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Skew Pieri Rules for Hall-Littlewood Functions
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Abstract. We produce skew Pieri Rules for Hall–Littlewood functions in the spirit of Assaf and McNamara (FPSAC,
2010). The first two were conjectured by the first author (FPSAC, 2011). The key ingredients in the proofs are a
q-binomial identity for skew partitions that are horizontal strips and a Hopf algebraic identity that expands products
of skew elements in terms of the coproduct and antipode.

Résumé. Nous produisons quelques règles dissymétrique de Pieri pour les fonctions Hall–Littlewood au sens de Assaf
et McNamara (FPSAC, 2010). Les premières deux règles ont été conjecturée par le premier auteur (FPSAC, 2011).
Les principaux ingrédients dans les preuves sont une identité q-binomiale pour les partitions dissymétrique qui sont
bandes horizontales et une identité de Hopf qui exprime les produits d’éléments dissymétrique en termes du coproduit
et de l’antipode.
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Let Λ[t] denote the ring of symmetric functions over Q(t), and let {sλ} and {Pλ(t)} denote its bases
of Schur functions and Hall–Littlewood functions, respectively, indexed by partitions λ. The Schur func-
tions lead a rich life—making appearances in combinatorics, representation theory and Schubert calculus,
among other places. See [Ful97, Mac95] for details. The Hall–Littlewood functions are nearly as ubiqui-
tous (having as a salient feature that Pλ(t) → sλ under the specialization t → 0). See [LLT97] and the
references therein for their place in the literature.

A classical problem is to determine cancellation-free formulas for multiplication in these bases,

sλ sµ =
∑
ν

c νλ,µ sν and Pλ Pµ =
∑
ν

f νλ,µ(t)Pν .

The first problem was only given a complete solution in the latter half of the 20th century, while the
second problem remains open. Special cases of the problem, known as Pieri rules, have been understood
for quite a bit longer. The Pieri rules for Schur functions [Mac95, Ch. I, (5.16) and (5.17)] take the form

sλ s1r = sλ er =
∑
λ+

sλ+ , (1)
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with the sum over partitions λ+ for which λ+/λ is a vertical strip of size r, and

sλ sr =
∑
λ+

sλ+ , (2)

with the sum over partitions λ+ for which λ+/λ is a horizontal strip of size r. (See Section 1 for the
definitions of vertical- and horizontal strip.) The Pieri rules for Hall–Littlewood functions [Mac95, Ch.
III, (3.2) and (5.7)] state that

Pλ P1r = Pλ er =
∑

|λ+/λ|=r

vsλ+/λ(t)Pλ+ (3)

and
Pλ qr =

∑
|λ+/λ|=r

hsλ+/λ(t)Pλ+ , (4)

with the sums again running over vertical strips and horizontal strips, respectively. Here qr denotes
(1− t)Pr for r > 0 with q0 = P0 = 1, and vsλ/µ(t), hsλ/µ(t) are certain polynomials in t. (See Section
1 for their definitions, as well as those of skλ/µ(t) and brλ/µ(t) appearing below.)

Our first result is a Pieri-type mixture of the two bases.

Theorem 1 For a partition λ and r ≥ 0, we have

Pλ sr =
∑
λ+

skλ+/λ(t)Pλ+ , (5)

with the sum over partitions λ+ ⊇ λ for which |λ+/λ| = r.

The main focus of this article is on the generalizations of Hall–Littlewood functions to skew shapes
λ/µ. We introduce the question via the recent answer for skew Schur functions sλ/µ. In [AM11], Assaf
and McNamara give a skew Pieri rule for Schur functions. They prove the following generalization of (2):

sλ/µ sr =
∑
λ+, µ−

(−1)|µ/µ
−|sλ+/µ− , (6)

with the sum over pairs (λ+, µ−) of partitions such that λ+/λ is a horizontal strip, µ/µ− is a vertical strip
and |λ+/λ|+ |µ/µ−| = r. This elegant gluing-together of an sr-type Pieri rule for the outer rim of λ/µ
with an er-type Pieri rule for the inner rim of λ/µ demanded further exploration.

In [AM11], Lam, Sottile and the second author [LLS11] found a Hopf algebraic explanation for (6)
that readily extended to many other settings. (For example, a skew Pieri rule for k-Schur functions was
given.) Within the setting of Schur functions, it provided an easy extension of (6) to products of arbitrary
skew Schur functions—a formula first conjectured by Assaf and McNamara in [AM11]. The results of
this paper use the same Hopf machinery. We reprise most of the details and background in Section 2.

Around the same time, the first author [Kon] was motivated to give a skew Murnaghan–Nakayama rule
in the spirit of [AM11]. Along the way, he gives a bijective proof of the conjugate form of (6) (only
proven in [AM11] using the automorphism ω) and a quantum skew Murnaghan–Nakayama rule:

sλ/µ qr =
∑
λ+,µ−

(−1)|µ/µ
−| brλ+/λ(t) br(µ/µ−)c(t)sλ+/µ− , (7)
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with the sum over pairs (λ+, µ−) of partitions such that λ+/λ and µ/µ− are broken ribbons and |λ+/λ|+
|µ/µ−| = r. Note that since Pr(0) = sr, we recover the skew Pieri rule for t = 0. Also, since Pr(1) = pr,
we recover a skew Murnaghan–Nakayama rule if we divide the formula by 1 − t and let t → 1. This
formula, like that in Theorem 1, may be viewed as a link between the two theories of Schur and Hall–
Littlewood functions. One might ask for other examples of mixing, e.g., swapping the rolls of Schur and
Hall–Littlewood functions in (7). Two such examples were found (conjecturally) in [Kon]. Their proofs,
and a generalization of (6) to the Hall–Littlewood setting, are the main results of this paper.

Theorem 2 For partitions λ, µ, µ ⊆ λ, and r ≥ 0, we have

Pλ/µ s1r = Pλ/µ er = Pλ/µ P1r =
∑
λ+,µ−

(−1)|µ/µ
−| vsλ+/λ(t) skµ/µ−(t)Pλ+/µ− ,

where the sum on the right is over all λ+ ⊇ λ, µ− ⊆ µ such that |λ+/λ|+ |µ/µ−| = r.

Theorem 3 For partitions λ, µ, µ ⊆ λ, and r ≥ 0, we have

Pλ/µ sr =
∑
λ+,µ−

(−1)|µ/µ
−| skλ+/λ(t) vsµ/µ−(t)Pλ+/µ− ,

where the sum on the right is over all λ+ ⊇ λ, µ− ⊆ µ such that |λ+/λ|+ |µ/µ−| = r.

Note that putting µ = ∅ above recovers Theorem 1.

Theorem 4 For partitions λ, µ, µ ⊆ λ, and r ≥ 0, we have

Pλ/µ qr =
∑

λ+,µ−,τ

(−1)|µ/µ
−|(−t)|τ/µ

−| hsλ+/λ(t) vsµ/τ (t) skτ/µ−(t)Pλ+/µ− ,

where the sum on the right is over all λ+ ⊇ λ, µ− ⊆ τ ⊆ µ such that |λ+/λ|+ |µ/µ−| = r.

This paper is organized as follows. In Section 1, we prove some polynomial identities involving hs, vs
and sk, prove Theorem 1, and find ω(qr). In Section 2, we introduce our main tool, Hopf algebras. We
conclude in Section 3 with the proofs of our main theorems.

1 Combinatorial Preliminaries
1.1 Notation and a key lemma
The conjugate partition of λ is denoted λc. We write mi(λ) for the number of parts of λ equal to i. For a
partition λ, define n(λ) =

∑
i(i− 1)λi =

∑
i

(
λci
2

)
. The q-binomial coefficient is defined by[

a

b

]
q

=
(1− qa)(1− qa−1) · · · (1− qa−b+1)

(1− qb)(1− qb−1) · · · (1− q)

and is a polynomial in q that gives
(
a
b

)
when q = 1.

We say that λ/µ is a horizontal strip (respectively vertical strip) if [λ/µ] contains no 2×1 (respectively
1× 2) block, equivalently, if λci ≤ µci + 1 (respectively λi ≤ µi + 1) for all i. We say that λ/µ is a ribbon
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if [λ/µ] is connected and if it contains no 2×2 block, and that λ/µ is a broken ribbon if [λ/µ] contains no
2× 2 block, equivalently, if λi ≤ µi−1 + 1 for i ≥ 2. The Young diagram of a broken ribbon is a disjoint
union of rib(λ/µ) number of ribbons. The height ht(λ/µ) (respectively width wt(λ/µ)) of a ribbon is
the number of non-empty rows (respectively columns) of [λ/µ], minus 1. The height (respectively width)
of a broken ribbon is the sum of heights (respectively widths) of the components.

Let us define some polynomials. For a horizontal strip λ/µ, define

hsλ/µ(t) =
∏

λcj=µ
c
j+1

λcj+1=µ
c
j+1

(1− tmj(λ)).

If λ/µ is not a horizontal strip, define hsλ/µ(t) = 0. For a vertical strip λ/µ, define

vsλ/µ(t) =
∏
j≥1

[
λcj − λcj+1

λcj − µcj

]
t

.

If λ/µ is not a vertical strip, define vsλ/µ(t) = 0. For a broken ribbon λ/µ, define

brλ/µ(t) = (−t)ht(λ/µ)(1− t)rib(λ/µ).

If λ/µ is not a broken ribbon, define brλ/µ(t) = 0. For any skew shape λ/µ, define

skλ/µ(t) = t
∑
j (λ

c
j−µ

c
j

2
)
∏
j≥1

[
λcj − µcj+1

mj(µ)

]
t

.

Lemma 5 For fixed λ, µ, µ ⊆ λ, we have∑
ν

(−t)|λ/ν| vsλ/ν(t) skν/µ(t) = hsλ/µ(t),

with the sum over all ν, µ ⊆ ν ⊆ λ, for which λ/ν is a vertical strip. 2

Proof: Let aj = λcj −max(µcj , λ
c
j+1) ≥ 0. A partition ν, µ ⊆ ν ⊆ λ, for which λ/ν is a vertical strip

is obtained by choosing kj , 0 ≤ kj ≤ aj , and removing kj bottom cells of column j in λ. See Figure 1
for the example λ = 98886666444 and µ = 77666633331, where a4 = 3, a6 = 2, a8 = 3, a9 = 1 and
ai = 0 for all other i.

We have |λ/ν| =
∑
j kj , ν

c
j = λcj − kj . We make all such choices independently, which means that

∑
ν

(−t)|λ/ν| skν/µ(t) vsλ/ν(t) =
∑

k1,k2,...

(−t)
∑
j kj t

∑
j (ν

c
j−µ

c
j

2
)
∏
j

[
νcj − µcj+1

mj(µ)

]
t

∏
j

[
λcj − λcj+1

λcj − νcj

]
t

=
∏
j

aj∑
kj=0

(−t)kj t(
λcj−µ

c
j−kj
2

)
[
λcj − kj − µcj+1

mj(µ)

]
t

[
mj(λ)

kj

]
t

. (8)



Skew Pieri Rules for Hall-Littlewood Functions 461

Fig. 1: A partition ν (µ ⊆ ν ⊆ λ) for which λ/ν is a vertical strip within λ/µ is built from λ by removing some
number of the shaded cells of λ.

The rest of the proof consists of an involved case-by-case analysis which repeatedly uses the q-binomial
theorem. Specifically, first we show that if λ/µ is a horizontal strip, then the term in the product (8)
corresponding to j is 1 − tmj(λ) if λcj = µcj + 1, λcj+1 = µcj+1, and 1 otherwise. Next, we show that if
λ/µ is not a horizontal strip and j is the largest index for which λcj −µcj ≥ 2, then the term in the product
(8) corresponding to j is 0. 2

1.2 Elementary Hall–Littlewood identities
We give two applications of Lemma 5, then prove some elementary properties of Hall–Littlewood func-
tions that will be useful in Section 3. The first application is a formula for the product of a Hall–Littlewood
polynomial with the Schur function sr.

Proof of Theorem 1: We induct on r. For r = 0, there is nothing to prove. For r > 0, we use the formula

qr =

r∑
k=0

(−t)ksr−kek, (9)

which is easy to prove using, say, [Sta99, Exercise 7.11]) and the conjugate Pieri rule. For |λ+/λ| = r,
the coefficient of Pλ+ in

Pλ sr = Pλ

(
qr −

r∑
k=1

(−t)ksr−kek

)
is (by (3), (4) and induction) equal to

hsλ+/λ(t)−
∑

(−t)|λ
+/ν| skν/λ(t) vsλ+/ν(t),

with the sum over all ν, λ ⊆ ν ⊆ λ+, for which λ+/ν is a vertical strip of size at least 1. By Lemma 5,
this is equal to skλ+/λ(t). 2

Recall that fλσ,τ (t) is the (polynomial) coefficient of Pλ in PσPτ .

Corollary 6 The structure constants fλµ,τ (t) satisfy
∑
τ

tn(τ)fλµ,τ (t) = skλ/µ(t).

Proof: This follows from sr =
∑
τ`r t

n(τ)Pτ , which is (2) in [Mac95, page 219] and also Theorem 1 for
λ = ∅. 2

The second application of Lemma 5 is a generalization of [Mac95, §III.3, Example 1].
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Theorem 7 For every λ, µ, we have

∑
ν

skν/µ(t) vsλ/ν(t)y|λ/ν| =
∑
σ

tn(σ)−(`(σ)2 )fλσµ(t)

`(σ)∏
j=1

(y + tj−1). (10)

Equivalently, for all m, ∑
ν : |λ/ν|=m

skν/µ(t) vsλ/ν(t) =
∑
σ

tn(σ)−(m2 )fλσµ(t)

[
`(σ)

m

]
t−1

. (11)

Proof: Let us evaluate Pµ sr (
∑
m em y

m) in two different ways. On the one hand,

Pµ sr

(∑
m

em y
m

)
=

(∑
ν

skν/µ(t)Pν

)(∑
m

em y
m

)
=
∑
ν,λ

skν/µ(t) vsλ/ν(t)Pλ y
|λ/ν|.

On the other hand, using Example 1 on page 218 of [Mac95],

Pµ sr

(∑
m

emy
m

)
= Pµ

∑
σ

tn(σ)Pσ

`(σ)∏
j=1

(1 + t1−jy) =
∑
σ,λ

tn(σ)−(`(σ)2 )fλσµ(t)Pλ

`(σ)∏
j=1

(y + tj−1).

Now (10) follows by taking the coefficient of Pλ in both expressions. For (11), we use the q-binomial
theorem and [

n

k

]
t−1

= t(
k
2)+(n−k2 )−(n2)

[
n

k

]
t

.

2

Remark 8 The theorem is indeed a generalization of [Mac95, §III.3, Example 1]. For µ = ∅, skν/µ(t) =

tn(ν), and the right-hand side of (11) is non-zero only for σ = λ, so the last equation on page 218 (loc.
cit.) follows. It also generalizes Lemma 5: for y = −t, the right-hand side of (10) is non-zero if and only
if `(σ) = 1, and is therefore equal to hsλ/µ(t).

We finish the section with two more lemmas.

Lemma 9 Given r > k ≥ 0, we have

sr−k,1k =
∑

λ : `(λ)≥k+1

t(
`(λ)−k

2 )+
∑λ1
i=2 (λ

c
i
2 )
[
`(λ)− 1

k

]
t

Pλ.

Proof: The lemma follows from the formula due to Lascoux and Schützenberger, see, e.g., [Mac95,
Ch. III, (6.5)]. In that terminology, we have to evaluate K(r−k,1k),λ(t). We choose a semistandard Young
tableau T of shape (r − k, 1k) and type λ = (λ1, . . . , λ`). Clearly, such tableaux are in one-to-one
correspondence with k-subsets of the set {2, . . . , `}. For such a subset S, write s for the word with the
elements of S in increasing order, and write s for the word with the elements of {2, . . . , `}\S in decreasing



Skew Pieri Rules for Hall-Littlewood Functions 463

order. The reading word of the tableau corresponding to S is `λ`−1 · · · 3λ3−12λ2−11λ1s. The subwords
w2, w3, . . . are all strictly decreasing, and w1 = s1s. The charges of w2, w3, . . . are

(
λc2
2

)
,
(
λc3
2

)
, . . ., while

the charge of w1 is
∑
i/∈S(`− i+ 1). The formula

∑
S⊆{2,...,`+1},|S|=k

t
∑
i/∈S(`−i+1) = t(

`−k
2 )
[
`− 1

k

]
t

can be proved by induction. 2

Lemma 10 Let ω be the fundamental involution on Λ[t] defined by ω(sλ) = sλc . We have

ω(qr) = (−1)r
∑
λ`r

cλ(t)Pλ,

where

cλ(t) = t
∑λ1
i=2 (λ

c
i+1

2 )
`(λ)∏
i=1

(−1 + ti).

Proof: We have

ω(Pr) = ω

(
r−1∑
k=0

(−t)r−k−1sk+1,1r−k−1

)
=

r−1∑
k=0

(−t)r−k−1sr−k,1k =

=

r−1∑
k=0

(−t)r−k−1
 ∑
`(λ)≥k+1

t(
`(λ)−k

2 )+
∑λ1
i=2 (λ

c
i
2 )
[
`(λ)− 1

k

]
t

Pλ

 =

=
∑
λ`r

`(λ)−1∑
k=0

(−t)r−k−1 t(
`(λ)−k

2 )+
∑λ1
i=2 (λ

c
i
2 )
[
`(λ)− 1

k

]
t

Pλ.

Now by the q-binomial theorem,

`(λ)∏
i=2

(−1 + ti) = t2(`(λ)−1)
`(λ)−2∏
i=0

(−1/t2 + ti) = t2(`(λ)−1)
`(λ)−1∑
k=0

t(
`(λ)−1−k

2 )
[
`(λ)− 1

k

]
t

(
− 1

t2

)k
,

and simple calculations show that the coefficient of Pλ in ω(qr) = (1− t)ω(Pr) is indeed (−1)rcλ(t). 2

2 Hopf Perspective on Skew Elements
Recall that Λ[t] has another important basis {Qλ}, defined by Qλ = bλ(t)Pλ, where bλ(t) =

∏
i≥1(1 −

t)(1−t2) · · · (1−tmi(λ)). The (extended) Hall scalar product on Λ[t] is defined by either of the equivalent
conditions

〈Pλ, Qµ〉 = δλµ or 〈pλ, pµ〉 = zµ(t) δλµ ,
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where zµ(t) := zµ ·
∏r
j=1(1− tµj )−1 =

∏k
i=1 (iaiai!)

∏r
j=1(1− tµj )−1 for µ = (µ1, µ2, . . . , µr) =

〈1a1 , 2a2 , · · · , kak〉. See [Mac95, §III.4]. The skew Hall–Littlewood function Pλ/µ is defined [Mac95,
Ch. III, (5.1′)] as the unique function satisfying〈

Pλ/µ, Qν
〉

= 〈Pλ, Qν Qµ〉 (12)

for all Qν ∈ Λ[t]. (Likewise for Qλ/µ.) If we choose to read Pλ/µ as, “Qµ skews Pλ,” then we allow
ourselves access to the machinery of Hopf algebra actions on their duals. We introduce the basics in
Subsection 2.1 and return to Λ[t] and Hall–Littlewood functions in Subsection 2.2.

2.1 Hopf preliminaries
Let H =

⊕
nHn be a graded algebra over a field k. Recall that H is a Hopf algebra if there are algebra

maps ∆: H → H ⊗H and ε : H → k, and an algebra antimorphism S : H → H , called the coproduct,
counit and antipode, respectively, satisfying some additional compatibility conditions. See [Mon93]. We
use Sweedler’s notation for the coproduct, denoting ∆(h) by

∑
(h) h

′ ⊗ h′′ for h ∈ H .
Let H∗ =

⊕
nH

∗
n denote the graded dual of H . If each Hn is finite dimensional, then the pairing

〈 · , · 〉 : H ⊗H∗ → k defined by 〈h, a〉 = a(h) is nondegenerate. This pairing naturally endows H∗ with
a Hopf algebra structure, with product and coproduct uniquely determined by the formulas:

〈h, a · b〉 := 〈∆(h), a⊗ b〉 and 〈g ⊗ h,∆(a〉) := 〈g · h, a〉

for all homogeneous g, h ∈ H and a, b ∈ H∗. (Extend to all ofH∗ by linearity, insisting that 〈Hn, H
∗
m〉 =

0 for n 6= m.)
We recall some standard actions (“⇀”) of H and H∗ on each other. Given h ∈ H and a ∈ H∗, put

a ⇀ h :=
∑
(h)

〈h′′, a〉h′ and h ⇀ a :=
∑
(a)

〈h, a′′〉 a′. (13)

Equivalently, 〈g, h ⇀ a〉 = 〈g · h, a〉 and 〈a ⇀ h, b〉 = 〈h, b · a〉. We call these skew elements (in H and
H∗, respectively) to keep the nomenclature consistent with that in symmetric function theory.

Our skew Pieri rules (Theorems 2, 3 and 4) come from an elementary formula relating products of
elements h and skew elements a ⇀ g in a Hopf algebra H:

(a ⇀ g) · h =
∑(

S(h′′) ⇀ a
)
⇀ (g · h′). (14)

See (∗) in the proof of [Mon93, Lemma 2.1.4] or [LLS11, Lemma 1]. Before turning to the proofs of
these theorems, we first recall the Hopf structure of Λ[t].

2.2 The Hall–Littlewood setting
The ring Λ[t] is generated by the one-part power sum symmetric functions pr (r > 0), so the definitions

∆(pr) := 1⊗ pr + pr ⊗ 1, ε(pr) := 0, and S(pr) := −pr (15)

completely determine the Hopf structure of Λ[t].
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Proposition 11 For r > 0 and cλ given by Lemma 10,

∆(er) =

r∑
k=0

ek ⊗ er−k ∆(sr) =

r∑
k=0

sk ⊗ sr−k ∆(qr) =

r∑
k=0

qk ⊗ qr−k

S(er) = (−1)rsr S(sr) = (−1)rer S(qr) =
∑
λ`r

cλPλ.

Proof: Equalities for er and sr are elementary consequences of (15) and may be found in [Mac95, §I.5,
Example 25]. The coproduct formula for qr is (2) in [Mac95, §III.5, Example 8]. The antipode formula
for qr is identical to Lemma 10, as the fundamental morphism ω and the antipode S are related by S(h) =
(−1)rω(h) on homogeneous elements h of degree r. 2

It happens that Λ[t] is a self-dual Hopf algebra. This may be deduced from [Mac95, §III.5, Exam-
ple 8] and is easy to see on the power sum basis. (Write p∗λ for zλ(t)−1pλ and use (15) to check that〈
pλ, p

∗
µ · p∗ν

〉
=
〈
∆(pλ), p∗µ ⊗ p∗ν

〉
and 〈pµ ⊗ pν ,∆(p∗λ)〉 = 〈pµ · pν , p∗λ〉 for all partitions λ, µ and ν.)

After (12), (13) and self-duality, we see that Pλ/µ = Qµ ⇀ Pλ, and similarly, Qλ/µ = Pµ ⇀ Qλ.

3 Proofs of the main theorems
We specialize (14) to Hall–Littlewood polynomials, putting a ⇀ g = Pλ/µ.

Proof of Theorem 2: Taking h = er in (14), we get

Pλ/µ · er = (Qµ ⇀ Pλ) · er =
∑
(er)

(S(er
′′) ⇀ Qµ) ⇀

(
Pλ · er ′

)
(16)

=

r∑
k=0

(S(ek) ⇀ Qµ) ⇀
(
Pλ · er−k

)
(17)

=

r∑
k=0

(−1)k (sk ⇀ Qµ) ⇀
(
Pλ · er−k

)
(18)

=

r∑
k=0

(−1)k

(∑
τ

tn(τ)Qµ/τ

)
⇀
(
Pλ · er−k

)
(19)

=

r∑
k=0

(−1)k

 ∑
|µ/µ−|=k

(∑
τ

tn(τ)f µµ−,τ (t)

)
Qµ−

⇀

 ∑
|λ+/λ|=r−k

vsλ+/λ(t)Pλ+

 (20)

=
∑
λ+,µ−

(−1)|µ/µ
−| skµ/µ−(t) vsλ+/λ(t)Pλ+/µ− . (21)

For (17) and (18), we used Proposition 11. For (19), we used sk ⇀ Qµ = (
∑
τ`k t

n(τ)Pτ ) ⇀ Qµ =∑
τ`k t

n(τ)Qµ/τ . We use (3) and (12) to pass from (19) to (20). Explicitly, the coefficient of Qµ− in the
expansion of Qµ/τ is equal to the coefficient of Pµ in Pµ−Pτ . Finally, (21) follows from Corollary 6. 2



466 Matjaž Konvalinka and Aaron Lauve

Proof of Theorem 3: Taking h = sr in (14), we get

Pλ/µ · sr = (Qµ ⇀ Pλ) · sr =
∑
(sr)

(S(sr
′′) ⇀ Qµ) ⇀

(
Pλ · sr ′

)
(22)

=

r∑
k=0

(S(sk) ⇀ Qµ) ⇀
(
Pλ · sr−k

)
(23)

=

r∑
k=0

(−1)k (ek ⇀ Qµ) ⇀
(
Pλ · sr−k

)
(24)

=

r∑
k=0

(−1)kQµ/1k ⇀
(
Pλ · sr−k

)
(25)

=

r∑
k=0

(−1)k

 ∑
|µ/µ−|=k

vsµ/µ−(t)Qµ−

⇀

 ∑
|λ+/λ|=r−k

skλ+/λ(t)Pλ+

 (26)

=
∑
λ+,µ−

(−1)|µ/µ
−| vsµ/µ−(t) skλ+/λ(t)Pλ+/µ− . (27)

For (23) and (24), the proof is the same as above. For (25), we used ek = P1k , while for (26), we used
(3) and (5). Equation (27) is obvious. 2

Proof of Theorem 4: Our first proof is along the lines of the preceding proofs of Theorems 2 and 3.

Pλ/µ · qr = (Qµ ⇀ Pλ) · qr =
∑
(qr)

(S(qr
′′) ⇀ Qµ) ⇀

(
Pλ · qr ′

)
(28)

=

r∑
k=0

(S(qk) ⇀ Qµ) ⇀
(
Pλ · qr−k

)
(29)

=

r∑
k=0

(∑
τ`k

cτ (t)Pτ ⇀ Qµ

)
⇀
(
Pλ · qr−k

)
(30)

=

r∑
k=0

(∑
τ`k

cτ (t)Qµ/τ

)
⇀
(
Pλ · qr−k

)
(31)

=

r∑
k=0

 ∑
|µ/µ−|=k

(∑
τ

cτ (t)f µµ−,τ (t)

)
Qµ−

⇀

 ∑
|λ+/λ|=r−k

hsλ+/λ(t)Pλ+

 (32)

=
∑
λ+,µ−

(−1)|µ/µ
−|(−t)|τ/µ

−| vsµ/τ (t) skτ/µ− hsλ+/λ(t)Pλ+/µ− . (33)

The only line that needs a comment is (33).
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Substitute y = −1/t, λ = µ, µ = µ− and ν = τ into Theorem 7. We get

∑
τ

skτ/µ−(t) vsµ/τ (t)(−1/t)|µ/τ | =
∑
σ

tn(σ)−(`(σ)2 )fµτ,µ−(t)

`(σ)∏
j=1

(−1/t+ tj−1),

which after a little arithmetic yields∑
σ

cσf
µ
σ,µ−(t) =

∑
τ

(−1)|µ/τ | t|τ/µ
−| skτ/µ−(t) vsµ/τ (t).

Our second proof uses Theorems 1, 2 and 3. Recall from (9) that qr =
∑r
k=0(−t)ksr−kek. We have

Pλ/µ · qr = Pλ/µ ·

(
r∑

k=0

(−t)ksr−kek

)
=

r∑
k=0

(−t)k(Pλ/µsr−k)ek

=

r∑
k=0

(−t)k
∑
σ,τ

(−1)|µ/τ | vsµ/τ (t) skσ/λ(t)Pσ/τek

=
∑

σ,τ,µ−,λ+

(−t)|τ/µ
−|+|λ+/σ|(−1)|µ/τ |+|τ/µ

−| vsµ/τ (t) skσ/λ(t) skτ/µ−(t) vsλ+/σ(t)Pλ+/µ−

=
∑

τ,µ−,λ+

(−1)|µ/µ
−|(−t)|τ/µ

−| vsµ/τ (t) skτ/µ−(t)

(∑
σ

(−t)|λ
+/σ| vsλ+/σ(t) skσ/λ(t)

)
Pλ+/µ−

=
∑

τ,µ−,λ+

(−1)|µ/µ
−|(−t)|τ/µ

−| vsµ/τ (t) skτ/µ−(t) hsλ+/λ(t)Pλ+/µ− ,

where we used Lemma 5 in the final step. 2

Remark 12 It would be preferable to have a simpler expression for the polynomial

dλ/µ(t) =
∑
ν

(−t)|ν/µ| vsλ/ν(t) skν/µ(t), (34)

i.e., one involving only the boxes of λ/µ in the spirit of hsλ/µ(t), so that we could write

Pλ/µ · qr =
∑
λ+,µ−

(−1)|µ/µ
−| hsλ+/λ(t)dµ/µ−(t)Pλ+/µ− ,

where the sum is over all λ+ ⊇ λ, µ− ⊆ µ such that |λ+/λ|+ |µ/µ−| = r.
Toward this goal, we point out a hidden symmetry in the polynomials dλ/µ(t). Writing qr as the sum∑r
k=0(−t)keksr−k before running through the second proof of Theorem 4 (i.e., applying Theorems 2

and 3 in the reverse order) reveals

dλ/µ(t) =
∑
ν

(−t)|λ/ν| skλ/ν(t) vsν/µ(t) . (35)
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Basic computations suggest some hint of a polynomial-product description for dλ/µ(t),

: − (t− 1)2(t+ 1)
(
t3 + t2 + t− 1

)
: (t− 1)2(t+ 1)

(
t3 + t2 + t− 1

)2
: t(t− 1)2(t+ 1)

(
t2 + t− 1

) (
t3 + t2 + t− 1

)2
,

but others suggest that such a description will not be tidy,

: − t2(t− 1)2(t+ 1)2
(
t3 + t2 + t− 1

) (
t7 + t6 + 2t5 − t3 − 2t2 − t+ 1

)
.

We leave a concise description of the dλ/µ(t) as an open problem.
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