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An algorithm which generates linear
extensions for a non-simply-laced d-complete
poset with uniform probability

Kento Nakada†

Graduate School of Education Master’s Program, Okayama University, Japan

Abstract. The purpose of this paper is to present an algorithm which generates linear extensions for a non-simply-
laced d-complete poset with uniform probability.
Résumé. Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour une non-simply-
laced d-complete poset avec probabilité constante.
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1 Introduction
In [7](Theorem 4.2), J. Stembridge classified irreducible minuscule elements of Kac-Moody Weyl group
over a root system Φ into three classes below:

• Φ is simply-laced,

• Φ has the form e
0

e e e e
1 2 (namely, of type B) , or

• Φ has the form e e e e
−m −2 −1

e e e e
0 1 (we say type Fm, for simplicity).

In [5][6], the author and S. Okamura constracted an algorithm which generates reduced decompositions
for a given minuscule element of simply-laced Weyl group with uniform probability. The algorithm in
[6] is described in terms of graphs. Simply-laced minuscule elements are described as certain simple
acyclic di-graphs. The transitive-closure of the graph is called a d-complete poset. Then, the reduced
decompositions are identified with linear extensions of the graph. This algorithm gives a proof of the
hook formula [1] for the number of reduced decompositions of a minuscule element in simply-laced case.

In this paper, we present an algorithm (algorithm A) in terms of graphs (See Section 2 for details).
This algorithm is a generalization of an algorithm in [5][6]. We define a certain acyclic multi-di-graph
corresponding to a minuscule element of type B (resp. type Fm) in Section 3 (resp. Section 4). Our
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main result (Theorem 5.1) is that the algorithm A generates linear extensions for a minuscule element of
type B and Fm with uniform probability. More precisely, the probability the algorithm A generates linear
extension L of a graph S is given by: ∏

v∈S(1 + #HS (v)
+

)

#S!
, (1.1)

where HS (v)
+ is a certain subset of S (See Section 2 for detail). This (1.1) is independent from the

choice of L. Hence, we get the hook formula for the number of linear extensions of a given shape S of
type B and Fm. Namely, the number of linear extensions of a shape S is given by:

#S!∏
v∈S(1 + #HS (v)

+
)
.

In section 6, we give a Lie theoretical description of shape of type B and Fm.

2 An algorithm for a graph Γ
Let Γ = (Γ;A, o, i) be a finite acyclic multi-di-graph, where A denotes the set of arrows of Γ, i(a) the
sink of a ∈ A, and o(a) the source of a ∈ A.

Definition 2.1 Put d := #Γ. A bijection L : {1, · · · , d} −→ Γ is said to be a linear extension of Γ if:

L(k) = o(a) and i(a) = L(l) implies k > l, k, l ∈ {1, · · · , d}, a ∈ A.

The set of linear extensions of Γ is denoted by L (Γ).

For a given v ∈ Γ, we define a set HΓ (v)
+ by:

HΓ (v)
+

:=
{
a ∈ A(Γ) v = o(a)

}
.

For a given Γ, we call the following algorithm the algorithm A for Γ:

GNW1. Set i := 0 and set Γ0 := Γ.

GNW2. (Now Γi has d− i nodes.) Set j := 1 and pick a node v1 ∈ Γi with the probability 1/(d− i).

GNW3. If #HΓi (vj)
+ 6= 0, pick an arrow aj+1 ∈ HΓi (vj)

+ with the probability 1/#HΓi (vj)
+. If not,

go to GNW5.

GNW4. Set vj+1 := i(aj). Set j := j + 1 and return to GNW3.

GNW5. (Now #HΓi
(vj)

+
= 0.) Set L(i+ 1) := vj and set Γi+1 := Γi \vj (the graph deleted vj from Γi).

GNW6. Set i := i+ 1. If i < d, return to GNW2; if i = d, terminate.

We note that the algorithm A stops in finite time since Γ is acyclic. By the definition of the algorithm A
for Γ, the map L : i 7→ L(i) generated above is a linear extension of Γ. We denote by ProbΓ(L) the
probability we get L ∈ L (Γ) by the algorithm A.
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3 Shapes of type B
We denote by N the set of non-negative integers. We define a set B by:

B :=
{

(i, j) ∈ N× N i ≤ j
}
.

The set B is depicted in FIGURE 3.1. We equip the B with the partial order:

(i, j) ≤ (i′, j′)⇐⇒ i ≥ i′ and j ≥ j′.

· · ·
. . . . . .

. . . . . .
. . . . . .
. . .

Fig. 3.1: The set B

Definition 3.1 Let S be a finite order filter of B. We induce to S a graph structure by:

(i, j)→ (i′, j′) if and only if


“i = j and i′ = i, j′ > j”,
“i < j and i′ = i, j′ > j”,
“i < j and i′ > i, j′ = j”,
or “i < j and i′ = j, j′ > i”,

(i, j) ⇒ (i′, j′) if and only if “i < j and i′ = j′ = j”,

and there exists no other adjacency relation. Here, v → v′ means there exists exactly one arrow from v
to v′, and v ⇒ v′ there exists exactly two arrows from v to v′. A graph S is called a shape of type B. See
FIGURE 3.2 for examples of HS (v)

+.

u - - - -

?

??

A
A
AU

@
@
@R

v - - - - - -
w - -

?

?

?

Fig. 3.2: HS (u)+, HS (v)+, and HS (w)+.

Remark 3.2 A shape of type B as poset is order-isomorphic to a shifted shape. Shifted shapes are also
realized as d-complete posets over a root system of type D. The graph-structure of shapes of type D is
described in [6] and compatible with notion of hooks (or called bars) of shifted shapes. The algorithm A
depends not only on poset-structure but on graph-structure. Hence, we do not consider shapes of type B
as shifted shapes.



658 Kento Nakada

4 Shapes of type Fm (m ≥ 2).
We denote by Z the set of integers. Let m be an integer greater than or equal to 2. We define a set Fm by:

Fm :=

 (i, j) ∈ N× Z
i = 0 and j ≥ −m,
i = 1 and j ≥ 0, or

2 ≤ i ≤ m and j = 0


For example, the set F3 is depicted in FIGURE 4.1. We equip the Fm with the partial order:

(i, j) ≤ (i′, j′)⇐⇒ i ≥ i′ and j ≥ j′.

· · ·
· · ·

Fig. 4.1: The set F3

Definition 4.1 Let S be a finite order filter of Fm. We induce to S a graph structure by:

(i, j)→ (i′, j′) if and only if



“i = 0, j ≤ −1 and i′ 6= −j, j′ > j”,
“i = 0, j = 0, and j′ > 0”,
“i = 1, j = 0, and i′ = 1, j′ > 0”,
“i = 1, j = 0, and i′ > 1, j′ = 0”,
“i ≥ 2, j = 0, and i′ > i, j′ = 0”,
“j ≥ 1 and i′ = i, j′ > j”,
or “j ≥ 1 and i′ > i, j′ = j”,

(i, j) ⇒ (i′, j′) if and only if “i = 0, j = 0, and 0 < i′, j′ = 0”,

and there exists no other adjacency relation. A graph S is called a shape of type Fm. See FIGURE 4.2
for examples of HS (v)

+.
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Fig. 4.2: HS (u)+, HS (v)+, and HS (w)+.
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5 Main result
Now, we can state the main theorem:

Theorem 5.1 Let S be a shape of typeB or type Fm for somem ≥ 2. Let L ∈ L (S). Then the algorithm
A for S generates L with the probability

ProbS(L) =

∏
v∈S(1 + #HS (v)

+
)

#S!
. (5.1)

Since the right hand side of (5.1) is independent from the choice of L ∈ L (S), we have:

Corollary 5.2 Let S be a shape of type B or type Fm for some m ≥ 2. Then we have:

#L (S) =
#S!∏

v∈S(1 + #HS (v)
+

)
.

6 Lie theoretical description of main result and Remarks
In this section, we fix a (not necessary simply-laced) Kac-Moody Lie algebra g with a simple root system
Π =

{
αi ∈ I

}
. For all undefined terminology in this section, we refer the reader to [2] [3].

Definition 6.1 An integral weight λ is said to be pre-dominant if:

〈λ, β∨〉 ≥ −1 for each β∨ ∈ Φ∨+,

where Φ∨+ denotes the set of positive real coroots. The set of pre-dominant integral weights is denoted by
P≥−1. For λ ∈ P≥−1, we define the set D(λ)∨ by:

D(λ)∨ :=
{
β∨ ∈ Φ∨+ 〈λ, β∨〉 = −1

}
.

The set D(λ)∨ is called the shape of λ. If #D(λ)∨ <∞, then λ is called finite.

Proposition 6.2 (see [4]) Let λ ∈ P≥−1 be finite and β∨, γ∨ ∈ D(λ)∨ satisfy β∨ > γ∨ in the ordinary
order of coroots. Then we have:

〈β, γ∨〉 = 0, 1, or 2.

By proposition 6.2, we introduce graph-structure into D(λ)∨ by:

β∨ → γ∨ ⇔ β∨ > γ∨ and 〈β, γ∨〉 = 1.

β∨ ⇒ γ∨ ⇔ β∨ > γ∨ and 〈β, γ∨〉 = 2.

If β∨ 6> γ∨, or β∨ > γ∨ and 〈β, γ∨〉 = 0, then no arrows from β∨ to γ∨ exist.
Thus, we get a finite acyclic multi-di-graph D(λ)∨ for a finite λ ∈ P≥−1.

Remark 6.3 The finite pre-dominant integral weights λ are identified with the minuscule elements w [4].
And, we have D(λ)∨ =

{
β∨ ∈ Φ∨+ w−1(β∨) < 0

}
. Furthermore, the linear extensions of D(λ)∨ are

identified with the reduced decompositions of w [4] by the following one-to-one correspondence:

Red(w) 3 (si1 , si2 , · · · , sid)←→ L ∈ L (D(λ)∨) , L(k) = si1 · · · sik−1
(αik)∨ ∈ D(λ)∨ (k = 1, · · · d),

where Red(w) denotes the set of reduced decompositions of w, d = `(w) the length of w.
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6.1 Case of type B

Suppose that the underlying Dynkin diagram is of type B:e
0

e e e e
1 2

LetW = 〈s0, s1, s2, · · · 〉 be the Weyl group. Let Λ0 be the 0-th fundamental weight. Then each λ ∈WΛ0

is a finite pre-dominant integral weight. And, D(λ)∨ is graph-isomorphic with some shape of type B
defined in section 3.

Remark 6.4 Let W0 := 〈s1, s2, · · · 〉 be a maximal parabolic subgroup of W , which is the Weyl group of
type A. Then a minimal coset representative w in W/W0 is called a Lagrangian Grassmannian element.

Let λ ∈ WΛ0. Then the corresponding minuscule element w in remark 6.3 is a Lagrangian Grass-
mannian element. Our result gives the number of reduced decompositions of Lagrangian Grassmannian
element w.

6.2 Case of type Fm (m ≥ 2)

Let m ∈ Z be greater than or equal to 2. Suppose that the underlying Dynkin diagram is of type Fm:e e e e
−m −2 −1

e e e e
0 1

Let W = 〈s−m, · · · , s−2, s−1, s0, s1, · · · 〉 be the Weyl group. Let Λ−m be the (−m)-th fundamental
weight. Then each λ ∈ P≥−1 ∩WΛ−m is a finite pre-dominant integral weight. And, D(λ)∨ is graph-
isomorphic with some shape of type Fm defined in section 4.
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