (holomorphic)

dynamical sources as defined by Vallée in [23]. In this context, some spectral properties of operators are

almost immediate (due to compacity and nuclearity) whereas the same properties have to be proved in

more general settings, such as the one considered in [3]. The gap is essentially technical rather than

difficult and hence we focus on a general strategy for studying occurrences of modular patterns under

holomorphic dynamical sources.

Definition 6.1 Let S = (I, T,A, (Iα)α∈A, σ, f) be a probabilistic dynamical source whose associated

set of inverse branches is {hα, α ∈ A}. S is said holomorphic if there exists an open complex neighbor-

hood V of [0, 1] on which:

1. the inverse branches hα extend to holomorphic functions on V;

2. for each α ∈ A, hα maps V strictly inside V i.e. hα(V) ⊂ V;

3. for each α ∈ A, there exists 0 < δα < 1 such that |h′α| can be extended to an holomorphic function

h̃α over all of V that satisfies 0 < |h̃α(z)| < δα, for all z ∈ V; and

4. the series
∑

α∈A δα converges.

We note that V above denotes the adherence (also called closure) of V in the complex plane. In the sequel,

we will always suppose that S is a holomorphic probabilistic dynamical source.
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6.2 Functional space and first spectral properties

All the generating functions in this paper involve operators whose analyticity is closely related to their

spectrum. However, the spectrum of an operator depends on the functional space on which it acts. A

convenient space for holomorphic dynamical sources is the space A∞(V) of all functions that are analytic

on V and continuous on V . Endowed with the sup-norm ‖ · ‖, this is a Banach space.

For each word ω ∈ A⋆, the component operator Gω defined by Gω[f ] = h̃ω · (f ◦ hω) is also called

a composition operator. Such operators are widely studied by the authors of [21, 20], who prove the

following:

Proposition 6.2 For each ω ∈ A⋆, the operator Gω : A∞(V) → A∞(V) is well-defined, compact, and

nuclear of order 0.

The notion of nuclearity was introduced by Grothendieck [8]. A nuclear operator “looks like” a matrix in

the sense that one can e.g. define its trace and an analogue of the characteristic polynomial, also known

as the Fredholm determinant. An immediate consequence of Proposition 6.2 is the following corollary.

Corollary 6.3

(i) For all complex u, the operator (GC + uGb) is compact and nuclear of order 0.

(ii) If µ(u) denotes one of the dominant eigenvalues of (GC + uGb) then the operator K(z, u) is

analytic in (z, u) for |z| < (1/|µ(u)|). In addition, K(z, u) is compact and nuclear of order 0.

Operators with a unique dominant eigenvalue isolated from the remainder of the spectrum by a spectral

gap are fundamental in all dynamical analyses. The compactness property ensures the existence of a

spectral gap. The uniqueness of the dominant eigenvalue is then obtained for z > 0 and u > 0.

Proposition 6.4

(i) For all u > 0, the operator (GC+uGb) admits a unique dominant eigenvalue µ(u), which happens

to be simple and strictly positive.

(ii) For u > 0 and 0 < z < (1/µ(u)), the operator K(z, u) admits a unique dominant eigenvalue

λ(z, u), which happens to be also simple and strictly positive. The associated eigenfunction, ψz,u,

is strictly positive over (V ∩ R).

(iii) There exists a complex neighborhood W0 of {(z, u)| u > 0, 0 < z < (1/µ(u))} such that the

operator (GC + uGb) (resp. K(z, u)) admits a unique dominant eigenvalue µ(u) (resp. λ(z, u)),
which happens to be simple and isolated from the remainder of the spectrum by a spectral gap.

Furthermore, the eigenfunction ψz,u relative to λ(z, u) is non-zero over (V ∩ R).

Proof: (Sketch.) The proof is the same as the one of Proposition 2 in [23]. In a first step, the result is

obtained for the real Banach space A∞,R(V) of functions in A∞(V) that are real-valued over (V∩R). The

subspace of A∞,R(V) of functions that are non-negative over (V ∩ R) is a proper and reproducing cone.

Now, the operators under consideration in the proposition are u0-positive for the constant function u0 = 1
with respect to the order induced by the cone. The compactness and a Perron-Frobenius type Theorem

due to Krasnoselsky [15] are the main ingredients to conclude the first part of the proof. The result is
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then transfered to the complex Banach space A∞(V) by using the nuclearity property and the trace of the

operators. The extension to the complex neighborhood is just a consequence of the perturbation theory

due to Kato [13]. ✷

Proposition 6.4 describes the operator K(z, u) when z and u are close to the real axis. In § 6.3, we

show how this proposition and the spectral decomposition lead to alternative expressions of the generating

functions Hm(z, u) and H(z, u) for z and u near the real axis. But, for a complete analysis, additional

information when z is close to or far from the real axis is also needed. This is the aim of the next

proposition.

Proposition 6.5 Consider z0 > 0 and u0 > 0 in W0 (see part (iii) in Proposition 6.4).

(i) The functions z → λ(z, u0) and u→ λ(z0, u) are strictly increasing along (V ∩ R+).

(ii) |λ(z, u0)| ≤ λ(|z|, u0), and the inequality is strict if z 6= |z|.

(iii) λ(1, 1) = 1.

(iv) The function |λ(z, u)| can be bounded in terms of λ(|z|, u), for all (z, u) ∈ W0 in a neighborhood of

(1, 1). More precisely, there exist ǫ > 0, a positive constant κǫ > 0, and a complex neighborhood

Zǫ of z = 1 such that for each z ∈ Zǫ and u ∈]1 − ǫ, 1 + ǫ[, (z, u) ∈ W0 and |λ(z, u)| ≤
exp(−κǫ| arg(z)|2) · λ(|z|, u), where arg(z) denotes the principal argument of z.

Proof: (i) Consider z < t and the eigenfunctions ψz,u0
and ψt,u0

such that, for each x ∈ (V ∩ R),
ψz,u0

(x) ≤ ψt,u0
(x) and ψz,u0

(x0) = ψt,u0
(x0), for some x0 ∈ (V ∩ R). It then applies that:

λ(z, u0)
n ψz,u0

(x0) = K(z, u0)
n[ψz,u0

](x0),

=
∑

h∈Kn

h̃(x0) (ψz,u0
◦ h)(x0) z|h| uc(h),

≤
∑

h∈Kn

h̃(x0) (ψt,u0
◦ h)(x0) t|h| uc(h),

= K(t, u0)
n[ψt,u0

] = λ(t, u0)
n ψt,u0

(x0).

The definition of x0 entails that λ(z, u0) ≤ λ(t, u0). Now, equality occurs above only when, for each

h ∈ Kn, (ψz,u0
◦ h)(x0) = (ψt,u0

◦ h)(x0) and t|h| = z|h|. This shows that z = t; in particular,

z → λ(z, u0) is strictly increasing. The result for u→ λ(z0, u) is obtained by a similar argument, which

completes the proof of claim (i).

(ii) Consider r > 0 and u > 0 such that (r, u) ∈ W0. For 0 < θ < 2π, let ψreiθ,u denote an

eigenfunction of K(reiθ, u) relative to one of the dominant eigenvalues λ(reiθ, u). We also suppose that

for all x ∈ (V ∩ R), |ψreiθ,u(x)| ≤ ψr,u(x) with equality for at least one x0 ∈ (V ∩ R). Like previously,
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we have:

|λ(reiθ, u)|n |ψreiθ,u(x0)| = |K(reiθ, u)n[ψreiθ,u](x0)|,
≤

∑

h∈Kn

h̃(x0) |(ψreiθ,u ◦ h)(x0)| r|h| uc(h), (20)

≤
∑

h∈Kn

h̃(x0) (ψr,u ◦ h)(x0) r|h| uc(h), (21)

= K(r, u)n[ψr,u](x0) = λ(r, u)n ψr,u(x0).

This proves the bound |λ(reiθ, u)| ≤ λ(r, u).
Next suppose that |λ(reiθ, u)| = λ(r, u) i.e. the inequalities in equations (20)-(21) are in fact equalities.

Then, for each h ∈ K⋆, |(ψreiθ,u ◦ h)(x0)| = (ψr,u ◦ h)(x0). Since any point in Ia is the limit of a

sequence h(x0), we conclude that |ψreiθ,u(x)| = |ψr,u(x)|, for all x ∈ Ia. Equivalently, if we define

α(x) := ψreiθ,u(x)/ψr,u(x) then |α(x)| = 1, for all x ∈ Ia. Under the assumption that equality holds in

equations (20)-(21), this implies that

∣∣∣∣∣
∑

h∈Kn

ah(x)

∣∣∣∣∣ =
∑

h∈Kn

|ah(x)|,

for all x ∈ Ia, where ah(x) := h̃(x) (ψreiθ,u ◦ h)(x) (reiθ)|h| uc(h). In particular, there exists β(x), with

|β(x)| = 1 for x ∈ Ia, such that ah(x) = β(x)|ah(x)|. Furthermore, it follows for each h ∈ K and

x ∈ Ia that

β(x) =
ah(x)

|ah(x)|
=

(ψreiθ,u ◦ h)(x)
(ψr,u ◦ h)(x) eiθ|h| = (α ◦ h)(x) eiθ|h|.

But note that β(x) is continuous and independent of the inverse branches. In particular, when x is fixed,

the argument of β(x) is constant. On the other hand, note that the argument of β(x) depends on the depth

of h. (If h = (h1 ◦ . . . ◦hk), with k ∈ N
⋆ and hi ∈ K for each i, we refer to k as the depth of h.) Since all

the depths are possible when h goes through K (the gcd of all the possible depth is 1), the above identity

entails that θ = 0, thus proving claim (ii).

(iii) The operator GA is usually called the density transformer since it transforms probability density

functions into probability density functions. It follows that 1 is the unique dominant eigenvalue of GA.

Next, observe that

(I− uK(1, 1))−1 ◦ (I−GB)
−1 = (I− (GB + uGa))

−1,

because B⋆ (aB⋆)⋆ = A⋆. The right-hand side above admits a singularity when (GB + uGa) has 1
as eigenvalue. But when u = 1, this operator corresponds to a density transformer whose dominant

eigenvalue is 1. Hence, K(1, 1)n = [un](I− (GB + uGa))
−1 ◦ (I−GB) is asymptotically the residue

operator of (I− (GB +uGa))
−1 ◦ (I−GB) when u = 1, which is asymptotically constant. This is only

possible when λ(1, 1) = 1, which shows claim (iii).

For the proof of claim (iv), first remark that

∣∣∣∣
λ(reiθ, u)

λ(r, u)

∣∣∣∣ = exp

(
−λ̄′′(s0, t0)

θ2

2
+O(θ3)

)
,
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with λ̄(s, t) = log λ(es, et), es0 = r and et0 = u. We will prove in Proposition 6.11 that λ̄ is strictly

convex. This completes the proof. ✷

6.3 Alternative expressions for the generating functions

The generating function Hm(z, u) involves a product of operators. When u = 1, the product simplifies to

1∏

j=m

K(z, uj/m) = K(z, 1)m = λ(z, 1)m P(z, 1) +R(z, 1)m,

where P(z, u) ◦ R(z, u) = R(z, u) ◦ P(z, u) = 0, and P(z, u) is the projector over the dominant

eigenspace relative to the eigenvector ψz,u (see Proposition 6.4). When u is close to 1, we can expect the

product on the left-hand side above to remain close to some m-th power. The next proposition makes this

heuristic more precise.

Proposition 6.6 Consider W1 = Z1 × U1 an open subset of W0, with U1 = (1 − ǫ, 1 + ǫ), for some

ǫ > 0, and such that W1 is a compact subset of W0. For all m ∈ N
⋆ and (z, u) ∈ W1, there exist a

complex number A(z, u), a bounded linear operator B(z, u) and a linear application Cm(z, u) defined

on A∞(V) such that

1∏

j=m

K(z, uj/m)[f ] = A(z, u)m
(
B(z, u)[f ]ψz,u +Cm(z, u)[f ]

)
, with ‖Cm(z, u)‖ = O

(
1

m

)
.

All these objects are analytic in (z, u) and the constant in the O-term is uniform for (z, u) ∈ W1.

Proof: The proof is given in Annex B. ✷

Except for Cm, all the objects in the proposition are explicit. As a matter of fact, if we define φ(z, u, v)
by P(z, u)[ψz,v] = φ(z, u, v)ψz,u, and B(z) by P(z, 0)[f ] = B(z)[f ]ψz,0 then

A(z, u) = exp

(∫ 1

0

log λ(z, ut) dt

)
, (22)

B(z, u)[f ] = B(z)[f ] exp

(
− log u

∫ 1

0

utφ′v(z, u
t, ut) dt

)
.

An immediate consequence of Proposition 6.6 is an alternative expression of the generating functions.

Corollary 6.7 With the same notations of Proposition 6.6, for all m ∈ N
⋆ and (z, u) ∈ W1, there exist

analytic functions A(z, u), B(z, u) and Cm(z, u) such that

Hm(z, u) = A(z, u)m (B(z, u) + Cm(z, u)) , with ‖Cm‖ = O

(
1

m

)
. (23)

The constant in the O-term is uniform for (z, u) ∈ W1. Furthermore, if |A(z, u)| < 1 then

H(z, u) =
B(z, u)

1−A(z, u)
+O

(
log

1

1− |A(z, u)|

)
. (24)
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Of course the function A(z, u) is given by (22), and

B(z, u) =

∫ 1

0

B(z, u) ◦ (I− zGB)
−1[f ](t) dt,

Cm(z, u) =

∫ 1

0

Cm(z, u) ◦ (I− zGB)
−1[f ](t) dt.

6.4 Singularity analysis

When u = 1, A(z, 1) equals to the eigenvalue λ(z, 1) and Proposition 6.5-(iii) entails that A(1, 1) = 1.

Since A′
z(1, 1) ·A′

u(1, 1) 6= 0, the implicit function theorem implies that there exist a complex neighbor-

hood Z2 of z = 1, a complex neighborhood U2 of u = 1, an analytic function σ : U2 → Z2 such that, for

each u ∈ U2, z = σ(u) is the unique solution in Z2 to the equationA(z, u) = 1. Combining the existence

of this function σ with Proposition 6.5–(i) and (ii), we obtain the following description of the singularities

of the generating functions.

Proposition 6.8 There exist a real neighborhood U3 of u = 1 such that, for each u ∈ U3, the generating

function H(z, u) is analytic for |z| < σ(u). In addition, z = σ(u) is the unique singularity of H(z, u) on

|z| = σ(u).

Next we extract the coefficients. Due to equation (23), the generating function H(z, u) can be decom-

posed into a dominant and remainder term, where the later is a linear combination of terms of the form

A(z, u)mCm(z, u), with m ≥ 0. Due to the lack of information on the singularities outside the disk of

convergence |z| = σ(u) (see previous proposition), we use a saddle-point method to estimate coefficients

of the remainder term. This method is well adapted for obtaining asymptotic formulas for the coefficients

A(z, u)m, whenm is large, although the remainder term in H(z, u) also involves small powers ofA(z, u).
The next lemma is crucial to disregard small values of m.

Lemma 6.9 There exist ǫ > 0, 0 < φ < 1 and 0 < ρ < 1 such that for all (1− ǫ) < u < (1 + ǫ),

[zn]
∑

m≤φn

Hm(z, u) = O(ρn).

Proof: Consider ǫ > 0 and (1− ǫ) < u < (1 + ǫ). Since Ωn ≤ n, we obtain that

[zn]
∑

m≤φn

Hm(z, u) ≤ (1 + ǫ)n Pn [|ω|a ≤ φn] .

Next note that the operator (GB + vGa) is compact and admits a unique positive dominant eigenvalue

γ(v) when v ≥ 0. Furthermore, v → γ(v) is strictly increasing, with γ(1) = 1, and in a certain

open neighborhood V0 of v = 1, there exist a finite constant M ≥ 0 (independent of v) such that



Toward the Normality of hidden-pattern counts under dynamical sources 19

‖(GB + vGa)
k‖ ≤Mγ(v)k, for all k ≥ 0. Hence, for m ≤ φn, we obtain

Pn [|ω|a = m] =
∑

ω∈An:|ω|a=m

pω,

≤ 1

rm

∑

ω∈An

pωr
|ω|a ,

=
1

rm

∫ 1

0

(GB + rGa)
n[f ](t)dt ≤M‖f‖γ(r)

n

rm
,

uniformly for all r > 0 in V0; in particular, for 0 < r < 1, we find

Pn [|ω|a ≤ φn] ≤ M‖f‖
1− r

γ(r)n

rφn
.

If φ is chosen such that φ < γ′(1)/2, the derivative [γ(r)/rφ]′ taken at r = 1 is greater than γ′(1)/2,

which is strictly positive. Hence, up to perhaps a smaller neighborhood V0 of 1, for all in V0 except for

r = 1, we have γ(r)/rφ < 1. In particular, if we choose

c := inf

{
γ(r)

rφ
| 0 < r < 1, r ∈ V0

}
,

then c < 1 and Pn [|ω|a ≤ φn] = O(cn). To conclude, ǫ must be chosen so that ρ = (1 + ǫ)c < 1. ✷

Proposition 6.10 There exist a real neighborhood U4 of u = 1 such that, for each u ∈ U4 and ξ > 0,

En[u
Ωn ] = α(u) · β(u)n(1 + O(n− 1

2
+ξ log n)), where the constant in the O-term is uniform for all

u ∈ U4, and

α(u) =
B(σ(u), u)

σ(u)A′
z(σ(u), u)

,

β(u) = σ(u)−1.

Proof: According to equation (24), H(z, u) is composed by a meromorphic part and a remainder part.

The extraction of the coefficients of the meromorphic part satisfies:

[zn]
B(z, u)

1−A(z, u)
= α(u) · β(u)n (1 +O(ρn1 )) ,

for some uniform ρ1 < 1 on a neighborhood of u = 1.

To study the remainder part, a saddle point method is used. We also suppose that the conditions of

Lemma 6.9 are verified for some ǫ, φ and ρ. According to the aforementioned lemma, the analysis of the

generating function

R(z, u) :=
∑

m≥φn

A(z, u)mCm(z, u)

is sufficient. Up to a smaller ǫ, consider Zǫ like in Proposition 6.5. The continuity of the function δ entails

that there exist ǫ′ < ǫ, η > 0 and τ > 0 such that σ([1 − ǫ′, 1 + ǫ′]) ⊂]1 − η, 1 + η[⊂ Zη,τ ⊂ Zǫ, with
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Zη,τ = {z| |z − 1| < 2η, arg(z) < τ}. For u ∈ [1 − ǫ′, 1 + ǫ′], H(z, u) is analytic in the centered disc

of radius σ(u). We apply the Cauchy’s formula for coefficients with a circle C of radius (σ(u)− 1/n) in

order to obtain an upper bound. The contour C is split into three parts:

C1 =

{
z s.t. |z| = σ(u)− 1

n
, | arg(z)| < ǫn

}
,

C2 =

{
z s.t. |z| = σ(u)− 1

n
, ǫn ≤ | arg(z)| < τ

}
,

C3 =

{
z s.t. |z| = σ(u)− 1

n
, τ ≤ | arg(z)| ≤ π

}
,

where ǫn = n−
1
2
+ξ.

Contour C1: the derivative A′
z(z, u) is non zero for (1− ǫ′) < u < (1 + ǫ′) and z ∈ (Zη,τ ∩ R) since

the same is true for λ′z(z, u). In particular, there exists a finite constantK1 > 0 such that for each (z, u) as

before, |A(z, u)− 1| ≥ K1|z − σ(u)|. Now, for z ∈ C1, Proposition 6.5-(iv) leads to the following upper

bound, |A(z, u)| ≤ exp(−κǫ| arg(z)|2)A(σ(u)− 1/n, u). Recall that there exists a uniform constant K2

such that ‖Cm‖ ≤ K2/m. Then for r = σ(u)− 1/n, one has

∣∣∣∣
1

2π

∫ ǫn

−ǫn

R(reiθ, u)

rneinθ
dθ

∣∣∣∣ ≤
1

2π

2ǫn
rn

K2 log

(
1

1−A(r, u)

)
= O

(
ǫn log n

σ(u)n

)
,

where the constant in the O-term is uniform for |u− 1| < ǫ′.
Contour C2: Once more, we apply Proposition 6.5–(iv). Using the same notation as before, we obtain

∣∣∣∣
1

2π

∫ τ

ǫn

R(reiθ, u)

rneinθ
dθ

∣∣∣∣ ≤ 1

2π

1

rn

∑

m≥φn

A(r, u)m

m

∫ τ

ǫn

exp(−mκǫθ2)dθ,

= O

(
exp(−κǫφnǫ2n)

σ(u)n
log

1

1−A(r, u)

)
= O

(
exp(−κǫn−2ξ)

σ(u)n
log n

)
,

where the constant in the O-term is uniform for |u− 1| < ǫ′.
Contour C3: Proposition 6.5–(ii) entails that up to smaller ǫ′ and η (not τ ), there exist k ∈ N such that

for all i ≤ (m − k), ‖K(z, u(i+k)/m ◦ . . . ◦K(z, ui/m)‖ ≤ ‖K(z, ui/m)k‖ ≤ (1 − ρ̄), with ρ̄ > 0 and

all (z, u) such that |z − 1| < η, | arg(z)| > τ and |u− 1| < ǫ′. Then uniformly in u, we obtain the bound

∣∣∣∣∣
1

2π

∫

|θ|>τ

R(reiθ, u)

rneinθ
dθ

∣∣∣∣∣ = O
(
(1− ρ̄)φn

)
.

The lemma now follows from the sum of the integrals over the three contours. ✷

6.5 Gaussian limit law

Our results so far are valid only for real values of u. The use of continuity theorems for characteristic

functions is then out of the scope of this work. It is well known, however, that point-wise convergence of

the Laplace transform of a random variable over an open interval of the form (−ǫ, ǫ) entails a convergence
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in law. The completion of our proof of Theorem 2.1 is therefore based on the continuity theorem of the

bilateral Laplace Transform [6].

Precisely, motivated by Proposition 6.10, define U(s) := − log σ(es) and V (s) := logα(es). Clearly,

U(s) is analytic for s in a neighborhood of s = 0, and it follows from the proposition that the normalized

random variable Ω⋆
n =

(
Ωn − nU ′(0)

)
/
√
nU ′′(0) satisfies:

En[e
sΩ⋆

n ] =
s2

2
+O

(
1√
n
+

log n

n
1
2
−ξ

)
,

over a certain real-neiborhood of s = 0, as long as U ′′(0) = −
(
σ′′(1) + σ′(1)− σ′(1)2

)
6= 0.

Theorem 2.1 is finally a consequence of the following result.

Proposition 6.11 The variability condition σ′′(1) + σ′(1)− σ′(1)2 6= 0 holds.

Proof: In what follows, we associate with each function S(z, u) of (z, u) the function S̄(s, t) := S(es, et).
As soon as S(z, u) is analytic around (z, u) = (1, 1) with nonnegative coefficients, the Cauchy-Schwartz

inequality entails the following convexity inequality:

log S̄

(
s1 + s2

2
,
t1 + t2

2

)
≤ log S̄(s1, t1) + log S̄(s2, t2)

2
.

In particular, the functions s → log S̄(s, t), t → log S̄(s, t) and t → log S̄(qt, t), with q > 0 a constant,

are convex (concave up).

By considering the generating function relative to the operator K(z, u)m, the functions s→ log λ̄(s, t),
t → log λ̄(s, t) and t → log λ̄(qt, t), with q > 0, must be convex. The strict convexity is obtained using

the same kind of arguments as in Proposition 6.5 (manipulating spectral objects).

Due to the definition of A(z, u) in function of λ(z, u), the functions s → log Ā(s, t), t → log Ā(s, t)
and t → log Ā(qt, t) for q > 0 are also proved to be strictly convex. To conclude with the proof of the

proposition, we just use the strict convexity with the following equalities

σ′′(1) + σ′(1)− σ′(1)2 = σ̄′′(0) = − L′′(0)

Ā′
s(0, 0)

,

with L(t) = log Ā(σ̄′(0)t, t) and σ̄(t) = log σ(et). ✷

7 Annex B

In this section we finally prove Proposition 6.6. For this it is useful to introduce a notation for the product

(i.e. composition) of various operators. More precisely, if O(z, u) is an operator then we define

[O]β =

α+1∏

ℓ=α+β

O(z, u
ℓ
m ) = O(z, u

α+β
m ) ◦ . . . ◦O(z, u

α+1

m ),

for some appropriately selected integers m ≥ 1 and α, β ≥ 0 such that (α+ β) ≤ m.



22 Loı̈ck Lhote and Manuel E. Lladser

In this section, we mainly use the spectral decomposition:

K(z, u) = λ(z, u)[P(z, u) +R(z, u)], (25)

where P(z, u) is the projection over the eigenspace relative to λ(z, u), R(z, u) has spectral radius strictly

less than one, P(z, u) ◦P(z, u) = P(z, u), and P(z, u) ◦R(z, u) = R(z, u) ◦P(z, u) = 0.

Sketch of the proof. Inserting the above spectral decomposition into the product
∏1

j=m K(z, uj/m) leads

to an expression of the form

1∏

j=m

K(z, uj/m) =

m∏

j=1

λ(z, uj/m)×




1∏

j=m

P(z, uj/m) + remainder terms


 , (26)

where each term in the remainder is the product of m R- and P-type operators, with at least one R-type

factor. Lemma 7.3 shows that the overall contribution of the remainder terms is negligible as m tends

to infinity. To show this, we are led to studying products of P-type and R-type operators as well as

interchanged factors of this type. Lemma 7.1 describes precisely what the product of m P-type operators

looks like asymptotically, whereas the first inequality in Lemma 7.2 gives an upper bound on the norm of

products of R-type operators. On the other hand, the relations:

R(z, u) ◦P(z, v) = [R(z, u)−R(z, v)] ◦P(z, v);

P(z, u) ◦R(z, v) = [P(z, u)−P(z, v)] ◦R(z, v);

which are implied from the spectral decomposition in equation (25), are fundamental to prove that remain-

der terms in equation (26) are effectively negligible. Indeed, each time a product of P-type operators is

followed by a product of R-type operators (or vice-versa), the above relations can be used with Lemma 7.2

to show that a factor of order 1/m appears. Lemma 7.1 and the Euler-Maclaurin formula are then the final

ingredients in the proof of Proposition 6.6.

Lemma 7.1 For each compact set C ⊂ W0, there exist K1 > 1 such that

‖[P]j‖ ≤ K1,

for all (z, u) ∈ C and j ≥ 1. Furthermore, let φ(z, u, v) be defined by P(z, u)[ψz,v] = φ(z, u, v)ψz,u

for (z, u), (z, v) ∈ W0, and let cz,u be the linear form such that P(z, u)[f ] = cz,u[f ]ψz,u, for all

f ∈ A∞(V). We have
∥∥∥∥∥∥

1∏

j=m

P(z, uj/m)− cz,1 ψz,u exp

{
− log u ·

∫ 1

0

utφ′v(z, u
t, ut)dt

}∥∥∥∥∥∥
= O

(
log u

m

)
,

where the constant in the big-O is uniform for (z, u) ∈ C.

Proof: Consider 0 ≤ α < β ≤ m. Then, applying recursively the definition of φ(z, u, v), we obtain

α∏

j=β

P(z, uj/m)[f ] = cz,uα/m [f ]



α+1∏

j=β

P(z, uj/m)


 [ψz,uα/m ],

= cz,uα/m [f ]ψz,uβ/m

β∏

j=α+1

φ(z, uj/m, u(j−1)/m).
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Note that φ(z, uj/m, uj/m) = 1. Furthermore, the product of φ functions above can be simplified using

the exp-log transformation and the Taylor expansions of log(1− w) about the point w = 0, as well as of

w = 1− φ(z, uj/m, u(j−1)/m) about (z, uj/m, uj/m). We obtain

β∏

j=α+1

φ(z, uj/m, u(j−1)/m)

= exp



− log u

m

β∑

j=α+1

uj/mφ′v(z, u
j/m, uj/m)



 ·
(
1 +O

( log2 u
m

))
,

= exp

{
− log u

∫ β/m

α/m

utφ′v(z, u
t, ut)dt+O

( (β − α) log u

m2

)}
·
(
1 +O

( log2 u
m

))
,

= exp

{
− log u

∫ β/m

α/m

utφ′v(z, u
t, ut)dt

}
·
(
1 +O

( log u
m

))
,

uniformly for (z, u) ∈ C and 0 ≤ α < β ≤ m. ✷

Lemma 7.2 For each compact set C ⊂ W0, there exist finite constants K2,K3,K4 > 1 and 0 < ρ < 1
such that

‖[R]j‖ ≤ K2 ρ
j ,

‖P(z, uj/m)−P(z, u(j−1)/m)‖ ≤ K3/m,

‖R(z, uj/m)−R(z, u(j−1)/m)‖ ≤ K4/m,

for all (z, u) ∈ C and j ≥ 1.

Proof: The last two inequalities are just the consequence of the analyticity of the operators R(z, u) and

P(z, u) with respect to (z, u).
To show the first inequality, we start by showing that there is an integer j0 ≥ 1 such that

‖R(z, u)j0‖ < 1,

for all (z, u) ∈ C. Following an argument by contradiction, we suppose otherwise. Then, for each

integer j ≥ 1, there exist (zj , uj) ∈ C such that ‖R(zj , uj)
j‖ ≥ 1. Because C is compact, we can

extract a subsequence (z′j , u
′
j) that converges to certain point (z0, u0) ∈ C. Since the spectral radius of

R(z0, u0) is strictly less than 1, there exists j1 ≥ 1 such that ‖R(z0, u0)
j1‖ < 1/2. Further, due to

the continuity of ‖R(z, u)j1‖ as a function of (z, u), there exists a neighborhood V0 of (z0, u0) such

that ‖R(z, u)j1‖ < 3/4, for all (z, u) ∈ V0. In particular, there exists a constant α > 0 such that

‖R(z, u)j‖ ≤ α(3/4)⌊j/j1⌋, for all (z, u) ∈ V0 and integer j ≥ 1. Since the right-hand side of this

inequality is strictly less than 1 for all sufficiently large j, we have reached a contradiction. Hence, there

is an integer j0 ≥ 1 such that ‖R(z, u)j0‖ < 1 for all (z, u) ∈ C. By continuity over the compact set C,

there also exist a positive real number ρC < 1 such that ‖R(z, u)j0‖ < ρC for all (z, u) ∈ C. Furthermore,

there are finite constants ρ = ρ
1/j0
C < 1 < c such that

‖R(z, u)j‖ < cρj , (27)
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for all (z, u) ∈ C and j ≥ 1.

To conclude the proof of the lemma, we aim to bound the norm of a product of the form

α+1∏

j=α+β

R(z, uj/m), (28)

with m ≥ 1 and α, β ≥ 0 such that (α + β) ≤ m. For this, we first consider β = j0, where j0 is as in

the previous paragraph. Before multiplying out, we rewrite each operator in the product as R(z, uα/m)+
{R(z, uj/m) −R(z, uα/m)}. After multiplying out, we recognize a summation of terms, each of which

involves j0 factors of the form R(z, uα/m) or {R(z, uj/m) − R(z, uα/m)}, with α < j ≤ (α+ j0).
Note that if a term involves k factors of the later form then its norm is bounded by (j0K4/m)kck+1ρj0−k,

because of the inequality in equation (27) and the fact that ‖R(z, uj/m) − R(z, uα/m)‖ ≤ j0K4/m.

Since the only admissible values for k are integers between 0 and j0, we obtain that:

∥∥∥∥∥∥
R(z, uα/m)j0 −

α+1∏

j=α+j0

R(z, uj/m)

∥∥∥∥∥∥
≤

j0∑

k=1

(
j0
k

)(
j0K4

m

)k

ck+1ρj0−k = cρj0

[(
1 +

j0cK4

mρ

)j0

− 1

]
.

Next, consider ǫ > 0 such that (ρC + ǫ) < 1. Clearly, there exist m0 such that for each m ≥ m0, the

right hand-side of the above inequality is strictly less than ǫ. As a result:

∥∥∥∥∥∥

α+1∏

j=α+j0

R(z, uj/m)

∥∥∥∥∥∥
< (ρC + ǫ) < 1,

for all m ≥ m0 and (z, u) ∈ C. Finally, to bound the norm of the product in equation (28), write

β = (q · j0 + r) using Euclidean division, and decompose the product into q parts, each corresponding to

some operator [R]j0 , and a remainder part involving at most (j0 − 1) factors. Precisely, for all m ≥ m0

and (z, u) ∈ C, we obtain

∥∥∥∥∥∥

α+1∏

j=α+β

R(z, uj/m)

∥∥∥∥∥∥
< K̄j0(ρC + ǫ)q ≤ K̄j0(ρC + ǫ)(1−j0)/j0 × (ρC + ǫ)β/j0 ,

with

K̄ = max

(
1, sup

(z,u)∈C

‖R(z, u)‖
)
,

whereas, for all m < m0 and (z, u) ∈ C, we obtain

∥∥∥∥∥∥

α+1∏

j=α+β

R(z, uj/m)

∥∥∥∥∥∥
< K̄m0 .

The first inequality of the lemma now easily follows from the previous inequalities. ✷
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Lemma 7.3 For each compact set C ⊂ W0, it applies that

1∏

j=m

K(z, uj/m) =

1∏

j=m

λ(z, uj/m)×




1∏

j=m

P(z, uj/m) +O
( 1

m

)

 ,

uniformly for (z, u) ∈ C.

Proof: Fix an integer m ≥ 1. Due to the decomposition in equation (25), we obtain:

1∏

j=m

K(z, uj/m) =
1∏

j=m

λ(z, uj/m)
1∏

j=m

(
P(z, uj/m) +R(z, uj/m)

)
, (29)

=

1∏

j=m

λ(z, uj/m)




1∏

j=m

P(z, uj/m)

+
∑

k

∑

i0,...,ik,j1,...,jk

[P]i0 ◦ [R]j1 ◦ · · · ◦ [R]jk ◦ [P]ik


 , (30)

where 1 ≤ k ≤ ⌈m/2⌉; i0, ik ≥ 0; i1, . . . , ik−1, j1, . . . , jk ≥ 1; and (i0 + · · ·+ ik + j1 + · · ·+ jk) = m.

Next, to understand the summation above, consider the bracket operators [P]i =
∏a+1

ℓ=a+i P(z, uℓ/m)

and [R]j =
∏b+1

ℓ=b+j R(z, uℓ/m) for appropriately selected integers a, b ≥ 0. Observe that if i, j ≥ 1 and

a = (b+ j) then

P
[i] ◦R[j] =

a+2∏

ℓ=a+i

P(z, uℓ/m) ◦
(
P(z, u(a+1)/m)−P(z, ua/m)

)
◦

b+1∏

ℓ=b+j

R(z, uℓ/m),

because P(z, ua/m) ◦R(z, ua/m) = R(z, ua/m) ◦ P(z, ua/m) = 0. In particular, if the notation [P]i∆
is used to mean that the most-right factor in [P]i i.e. the operator P(z, u(a+1)/m) is replaced by the

difference P(z, u(a+1)/m)−P(z, ua/m), the above shows that

[P]i ◦ [R]j = [P]i∆ ◦ [R]j . (31)

Similarly, when i, j ≥ 1 and b = (a+ i) we find that:

[R]j ◦ [P]i = [R]j∆ ◦ [P]i. (32)

By applying recursively the identities in equations (31)-(32), the remainder terms in equation (29) may

be also expressed as

[P]i0 ◦ [R]j1 ◦ · · · ◦ [R]jk ◦ [P]ik

=





[P]i0∆ ◦ [R]j1∆ ◦ · · · ◦ [P]ik−1∆ ◦ [R]jk∆ ◦ [P]ik , if i0 > 0 and ik > 0;
[P]i0∆ ◦ [R]j1∆ ◦ · · · ◦ [P]ik−1∆ ◦ [R]jk , if i0 > 0 and ik = 0;
[R]j1∆ ◦ · · · ◦ [P]ik−1∆ ◦ [R]jk∆ ◦ [P]ik , if i0 = 0 and ik > 0;
[R]j1∆ ◦ · · · ◦ [P]ik−1∆ ◦ [R]jk , if i0 = 0 and ik = 0.

(33)
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Due to Lemma 7.2, note that ‖[P]i∆‖ ≤ K1K3/m and ‖[R]j∆‖ ≤ K2K4ρ
j−1/m. Inserting these

inequalities into the relations in equation (33), we obtain the upper-bound

‖[P]i0 ◦ [R]j1 ◦ · · · ◦ [R]jk ◦ [P]ik‖ ≤ c2 ×
(
[[i0 = 0]] +

[[i0 > 0]]

m

)

×
(
[[ik = 0]] +

[[ik > 0]]

m

)
×
(

k−1∏

ℓ=1

c

m2

)
×
(

k∏

ℓ=1

ρjℓ−1

)
,

where we have defined c := K1K2K3K4 ≥ 1.

Motivated by the identity in equation (30), for a fixed value of k, we aim now to add up the terms on

the right-hand side of the above inequality over all the admissible values for i0, . . . , ik, j1, . . . , jk. This

corresponds to extracting the coefficient of zm of c2 · I20 (z) · (I(z))k−1(J(z))k, where

I0(z) :=
∑

i≥0

(
[[i = 0]] +

[[i > 0]]

m

)
zi = 1 +

z

m(1− z)
;

I(z) :=
c

m2

∑

i≥1

zi =
cz

m2(1− z)
;

J(z) :=
∑

j≥1

ρj−1zj =
z

1− ρz
.

In particular, adding up over all k ≥ 1, we obtain

∑

k

∑

i0,...,ik,j1,...,jk

‖[P]i0 ◦ [R]j1 ◦ · · · ◦ [R]jk ◦ [P]ik‖ ≤ [zm]S(z),

where

S(z) :=
c2 · I20 (z) · J(z)
1− I(z) · J(z) .

This rational generating function admits three-poles at z = 1, z = z0 and z = z1, with z0 = 1+O(1/m2)
and z1 = ρ−1 × (1 + O(1/m2)). Due to Cauchy’s formula and the Residue theorem, there is a constant

r > 1 such that

[zm]S(z) = −Res

(
S(z)

zm+1
, z = 1

)
− Res

(
S(z)

zm+1
, z = z0

)
+O(r−m),

= −1

c
+

1

c
·
(
1 +O

( 1

m

))
+O(r−m) = O

( 1

m

)
.

This completes the proof of the lemma. ✷

We finally prove Proposition 6.6.

According to Lemma 7.1, there exists a bounded linear form B0(z, u) such that

1∏

j=m

P(z, uj/m) = B0(z, u)

(
1 +O

(
1

m

))
.
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Furthermore by the Euler-Maclaurin formula, we obtain

m∏

j=1

λ(z, uj/m) = A(z, u)mB(z, u)

(
1 +O

(
1

m

))
,

with

A(z, u) := exp

(∫ 1

0

log λ(z, ut) dt

)
;

B(z, u) :=
λ(z, u)

λ(z, 1)
.

This completes the proof of Proposition 6.6 with

B(z, u) =
λ(z, u)

λ(z, 1)
B0(z, u).
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