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Triangulations of cyclic polytopes
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Abstract. We give a new description of the combinatorics of triangulations of even-dimensional cyclic polytopes, and
of their bistellar flips. We show that the tropical exchange relation governing the number of intersections between
diagonals of a polygon and a lamination (which generalizes to arbitrary surfaces) can also be generalized in a different
way, to the setting of higher dimensional cyclic polytopes.

Résumé. Nous donnons une nouvelle déscription de la combinatoire des triangulations des polytopes cycliques, et de
leurs mouvements bistellaires. Nous démontrons que la relation d’échange qui gouverne le nombre d’intersections en-
tre les diagonaux d’une polygone et une lamination (qui peut être généralisée à une surface arbitraire) peut également
être généralisée au cadre des polytopes cycliques.
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1 Introduction
By a triangulation of a (convex) m-gon, we mean a subdivision of the m-gon into triangles, by adding
diagonals which do not cross in the interior of the m-gon. There is a natural graph structure on the set of
triangulations of an m-gon: two triangulations are adjacent iff they are related by a single diagonal flip in
which a diagonal is removed, and replaced by the other diagonal of the quadrilateral which results.

Let P be a set of points in Re. For simplicity, and because it is all we will need, we assume that the
points of P are in general position, i.e., with no more than two on any line, three in any (affine) plane, and
so forth. A triangulation of P is defined to be a decomposition of the convex hull of P into e-dimensional
simplices whose vertices are points of P . There is a graph structure on triangulations in this generality.
Given any e+2 points in Re (which, by our assumption of general position, do not all lie in a hyperplane),
there are two ways to triangulate their convex hull. We say that two triangulations S and T of P are related
by a bistellar flip if there are some e + 2 points of P such that S and T coincide outside the convex hull
of these points, and restricted to the convex hull of these points, S and T agree with the two different
triangulations of these points. Two triangulations are then considered to be adjacent in the graph structure
iff they are related by a bistellar flip. For more details on triangulations and bistellar flips, and greater
generality, see [DRS].

In the case of triangulations of an m-gon, we have the following trivial observations:

1. A triangulation is uniquely determined by the collection of m− 3 diagonals appearing in it.

2. Any collection of m− 3 non-crossing diagonals defines a triangulation.
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3. Triangulations S and T are related by a flip iff S and T have exactly m− 4 diagonals in common.

It is natural to ask whether this kind of description of triangulations can be generalized. Indeed, there is
one generalization which is now well-known, in which we remove the convexity, and replace diagonals by
isotopy classes of curves in an arbitrary surface, with marked points on its boundary components where
the curves are required to begin and end, and then consider the set of triangulations that arises in this way.
This approach is used to define the cluster algebra associated to such a surface (provided the surface is
orientable). The arcs correspond to cluster variables, and the diagonal flip corresponds to the mutation of
cluster variables.

In this abstract, we consider a different kind of generalization, in which we remain in the world of
convexity, but we increase the dimension of our space. Specifically, we consider the triangulations of even-
dimensional cyclic polytopes. We writeC(m, 2d) for the cyclic polytope withm vertices of dimension 2d;
we shall define this polytope in the next section. Cyclic polytopes have been extensively studied in convex
geometry, going back to [Car] in 1911. For an introduction, see [Bar, Chapter VI]. Triangulations of
cyclic polytopes have been investigated with a view to extending to that setting some of the rich structure
of triangulations of convex polygons (see [KV, ER]) and as a testing-ground for more general convex-
geometric questions, such as the Generalized Baues Problem (see [ERR, RaS]).

In order to generalize the above perspective on triangulations of an m-gon to 2d-dimensional cyclic
polytopes, we need to decide what will play the role of the diagonals in the 2-dimensional case. We
obtain a very natural generalization of the 2-dimensional setup by focussing on the d-dimensional faces
of the triangulation which lie within the interior of C(m, 2d). (We refer to these d-dimensional simplices
as internal.) Specifically, we have the following three results, analogues of the three results mentioned
above in the two-dimensional case:

1. A triangulation ofC(m, 2d) is determined by the d-dimensional faces appearing in the triangulation
[Dey].

2. A collection of d-dimensional internal simplices of C(m, 2d) of the maximal possible size such
that no two intersect in their relative interiors, corresponds to a triangulation. Further, the condition
that no two d-dimensional internal simplices intersect in their relative interiors admits a simple
combinatorial description.

3. Two triangulations S and T of C(m, 2d) are related by a bistellar flip iff they have all but one face
of dimension d in common.

We do not know an analogue of points 2 and 3 above in the case of odd-dimensional cyclic polytopes.
Note that point 2 would need to be significantly modified, since the number of faces of a given dimension
in a triangulation of C(m, 2d+ 1) is not fixed by m and d.

This abstract is an abridged form of the convex-geometric parts of [OT]. For more details, and complete
proofs, the reader is referred to that paper.

1.1 Tropical cluster exchange relations
One motivation for this work is the fact that, in the d = 1 case, triangulations of an m-gon form a model
for the combinatorics of theAm−3 cluster algebra in the sense that diagonals of them-gon are in bijection
with the cluster variables in the Am−3 cluster algebra, and the clusters correspond to triangulations.
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We might therefore hope that the internal d-simplices of C(m, 2d) also correspond to “cluster vari-
ables” in some analogue of a cluster algebra. At present, we do not know how this should be interpreted.
However, we can exhibit an analogue of the tropical cluster exchange relations of [GSV, FT] in our setting.

Let us very briefly recall the tropical cluster algebra of functions on laminations, in the rather special
case which is of interest to us. Fix an m-gon. A lamination is a collection of lines in the polygon, which
do not intersect, and which begin and end on the boundary of the polygon, and not on any vertex. Let L be
the set of laminations. For any lamination L ∈ L, and E any boundary edge or diagonal of the polygon,
there is a well-defined number of points of intersection between L and E.

Encode this information by associating to each edge or diagonalA of the polygon, a function IA : L N,
where IA(L) is the number of intersections between A and L.

These functions satisfy a certain tropical exchange relation, namely, if E,F,G,H are four sides of a
quadrilateral in cyclic order, and A,B are the two diagonals, then the relation is:

IA + IB = max(IE + IG, IF + IH)

This relation is the tropicalization of the usual cluster relation in typeA (in the sense that (×,+) have been
replaced by (+,max)). Using this relation, and supposing that the value of the functions corresponding
to the edges of a given starting triangulation (including the boundary edges) are known for a particular
lamination, one can determine the value of the function corresponding to an arbitrary diagonal of the
polygon (for the same lamination).

For general d, we define a similar collection of laminations, again denoted L, and define functions
IA : L N for each A a d-simplex in C(m, 2d) (including boundary d-simplices). These functions
satisfy an exchange relation similar to the tropical exchange relation above, which we shall state precisely
in Section 4 below.

1.2 Representation Theory
Another useful model for understanding (acyclic) cluster algebras is the cluster category of [BM+]. Here,
the (basic) cluster-tilting objects correspond to clusters of the cluster category, or, in type An, to triangu-
lations of a polygon. In fact, in type An, there is a similar but more elementary construction, in which
the clusters of a type An cluster algebra correspond naturally to the tilting objects of the type An+1 lin-
early oriented path algebra. A starting point for the work recorded here was the observation that a similar
connection exists between the triangulations of even-dimensional cyclic polytopes and a certain natural
subset of the tilting objects of a higher Auslander algebra of a type A linearly oriented path algebra. The
convex geometric results which we report here were needed in order to establish this fact. For more on
this link, the reader is referred to [OT].

Acknowledgements
The authors would like to thank Jesus De Loera, Osamu Iyama, Vic Reiner, Charles Paquette, and Fran-
cisco Santos for helpful conversations. S. O. was supported by NFR Storforsk grant no. 167130. H. T.
was supported by an NSERC Discovery Grant. Computer calculations used ACEnet facilities, employing
Sage [Sage] and the NetworkX package [HSS]. Much of this work was done during two visits by H. T.
to NTNU; he thanks the Institutt for Matematiske Fag, and his hosts Idun Reiten and Aslak Bakke Buan.
[OT] was completed during a visit by S. O. to UNB funded by a Harrison McCain Young Scholar award;



622 Steffen Oppermann and Hugh Thomas

he thanks the math department for their hospitality. The authors also thank the referees for their helpful
suggestions.

2 Triangulations of cyclic polytopes
The moment curve is the curve defined by pt = (t, t2, . . . , tδ) ⊂ Rδ , for t ∈ R. Choose m distinct real
values, t1 < t2 < · · · < tm. The convex hull of pt1 , . . . , ptm is a cyclic polytope. (We will take this as
our definition of cyclic polytope, though sometimes a somewhat more general definition is used.)

We will be interested in triangulations of C(m, δ). A triangulation of C(m, δ) is a subdivision of
C(m, δ) into δ-dimensional simplices whose vertices are vertices of C(m, δ). We write S(m, δ) for the
set of all triangulations of C(m, δ). A triangulation can be specified by giving the collection of (δ + 1)-
subsets of {1, . . . ,m} corresponding to the δ-simplices of the triangulation. It turns out that whether
or not a collection of (δ + 1)-subsets of {1, . . . ,m} forms a triangulation is independent of the values
t1 < · · · < tm chosen, so, for convenience, we set ti = i. Combinatorial descriptions of the set of
triangulations of C(m, δ) appear in the literature [Ram, Tho] (and see also [DRS, Section 6.1], but for our
purposes a new description is required.

We will mainly be interested in the case where δ = 2d is even. In R2d, we will refer to upper and lower
with respect to the 2d-th coordinate. The upper facets of C(m, 2d) are those which divide C(m, 2d) from
points above it, while the lower facets of C(m, 2d) are those which divide it from points below it. Each
facet of C(m, 2d) is either upper or lower.

We will be particularly interested in d-dimensional simplices whose vertices are vertices of C(m, 2d).
We refer to such d-dimensional simplices as d-dimensional simplices in C(m, 2d) (leaving unstated the
assumption that their vertices are vertices of C(m, 2d)). By convention, we record such simplices as
increasing (d+ 1)-tuples from [1,m] = {1, 2, . . . ,m}.

Lemma 2.1 Let A = (a0, . . . , ad) be a d-simplex in C(m, 2d).

1. A lies within a lower boundary facet of C(m, 2d) iff A contains i and i+ 1 for some i.

2. A lies within an upper boundary facet of C(m, 2d) and not within any lower boundary facet iff A
does not contain i and i+ 1 for any i, and contains both 1 and m.

3. Otherwise, the relative interior of A lies in the interior of C(m, 2d). We refer to such d-faces as
internal.

Proof: This follows immediately from the description of the upper and lower boundary facets ofC(m, 2d)
given in [ER, Lemma 2.3]: the lower boundary facets of C(m, 2d) are precisely those simplices whose
vertices are 2d-subsets consisting of a union of d pairs of the form {i, i + 1}, while the upper boundary
facets are precisely those simplices whose vertices are 2d-subsets consisting of a union of d − 1 pairs of
the form {i, i+ 1} together with {1,m}. 2

We define index sets as follows:

Definition 2.2

Idm = {(i0, . . . , id) ∈ {1, . . . ,m}d+1 | ∀x ∈ {0, 1, . . . , d− 1} : ix + 2 ≤ ix+1}
	Idm = {(i0, . . . , id) ∈ Idm | (i0, id) 6= (1,m)}.
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Definition 2.3 We say that (i0, i1, . . . , ik) is separated if ix + 2 ≤ ix+1 for all 0 ≤ x ≤ k − 1.

Using this term, we can rephrase the definition of Idm as the set of separated (d + 1)-tuples from
{1, 2, . . . ,m}.

Now Lemma 2.1 can be rephrased as saying that 	Idm indexes the internal d-simplices of C(m, 2d),
while Idm indexes the d-simplices in C(m, 2d) which do not lie on a lower boundary facet.

Let S be a triangulation of C(m, 2d). Denote by e(S) the set of d-simplices in C(m, 2d) which appear
as a face of some simplex in S, and which do not lie on any lower boundary facet of C(m, 2d).

Let A and B be increasing (d + 1)-tuples of real numbers. We say that A = (a0, . . . , ad) intertwines
B = (b0, . . . , bd) if a0 < b0 < a1 < b1 · · · < ad < bd. We write A o B for this relation. A collection of
increasing (d+ 1)-tuples is called non-intertwining if no pair of the elements intertwine (in either order).

Theorem 2.4 For any S ∈ S(m, 2d) the set e(S) consists of exactly
(
m−d−1

d

)
elements of Idm, and is

non-intertwining.

We also have a converse result:

Theorem 2.5 Any non-intertwining collection of
(
m−d−1

d

)
elements of Idm is e(S) for a unique S ∈

S(m, 2d).

Example 2.6 We consider the above theorems in the case d = 1. If S is a triangulation of C(m, 2), then
e(S) consists of the internal edges of the triangulation together with the edge 1m. The theorems are clear
in this case.

2.1 Proof of Theorem 2.4
An affine dependency among vectors {v1, . . . , vr} in Re is a relation of the form

∑
aivi = 0 where∑

ai = 0, but the coefficients are not all zero. We now describe the minimal-size affine dependencies
among points on the moment curve. Proofs of the following can be found in [ER, OT].

Lemma 2.7 Let a1 < · · · < a2d+2. Among the points pa1 , . . . , pa2d+2
there is a unique affine dependency,

which can be expressed in the form ∑
i even

cipai =
∑
i odd

cipai

where the ci are all positive and ∑
i even

ci = 1 =
∑
i odd

ci

The previous lemma can also be expressed as saying that if X and Y are intertwining (d + 1)-tuples,
then the corresponding d-simplices intersect in a single interior point of both, while ifX and Y are distinct
(d+ 1)-tuples which do not intertwine, the relative interiors of their corresponding simplices are disjoint.

For A = (a0, . . . , a2d) an increasing (2d + 1)-tuple from [1,m], define the (d + 1)-tuple e(A) =
(a0, a2, . . . a2d) by taking the even-index terms from A.

Proof of Theorem 2.4: The elements of e(S) are faces of simplices in the triangulation. Thus, they
cannot intersect in a single point in both their interiors. It follows that e(S) is non-intertwining.

We now establish the cardinality of e(S). It turns out that E ∈ e(S) iff E = e(A) for some simplex A
of S, and, for different simplices A,B of S, we have e(A) 6= e(B). Therefore, |e(S)| equals the number
of simplices in S, which was shown by Bayer [Bay] to be

(
m−d−1

d

)
. 2



624 Steffen Oppermann and Hugh Thomas

2.2 Proof of Theorem 2.5
To prove this theorem, we need to show the existence of certain triangulations of C(m, 2d). The approach
we take is inductive, and is based on some results of Rambau and Santos [RaS], which we now describe.

To begin with, we define two operations of triangulations, following [RaS, Section 3].

Definition 2.8 Let S ∈ S(m, 2d).

1. We define S/1 to be the triangulation of C([2,m], 2d) which is obtained from S by moving the
vertices 1 and 2 together and throwing away the simplices that degenerate. The 2d-simplices of
S/1 are obtained from the 2d-simplices of S by removing any simplex containing both vertices 1
and 2, and then, in any simplex containing 1, replacing 1 by 2.

2. We define S \ 1 to be the triangulation of C([2,m], 2d− 1) obtained by taking only the simplices of
S that contain 1, and then removing 1 from them. This clearly defines a triangulation of the vertex
figure of C(m, 2d) at 1, that is to say, of the (2d−1)-dimensional polytope obtained by intersecting
C(m, 2d) with a hyperplane which cuts off the vertex 1. This vertex figure is not a cyclic polytope
according to our definition, but its vertices determine the same oriented matroid as the vertices of a
cyclic polytope, which is sufficient to imply that a triangulation of the vertex figure also determines
a triangulation of C([2,m], 2d − 1), and conversely (see [RaS, Lemma 3.1] for details). We write
S \ {1, 2} for (S \ 1) \ 2.

For a triangulation Q of C(p, δ) and a triangulation P of C(p, δ − 1), we write that P ≺ Q if each
simplex of P is a facet of at least one simplex of Q. In this case, the simplices of Q are divided into two
classes, those above P and those below P .

We have the following proposition, which we cite in a convenient form, restricted to the case which is
of interest to us. (As it appears in [RaS], it treats subdivisions of cyclic polytopes which are more general
than triangulations.)

Proposition 2.9 ([RaS, Lemma 4.7(1)]) Let T be a triangulation of C([2,m], 2d), and let W be a tri-
angulation of C([3,m], 2d − 2). Then there exists a triangulation S of C(m, 2d) with S/1 = T and
S \ {1, 2} = W iff W ≺ T \ 2.

We next define two operations on subsets of Idm, parallel to the above operations on triangulations.
For an e-tuple A = (a1, . . . , ae) with a1 > 1 we denote by 1 ? A the (e+ 1)-tuple (1, a1, . . . , ae). For

a set X of e-tuples with this property we denote by 1 ? X the set {1 ? A | A ∈ X}. Similarly we define
2 ? A and 2 ? X .

Definition 2.10 Let X ⊂ Idm. We define X/1 and X \ {1, 2} as follows:

1. X/1 is obtained from X by replacing all 1’s by 2’s, and removing any resulting tuples which are
not separated.

2. X \ {1, 2} consists of all d-tuples A from [3,m] such that 1 ? A is in X and either 2 ? A is in X or
3 ∈ A. (These two possibilities are mutually exclusive, since if 3 ∈ A, then 2 ? A is not separated,
and so it cannot be in X .)

Note that for X ⊂ Idm, we do not define X \ 1; instead, we define X \ {1, 2} in one step.
The relationship between the operations on triangulations and the operations on subsets of Idm are what

one might expect from the notation:
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Lemma 2.11 Let S ∈ S(m, 2d). Then e(S/1) = e(S)/1, and e(S \ {1, 2}) = e(S) \ {1, 2}.

We next show some properties about these operations on subsets of Idm.

Lemma 2.12 If X is a non-intertwining subset of Idm, so are X/1 and X \ {1, 2}.

The following lemma is established by induction on m and d:

Lemma 2.13 The maximal size of a non-intertwining subset of Idm is
(
m−d−1

d

)
. Also, if X is a set of that

size, |X/1| =
(
m−d−2

d

)
, and |X \ {1, 2}| =

(
m−d−2
d−1

)
.

Lemma 2.14 If X and Y are non-intertwining subsets of Idm of cardinality
(
m−d−1

d

)
such that X/1 =

Y/1 and X \ {1, 2} = Y \ {1, 2}, then X = Y .

Proof of Theorem 2.5: Suppose that we have a non-intertwining set X ⊂ Idm of cardinality
(
m−d−1

d

)
.

We want to show that it defines a unique triangulation. The proof is by induction on d and m.
By Lemma 2.13, |X/1| =

(
m−d−2

d

)
and |X \{1, 2}| =

(
m−d−2
d−1

)
. It follows by induction that X/1 and

X \ {1, 2} define unique triangulations, of C([2,m], 2d) and C([3,m], 2d − 2), respectively, which we
can denote T and W . We then show that W ≺ T \ 2.

Proposition 2.9 implies that there is a unique triangulation S such that S/1 = T and S \ {1, 2} = W .
We know that e(S)/1 = X/1 and e(S) \ {1, 2} = X \ {1, 2}. By Lemma 2.14, X = e(S). By the result
of Dey already cited, S is the only triangulation with e(S) = X . 2

The unique triangulation corresponding to a maximal-size collection of non-intertwining subsets of Idm
is easy to construct.

Proposition 2.15 The triangulation corresponding to a set X of
(
m−d−1

d

)
non-intertwining elements of

Idm consists of precisely the simplices all of whose d-faces are either non-separated or contained in X .

Proof: This is a refinement of the result of Dey [Dey] specialized to our setting and is proved similarly.
2

3 Bistellar flips
Theorem 3.1 For S, T ∈ S(m, 2d), we have that S and T are related by a bistellar flip iff e(S) and e(T )
have all but one (d+1)-tuple in common. In this case, the two (d + 1)-tuples in the symmetric difference
of e(S) and e(T ) intertwine.

Example 3.2 When d = 1 and the vertices are in convex position, a bistellar flip amounts to replacing
one diagonal of a quadrilateral with the other diagonal. The vertices of C(m, 2) are always in convex
position, so bistellar flips always amount to replacing one diagonal of a quadrilateral by the other one;
clearly, if S and T are related in this way, then e(S) and e(T ) differ by the diagonal being flipped.

If A ∈ Idm and R is a non-intertwining subset of Idm not containing A, we say that A is a complement
for R if R ∪ {A} corresponds to a triangulation (that is to say, it is non-intertwining and has cardinality(
m−d−1

d

)
).

If A and B are distinct complements to some R, they are called exchangeable.

Proposition 3.3 A and B are exchangeable iff they intertwine (in some order).
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Proposition 3.4 Let A and B be exchangeable. A and B are complements to R ⊂ Idm iff R is a non-
intertwining subset of Idm \{A,B} with cardinality

(
m−d−1

d

)
−1, which contains every separated (d+1)-

tuple from A ∪B other than A and B.

Example 3.5 In the d = 1 case, it is clear that A and B are exchangeable iff they cross in their interiors
(as line segments) iff they intertwine in some order (as increasing ordered pairs from {1, . . . ,m}). In this
case, the triangulations in which A can be exchanged for B are exactly those containing A and the four
edges of the quadrilateral defined by the vertices of A and B.

4 Tropical cluster exchange relations
Define a generalized lamination to be a finite collection of increasing (d+1)-tuples from R\{1, . . . ,m},
such that no two intertwine. We can also think of a generalized lamination as a collection of d-simplices
in R2d with vertices on the moment curve, which do not intersect in their interiors; the increasing (d +
1)-tuple (b0, . . . , bd) corresponds to the convex hull of the points pbi . We denote by L the set of all
generalized laminations.

For each increasing (d + 1)-tuple A from {1, . . . ,m} we define a function IA : L N by setting
IA(L) to be the number of elements of L which intertwine with A (in some order). This is also equal
to the number of intersections of the simplex A with the simplices defined by the lamination. In this
section we show that these functions satisfy certain tropical exchange relations which we shall define,
and in which the functions IA for A 6∈ 	Idm function as frozen variables (in other words, they cannot be
mutated).

In the case that d = 1, this was shown by Gekhtman, Shapiro, and Vainshtein [GSV]. ([GSV] considers
more general situations, where the polygon is replaced by other surfaces. See also the work of Fomin and
Thurston [FT] for another perspective and further extensions of this.)

The next theorem gives the tropical exchange relation between IA and IB whereA andB are exchange-
able. First we need a definition:

Definition 4.1 For (i0, . . . , id), (j0, . . . , jd) ∈ 	Idn+2d+1 with (i0, . . . , id)o(j0, . . . , jd), andX ⊆ {0, . . . , d},
we set

mX((i0, . . . , id), (j0, . . . , jd)) = sort({ix | x ∈ X} ∪ {jx | x 6∈ X})
nX((i0, . . . , id), (j0, . . . , jd)) = sort({ix | x ∈ X} ∪ {jx−1 | x 6∈ X})

Here we write sort(K) for the tuple consisting of the elements of the set K in increasing order. In the
definition of nX , we interpret j−1 as jd.

Theorem 4.2 Let A,B ∈ 	Idm such that A oB. Then we have the following equality of functions L Z:

IA = max
( ∑
X({0,...,d}

(−1)|X|+dImX(A,B), (1)

∑
X({0,...,d}

(−1)|X|+dInX(A,B)

)
The relation (1) is “tropical” because it uses the operations max(·, ·) and +, rather than + and ×.
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If d = 1, and A = (a0, a1), B = (b0, b1), then (1) specializes to:

I(a0,a1) = max
(
I(a0,b1) + I(b0,a1) − I(b0,b1), I(a0,b0) + I(a1,b1) − I(b0,b1)

)
(2)

If one replaces (max,+) in (2) with (+,×), one obtains the type A cluster algebra exchange relation. We
do not know how to obtain a meaningful analogue of this for d > 1.

Note that for d > 1, (1) is not a tropical cluster algebra relation, because of the signs. When d = 2, we
get, for example, the following exchange relation:

I024 − I135 = max(I124 + I034 + I025 − I134 − I125 − I035,
I245 + I014 + I023 − I013 − I145 − I235)

The statement of Theorem 4.2 was chosen for maximum uniformity. It follows from the proof that, if d
is even, then the two terms inside the max(·, ·) are equal, so the theorem could be stated more simply in
this case.

4.1 Proof of Theorem 4.2
Let ` = (`0, . . . , `d) be an increasing (d+1)-tuple of non-integers. We will also write ` for the generalized
lamination consisting only of `. We begin by considering (1) on generalized laminations of the form `.

A simple analysis of the combinatorics implies:

Proposition 4.3 Let A and B be exchangeable (d+1)-tuples such that A oB, and let ` be as above. Then
exactly one of the following happens:

1.
∑

X⊆{0,...,d}

(−1)|X|ImX(A,B)(`) = 0, or

2. d is odd, and ai < `i < bi for all i.

We say that ` is in m-special position with respect to the pair A,B if it satisfies Condition (2) of
Proposition 4.3.

Under the same conditions of Proposition 4.3, a similar statement holds for
∑
X⊆{0,...,d}(−1)|X|InX(A,B)(`);

either this sum is zero or d is odd and there is one entry `k between bi−1 and ai for all 1 ≤ i ≤ d, and one
entry `k which is either less than a0 or greater than bd. If the second of these two alternatives holds, we
say that ` is in n-special position.

Proof of Theorem 4.2: Consider (1) applied on `. By the above proposition (and its analogue), if d is
even, or if ` is neither in m- nor n-special position, then the contributions from ` to both sides of (1) are
equal and, further, the two terms being maximized are also equal. In the remaining case (d odd and ` in
m- or n-special position), one checks that the lefthand side of (1) is 1, while the terms on the righthand
side are −1 and 1.

Now we consider (1) on an arbitrary generalized lamination L. As already observed, the simplices in
L which are neither in m- nor n-special position with respect to A,B give equal contributions to the left-
hand side of (1) and to each of the terms of the maximum on the right-hand side, so they can be ignored.
If d is even, we are done also. Otherwise, note that L cannot have both elements which are in m-special
position and elements which are in n-special position, since these would intertwine. Thus, only one of the
two special positions is allowed, and the contributions from all the terms of L in special position therefore
appear, with positive sign, in the same term in the maximum. Thus the equality of the theorem holds. 2
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5 New phenomena in higher dimensions
In this section we consider the simplicial complex ∆2d

m with vertex set 	Idm, whose maximal faces corre-
spond to the collections of internal simplices of triangulations of C(m, 2d). We report on some features
of ∆2d

m for d = 1 which do not persist for higher d.

5.1 The clique property
Given a simplicial complex ∆ on a vertex set V , we say that vertices v and w are compatible if {v, w} is
a face of ∆. We then say that ∆ is a clique complex if its faces consist of all pairwise compatible subsets
of V . The complex ∆2

m is clique, because any maximal collection of non-crossing diagonals corresponds
to a triangulation. This property no longer holds for ∆2d

m with d ≥ 3.

Proposition 5.1 ∆2d
2d+3 is not a clique complex for d ≥ 3. Equivalently, there exist maximal non-

intertwining subsets of 	Id2d+3 which are not of the overall maximal size.

Computer experiments have not detected any similar phenomena when d = 2.

Proof of Proposition 5.1: The elements of 	Id2d+3 can be arranged in a cycle, in such a fashion that any
(d + 1)-tuple is compatible with any other one except the two which are maximally distant from it. The
overall maximal size of a non-intertwining collection is d+1; the non-intertwining collections of that size
consist of d+ 1 consecutive entries around the cycle.

For d = 3, the resulting cycle is below:

1357

1358

1368

1468
2468

2469

2479

2579

3579

If d ≥ 3, it is possible to choose three (d + 1)-tuples in 	Id2d+3 which are pairwise non-intertwining,
but which do not all lie in any consective sequence of length d + 1. Therefore, this collection cannot be
extended to a collection of d+ 1 non-intertwining elements of 	Id2d+3.

For example, for d = 3, we could choose {1357, 1468, 2479} as our starting collection; it is impossible
to increase it to a non-intertwining collection of size d+ 1 = 4. 2

5.2 Shellability
It is natural to ask about the topology of ∆2d

m . Many nice simplicial complexes are shellable. We recall
the precise definition below; the point is that if a simplicial complex is shellable, then its homotopy
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type admits a very simple description. It is classical that ∆2
m is shellable, because it can be realized as

the boundary of a convex polytope, the (simple) associahedron [Lee], and the boundary of a simplicial
convex polytope is shellable [BrM].

Our result in this direction is a negative one:

Proposition 5.2 For d ≥ 2, the complex ∆2d
2d+3 is not shellable.

A simplicial complex is called d-dimensional if all its maximal faces contain d+ 1 vertices.

Definition 5.3 For d > 0, a d-dimensional simplicial complex is called shellable if its maximal faces
admit an order F1, . . . , Fp such that for all i > 1, the intersection of Fi with

⋃
j<i Fj is a non-empty

union of codimension one faces of Fi.

If a d-dimensional simplicial complex is shellable, then it is either contractible or homotopic to the
wedge product of some number of d-dimensional spheres, [Bjö, Theorem 1.3].

Proof of Proposition 5.2: The simplicial complex ∆2d
2d+3 is d-dimensional. Therefore, if ∆2d

2d+3 were
shellable, it would necessarily either be contractible or be homotopic to a wedge of some number of
d-spheres.

The cycle defined in the proof of Proposition 5.1 on the vertices of ∆2d
2d+3, viewed as a one-dimensional

simplicial complex, is a subcomplex of ∆2d
2d+3, and ∆2d

2d+3 admits a deformation retract to it. Thus ∆2d
2d+3

is homotopic to S1. It follows that for d ≥ 2 it is not shellable. 2
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