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It is proved that a complete graph onn (> 4) vertices can be properly edge-colored withn−1 colors in such a way
that the edges can be partitioned into edge disjoint multicolored isomorphic spanning trees whenevern is a power of
two or five times a power of two. A spanning tree is multicolored if alln−1 colors occur among its edges.
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1 Multicolored parallelisms in complete graphs
Throughout this paperKs denotes the complete graph onsvertices. We color the edges ofK2n with 2n−1
colors by assigning one color to each edge. Basic terminology and notation on graph theory is found
in Berge (1971). The coloration isproper if whenever two edges that have one vertex in common carry
different colors. A spanning tree is calledmulticoloredif no two of its edges have the same color. Two
trees areedge disjointif they do not share common edges. Two graphs with colored edges areisomorphic
if there exists a bijectionσ between the sets of vertices and a bijectionη between the sets of colors
such that(i, j) is an edge of colorc if and only if (σ(i),σ( j)) is an edge of colorη(c). We investigate
the possibility of producing a proper edge-coloration ofK2n such that its edges can be partitioned into
edge disjoint isomorphic multicolored spanning trees. [By isomorphic multicolored spanning trees we
understand a set of spanning trees, each of which is multicolored, any two spanning trees of the set being
isomorphic as uncolored spanning trees.] When this is possible to accomplish we obtain what we call a
multicolored tree parallelismfor K2n.

When no coloring is involved, it is well-known, and a classical result of Euler, that the edges ofK2n

can be partitioned into isomorphic spanning trees (paths, for example). Each of these spanning trees can
easily be made multicolored, but the resulting edge coloration ofK2n usually fails to be proper. Indeed,
there exists a proper coloration ofK8 that does not admit a multicolored path; see Buliga (2002), [8]. By
an inductive construction we demonstrate that a partition of the edges ofKm into edge-disjoint isomorphic
multicolored spanning trees that induce a proper coloration ofKm is possible wheneverm(> 4) is a power
of two, or five times a power of two.
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Such a partition of the edges ofKm can be viewed as a parallelism as defined in Cameron (1976), [9],
with an additional property due to color. Specifically, finding a partition as described above corresponds
to an arrangement of the edges ofK2n into an array of 2n− 1 rows andn columns such that each row
contains all edges of some color (these edges form a perfect matching due to the fact that the graph
is properly colored) and the edges in each column form a (necessarily multicolored) spanning tree the
isomorphism type of which does not change from column to column. We ask, therefore, for a double
parallelism ofK2n, one present in the rows of the array (perfect matchings) and the other in the columns
that consist of edge disjoint isomorphic spanning trees.

The generating function of the multicolored spanning trees in any edge colored graph can be expressed
as a sum of formal determinants; cf. [2] and [3]. These results have been used in constructing multicolored
tree parallelisms for complete graphs on a small number of vertices. Algorithms for finding multicolored
spanning trees are discussed in [6]. We applied the algorithm written by [8] to obtain tree parallelisms
for complete graphs on a small number of vertices. An application of parallelisms of complete designs to
population genetics data is found in [1]. Parallelisms are also useful in partitioning consecutive positive
integers into sets of equal size with equal power sums; cf. [12]. Discussions of colored matchings and
design parallelisms to parallel computing appear in [11].

2 A multicolored tree parallelism for powers of two
Our main result is the following

Theorem 1 If m 6= 1,3 and a multicolored tree parallelism for K2m exists, then a multicolored tree
parallelism for K2r m exists, for all r≥ 1.

Proof: Starting with a multicolored tree parallelism forK2m it suffices to prove that we can obtain a
multicolored tree parallelism forK4m. To complete the proof we simply iterate the process. Take a copy
of the multicolored tree parallelism forK2m and call it L. Take another copy of the multicolored tree
parallelism forK2m, on a disjoint set of vertices from those ofL but using the same set of colors, and call
it R. The graph havingL∪R as vertices, with edges connecting any vertex ofL with any vertex ofR, is
calledB. It is apparent that we have thus constructed a graphK4m on the vertex setL∪R. Edges ofB
are still to be colored. Color the edges ofB in accordance with a pair of orthogonal Latin squares. For
a definition and basic properties of orthogonal Latin squares the reader is refered to [10] (p. 366). It is
well known, cf. [5], that a pair of orthogonal Latin squares onn symbols exists for alln 6= 2,6. Further
specificity on the type of such Latin squares appears in [7]. The rows of the Latin squares are indexed
by the vertices ofL, the columns by the vertices ofR. Colors used are disjoint from those used on the
edges ofL andR. Entries in the first Latin square represent the assignment of colors to the edges. We have
thus completed an edge coloration ofK4m. It is a proper coloration, since it is proper withinL andR by
assumption, and the distribution of colors in accordance with the entries of the first Latin square ensures
that edges emanating from each vertex carry all possible colors. We now describe the spanning tree
decomposition that produces a multicolored tree parallelism forK4m. In general denote bys(M) the set
of multicolored spanning trees present in the multicolored tree parallelism of complete graphM. Let B(i)
be the set of edges ofB associated to positions in which symboli occurs in the second of the orthogonal
Latin squares; 1≤ i ≤ 2m. Consider any bijectionα between the set of symbols in the second Latin square
and the sets(L)∪s(R). The sets(L∪R) is now described as follows:

s(L∪R) = {B(i)∪Tα(i) : 1≤ i ≤ 2m}.
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Elements ofs(L∪R) are spanning trees ofL∪R. Any one of them consists of a spanning tree ofL (or R)

appended with a set of pendant edgesB(i) for somei. They are therefore isomorphic as uncolored trees.
By construction it is evident that they are multicolored. It follows that they are isomorphic multicolored
spanning trees. Moreover, they are edge disjoint. The only possible overlap may occur among the edges
in B. But the orthogonality of the Latin squares ensures that an edge occurs in precisely one such spanning
tree. This completes the proof. ✷

Start out with the tree partition ofK8 written below. Rows represent colors, columns spanning trees. It
may easily be verified that we have a proper coloration ofK8, the four columns representing edge disjoint
isomorphic multicolored spanning trees.

18 34 56 27
17 36 28 45
16 38 47 25
26 15 48 37
23 14 58 67
46 78 35 12
57 24 13 68

Using this multicolored tree parallelism forK8 as theK2m in Theorem 1 we obtain

Corollary 1 Forn > 2 the graphK2n admits a multicolored tree parallelism.

A proper coloration of K10, with rows representing colors and columns representing isomorphic span-
ning trees, appears below:

12 34 90 56 78
24 13 69 57 80
60 58 14 79 23
37 89 15 40 26
49 25 70 38 16
50 46 28 17 39
67 30 18 29 45
68 19 47 20 35
59 27 36 48 10

Theorem 1 allows us now to conclude as follows.

Corollary 2 For n≥ 1 the graph K5·2n admits a multicolored tree parallelism.

3 Edge disjoint multicolored isomorphic spanning trees
Whereas the previous section offers a multicolored tree parallelism for powers of two, and five times
powers of two, this section examines settings where we fall short of a multicolored tree parallelism but
are able to construct, within the context of a proper edge coloration, a large number of edge disjoint
isomorphic multicolored spanning trees. It is easy to see that for an odd number of vertices any proper
edge coloration ofK2m+1 using 2m+ 1 colors can yield at mostm edge disjoint multicolored spanning
trees. Unlike in the case of an even number of vertices these spanning trees never partition the edge set
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of K2m+1. At leastm edges remain uncovered. By ans−coloration of Kn we understand a proper edge
coloration onKn with s colors, if one exists. By a method similar to that used in the previous section we
demonstrate the following

Theorem 2 If a (2m+1)− coloration of K2m+1 that admits m edge disjoint isomorphic multicolored
spanning trees on the same set of2m colors exists, then there also exists a(2m+1)2r− coloration of
K(2m+1)2r that admits2rm edge disjoint isomorphic multicolored spanning trees, for all(m, r) 6= (1,2).
Furthermore, all the2rm spanning trees of K(2m+1)2r in question involve the same set of(2m+1)2r −1
colors.

Proof: Let A be a copy of the givenK2m+1 andB another copy on a disjoint set of vertices with an obvious
color preserving bijectionγ between the vertices ofA andB. Consider the graphA. Edges carrying the
same colorc form a matching ofm edges and an isolated vertex; we call the isolated vertex ac−vertex.
It is clear that ifv is ac−vertex ofA thenγ(v) is ac−vertex ofB. Them spanning trees ofA have edges
colored with the same set of 2mcolors. We denote bye the extra color that occurs in none of the spanning
trees. Connect every vertex ofA to every vertex ofB and denote the set of resulting edges byC. We color
the edges inC in accordance to a pair of orthogonal Latin squares, which exist since(m, r) 6= (1,2), as
follows. Label the rows of the Latin squares by vertices ofA and columns by the corresponding vertices
in B. We can select without loss the first Latin square to have all symbols different on the main diagonal.
Symbols in the first Latin square are the colors assigned to the edges ofC. The colors in the first Latin
square are all different from the colors used on the edges ofA (or B). The graphA∪B∪C, isomorphic
to K2(2m+1), has all its edges colored with the 2m+ 1 colors inA plus the 2m+ 1 new colors inC. This
coloration is not proper, however. The following change will render a proper edge coloration: recolor the
diagonal entry in the first Latin square that corresponds to the vertex pair(vi ,γ(vi)), with vi a c−vertex,
with colorc. Do this for all diagonal entries in the first Latin square. A spanning tree of the type we want
is obtained by pairing up one of the given spanning trees ofA (or B) with nondiagonal edges in the first
Latin square that carry the same symbol in the second Latin square. By construction it follows that these
spanning trees are isomorphic, multicolored, edge disjoint and 2m in number. None of these trees have
edges colored with the extra colore. We now iterate the construction to obtain the stated result. This ends
the proof. ✷

The premise of Theorem 2 can be verified for small values ofm. In particular, it is not hard to check
that this is the case form= 2 and 3. As a consequence we obtain

Corollary 3 For a (2p+1)2r− coloration of K(2p+1)2r there exist p2r edge disjoint isomorphic mul-
ticolored spanning trees each on the same set of(2p+1)2r −1 colors.

Though a large number of spanning trees can be obtained by the construction of Theorem 2, in general
this construction is suboptimal. We can see this even in the case ofK6. Our construction yields two edge
disjoint isomorphic multicolored spanning trees. It is not hard to see that three such trees can actually be
constructed.

A small case that poses some difficulty isK12. We were able to produce a proper coloration ofK12

that allows a partition of its edges into multicolored edge disjoint spanning trees but not all trees are
isomorphic. It is listed below.
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7-8 10-12 3-5 1-2 4-6 9-11
1-6 2-3 10-11 8-9 7-12 4-5
3-4 2-6 1-5 8-12 9-10 7-11
1-3 5-6 8-10 11-12 7-9 2-4
8-11 7-10 3-6 2-5 1-4 9-12
2-8 5-11 1-7 3-9 4-10 6-12
1-8 4-9 2-7 6-11 5-12 3-10
5-7 6-8 3-11 4-12 2-10 1-9
3-12 6-7 2-9 1-10 4-11 5-8
5-9 1-11 4-8 2-12 3-7 6-10
5-10 6-9 1-12 4-7 3-8 2-11

The construction given in this paper does not apply toK12 since it relies on orthogonal Latin squares of
order 6; but Euler proved that they do not exist. Nevertheless, we state as follows:

Conjecture 1 Any proper coloration of the edges of a complete graph on an even number of (more than
four) vertices allows a partition of the edges into multicolored isomorphic spanning trees.
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