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The(k,n)-perfect shuffle, a generalisation of the 2-way perfect shuffle, cuts a deck ofkncards intok equal size decks
and interleaves them perfectly with the first card of the last deck at the top, the first card of the second-to-last deck as
the second card, and so on. It is formally defined to be the permutationρk,n : i → ki (modkn+1), i ∈ {1,2, . . . ,kn}.
We uncover the cycle structure of the(k,n)-perfect shuffle permutation by a group-theoretic analysis and show how
to compute representative elements from its cycles by an algorithm usingO(kn) time andO((logkn)2) space. Con-
sequently it is possible to realise the(k,n)-perfect shuffle via an in-place, linear-time algorithm. Algorithms that
accomplish this for the 2-way shuffle have already been demonstrated.

Keywords: permutation, perfect shuffle,k-way shuffle, cycle decomposition, linear time algorithm.

1 Introduction
The(k,n)-perfect shufflecuts a deck ofkncards intok equal size subdecks and interleaves those subdecks
perfectly. After the shuffle, the first card of the last subdeck becomes the first card of the new deck, the
first card of the second-to-last subdeck becomes the second card, and so on. See Figure 1.

This is a generalisation of the well-known2-way perfect shuffle. We define the(k,n)-perfect shuffle
permutationto be the permutationρk,n : i → ki (mod(kn+1)), i ∈ {1,2, . . . ,kn}.

The perfect shuffle has many interesting mathematical properties and applications in computer science.
The group structure of the 2-way perfect shuffle and some applications to network design are given in
[DGK83] and [MM87]. A family of parallel computer architectures and associated algorithms are based
on the 2-way perfect shuffle. See, for example, [Sto71, Bat91, Lei92]. In [EM00] it is shown that the clas-
sic problem of merging two lists in-place, with stability, can be reduced to the problem of accomplishing
the 2-way perfect shuffle in-place. It may be thatk-way shuffling is applicable tok-way merging. Hence
efficient realisations of shuffling permutations could permit efficient simulation of parallel algorithms on
sequential machines, and may open up new merging methods.
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Fig. 1: The(3,4)-perfect shuffle illustrated

We have in mind the algorithmic problem of permuting, in-place, a list represented by a one-dimensional
array of elements indexed by the integers 1 throughkn. By “in-place” we mean without the use of sub-
stantial extra space over and above that which the list elements already occupy. To be precise, we allow
ourselves no more thanO((logkn)2) extra bits for program variables and data structures. This definition
was originally proposed by Knuth [Knu73, Section 5.5, Exercise 3]. The intention was to permit some
fixed number of program variables plus recursion.

Permutations are made up of disjoint cycles and it is easy to move all the elements of one cycle,
using just one extra location, by a so-called “cycle leader” algorithm [FMP95]. The method proceeds
by repeatedly making a space in the list, computing the index of the element that belongs in that space
and moving that element, and thus creating a new space. For example, to permuteρ2,3 = (1 2 4)(3 6 5),
we can move the elements as indicated in Figure 2. In that figure, the numbers on the arrows define the
order in which the moves take place.

If we can easily find an unmoved element with which to start a new cycle when the current cycle
terminates, then the entire task becomes easy. This is the case for some commonly used permutations
such as reversal and cyclic shifts. In those cases, if the current cycle was started at locationi and elements
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Fig. 2: Realising the Perfect Shuffle

remain to be moved at the end of the current cycle, then it is easy to show that the element at locationi +1
has yet to be moved. The problem with the perfect shuffle is that the cycle structure is more complicated,
and it is no longer immediately apparent how to compute the beginning of a new cycle when needed.

We analyse the structure of the generalised perfect shuffle permutation in terms of the size, number and
location of its cycles. Then we construct an in-place,O(kn) time procedure that computes a set containing
one element from each cycle. A cycle leader algorithm can use this set to realise the perfect shuffle
in-place and in time linear in the total number of elements being shuffled.

We call this set of elements a set ofseeds(calledcycle leadersin [FMP95]). The seed set is a set of
array indices with the following properties:

1. No two seeds are in the same cycle.

2. Every cycle contains a seed.

The methods in [FMP95] can be used to compute a seed set for any permutation ofn elements in time
O(nlogn) and usingO((logn)2) bits. We show how to compute a seed set usingO((logkn)2) space and
O(kn) time. A linear time and in-place algorithm for the 2-way perfect shuffle was given by Ellis and
Markov [EM00]. That method does not compute a seed set. An alternative method [EKF00], which does
compute a seed set, uses about half the number of moves at the expense of more arithmetic, as compared
to the first method. The method described in this paper is a generalisation of this latter method. We give a
characterisation of the cycles ofρk,n in group theory terms and we present a linear time, in-place algorithm
for computing a seed set.

2 The Algebraic Structure of the Cycles of ρk,n

We use some basic concepts from number theory and group theory. Most of them can be found in, for
example, [Jon64, Agn72, Her75, BS96, Bak84]. We are concerned with the ring of integers modulon,
wherem (modn) denotes the integer that is congruent tom and contained in{0,1, . . . ,n−1}. The ring
of integers modulon, denoted byZ/(n), is the set{0,1, . . . ,n− 1} together with operations+ and ·
defined bya+ b = (a+ b) (mod n), a ·b = ab (mod n). Clearly, the zero element and unit element of
Z/(n) are 0 and 1 respectively. For convenience, we writeab instead ofa ·b, andx instead ofx (modn)
when x is assumed to be an element ofZ/(n). The group of units ofZ/(n) is denoted by(Z/(n))∗.
(Z/(n))∗ = {a∈Z/(n) : gcd(a,n) = 1}, where gcd denotes greatest common divisor. The group(Z/(n))∗

hasϕ(n) elements, whereϕ is the Eulerϕ function. Whenn = 2,4, pl or 2pl (wherep is an odd prime
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andl ≥ 1), there exists a primitive root ofn, so that(Z/(n))∗ is cyclic and(Z/(n))∗ is isomorphic to the
additive groupZ/(ϕ(n)).

Now we consider the cycle structure of the permutationρn,k. LetC be a cycle ofρk,n anda be an element
of C. Letm= kn+1. By the definition ofρk,n, we know thatC= (a,ka,k2a, . . . ,kr−1a) wherer is the least
positive integer withkra≡ a (modm). Letg= gcd(a,m) andd = m

g . Thend 6= 1 andkr a
g ≡

a
g (modd) and

gcd(k,d) = gcd(a
g,d) = 1. This implies thatk, a

g ∈ (Z/(d))∗ and that{1,k, . . . ,kr−1}= 〈k〉d is a subgroup

of (Z/(d))∗ generated byk and {a
g,ka

g, . . . ,kr−1 a
g} = {1,k, . . . ,kr−1}a

g is a coset of〈k〉d in (Z/(d))∗.

HenceC is formed from the set〈k〉d
a
g

m
d = {a,ka,k2a, . . . ,kr−1a}. That is,C is formed fromm

d times a
coset of〈k〉d in (Z/(d))∗.

Conversely, for any nontrivial divisord of m (that is, d|m and d 6= 1), let 〈k〉d be the subgroup of
(Z/(d))∗ generated byk, and letr = |〈k〉d| anda∈ (Z/(d))∗. Then, by definition,r is the least positive
integer such thatkr ≡ 1 (modd) andkra≡ a (modd) andkr am

d ≡ am
d (moddm

d )≡ am
d (modm). Therefore,

(am
d ,kam

d , . . . ,kr−1 am
d ) is a cycle of the(k,n)-perfect shuffle permutation.

In summary, we have the following theorem regarding the cycle structure of the(n,k)-perfect shuffle
permutation:

Theorem 1 The r-tuple(a0,a1, . . . ,ar−1) is a cycle of the(k,n)-perfect shuffle permutation if and only if
there is a nontrivial divisor d of kn+1 and an a∈ (Z/(d))∗ such that r is the least positive integer such

that kr ≡ 1 (modd) and ai = a(kn+1)
d ki mod(kn+1) for i = 0,1, . . . , r −1.

Example. Let k = 3 andn = 17. Thenkn+1 = 52, and the nontrivial divisors of 52 are 2,4,13,26,52.
We then find the following cycles (not all values ofa are shown):

d a cycle
2 1 (26)
4 1 (13 39)

13 1 (4 12 36)
2 (8 24 20)
4 (16 48 40)
7 (28 32 44)

26 1 (2 6 18)
5 (10 30 38)
7 (14 42 22)

17 (34 50 46)
52 1 (1 3 9 27 29 35)

5 (5 15 45 31 41 19)
7 (7 21 11 33 47 37)

17 (17 51 49 43 25 23)

3 The Computation of a Seed Set
In what remains we will use “divisor” to mean “nontrivial divisor”. To compute a seed set it is sufficient,
by Theorem 1, to compute a complete set of coset representatives of〈k〉d in (Z/(d))∗ for each divisord of
kn+1. We can speed up this computation by using the decomposition properties of integers and abelian
groups.
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Let d be a divisor ofkn+1 and let the prime factorisation ofd bequ1
1 qu2

2 · · ·qus
s whereq1 > q2 > · · ·> qs.

By the Chinese Remainder Theorem (see for example [BS96, Theorem 5.5.4]), we know that the mapping

f (x) = ( f1(x), f2(x), . . . , fs(x)), where fi(x) = x modqui
i (1)

is an isomorphism from the ringZ/(d) to the ringZ/(qu1
1 )⊕Z/(qu2

2 )⊕·· ·⊕Z/(qus
s ). Therefore the units

of the two rings correspond to each other, so that the restriction off on (Z/(d))∗ forms an isomorphism
from the group(Z/(d))∗ to the group

(Z/(qu1
1 )⊕Z/(qu2

2 )⊕·· ·⊕Z/(qus
s ))∗ = (Z/(qu1

1 ))∗× (Z/(qu2
2 ))∗×·· ·× (Z/(qus

s ))∗

([BS96, Lemma 5.6.1]). Furthermore,f induces an isomorphism on the group quotients,

f ∗ : (Z/(d))∗/〈k〉d → (Z/(qu1
1 ))∗× (Z/(qu2

2 ))∗×·· ·× (Z/(qus
s ))∗/〈( f1(k), f2(k), . . . , fs(k))〉

where〈( f1(k), f2(k), . . . , fs(k))〉 denotes the subgroup of(Z/(qu1
1 ))∗×(Z/(qu2

2 ))∗×·· ·×(Z/(qus
s ))∗ gen-

erated by( f1(k), f2(k), . . . , fs(k)).
If qi is an odd prime, orqi = 2 andui ≤ 2, then we deduce from our earlier remarks that(Z/(qui

i ))∗

is a cyclic group. Letgi be a primitive root ofqui
i andwi = indgi fi(k) (mod qui

i ). Sincewi is the least
positive integer such thatgwi

i = fi(k) (modqui
i ) and fi(k) = k modqui

i , wi is also the index ofk (modqui
i ).

Therefore,(Z/(qui
i ))∗ = 〈gi〉 ∼= Z/(ϕ(qui

i )) with the isomorphismφ(gx
i ) = x. Clearly,φ( fi(k)) = wi .

If qi = 2 andui ≥ 3, theni = s. We know that 2us does not have a primitive root, but the order of 5 (mod
2us) is 2us−2, and the set

{(−1)v5u : u = 0,1, . . . ,2us−2−1,v = 0,1}

forms a reduced set of residues modulo 2us. See for example [Bak84], page 25. Therefore, for any odd
integerx, there exists a unique pair(w(x),w′(x)) such thatw(x) ∈ {0,1, . . . ,2us−2−1} , w′(x) ∈ {0,1}
and x ≡ (−1)w′(x)5w(x) (mod 2us). Hence(Z/(2us))∗ ∼= Z/(2us−2)×Z/(2) with isomorphismφ(x) =

(w(x),w′(x)). Let ws,w′
s be such that(−1)w′

s5ws ≡ fs(k) ≡ k (mod 2us).
Suppose thatqs 6= 2 orqs = 2 andus ≤ 2. Then the mapping

h((gx2
1 ,gx2

2 , . . . ,gxs
s )) = (x1,x2, . . . ,xs) (2)

is an isomorphism from the group

(Z/(qu1
1 ))∗× (Z/(qu2

2 ))∗×·· ·× (Z/(qus
s ))∗

to the group
Z/(ϕ(qu1

1 ))×Z/(ϕ(qu2
2 ))×·· ·×Z/(ϕ(qus

s ))

and h maps( f1(k), f2(k), . . . , fs(k)) = (gw1
1 ,qw2

2 , . . . ,gws
s ) to (w1,w2, . . . ,ws). Therefore,h induces an

isomorphism

h∗ : (Z/(qu1
1 ))∗× (Z/(qu2

2 ))∗×·· ·× (Z/(qus
s ))∗/〈( f1(k), f2(k), . . . , fs(k))〉

∼= (Z/(ϕ(qu1
1 ))×Z/(ϕ(qu2

2 ))×·· ·×Z/(ϕ(qus
s )))/〈(w1,w2, . . . ,ws)〉. (3)
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Hence, if we take a complete set of coset representatives of

〈(w1,w2, . . . ,ws)〉 in Z/(ϕ(qu1
1 ))×Z/(ϕ(qu2

2 ))×·· ·×Z/(ϕ(qus
s )),

transform it first byh−1 and then byf−1, we will obtain a set of seeds corresponding tod.
Alternatively, suppose thatqs = 2 andus ≥ 3. Thenqi , i = 1, . . . ,s−1 are odd primes and the mapping

h′((gx1
1 , . . . ,gxs−1

s−1 ,(−1)v5u)) = (x1, . . . ,xs−1,u,v) (4)

is an isomorphism from the group

(Z/(pu1
1 ))∗×·· ·× (Z/(pus−1

s−1 ))∗× (Z/(2us))∗

to the group
Z/(ϕ(qu1

1 ))×·· ·×Z/(ϕ(qus−1
s−1 ))×Z/(2us−2)×Z/(2)

and

h′(( f1(k), . . . , fs−1(k), fs(k))) = h′((gw1
1 , . . . ,gws−1

s−1 ,(−1)w′
s5ws)) = (w1, . . . ,ws−1,ws,w

′
s).

Therefore,h′ induces an isomorphism

h′∗ : (Z/(qu1
1 ))∗×·· ·× (Z/(qus−1

s−1 ))∗× (Z/(2us))∗/〈( f1(k), f2(k), . . . , fs(k))〉

∼= (Z/(ϕ(qu1
1 ))×·· ·×Z/(ϕ(qus−1

s−1 ))×Z/(2us−2)×Z/(2))/〈(w1, . . . ,ws−1,ws,w
′
s)〉 (5)

Hence, again, if we take a complete set of coset representatives of the above groups, first transform it
by h′−1 and then byf−1, we will obtain a subset of a seed set corresponding tod.

The computation of the complete coset representatives of the group quotients can be accomplished
using the following theorem, which is of independent interest.

Theorem 2 Let s and t1, t2, . . . , ts be positive integers and

G = Z/(t1)×Z/(t2)×·· ·×Z/(ts) (6)

be an abelian group with(w1,w2, . . . ,ws) ∈ G. Letlcm denote the least common multiple and let ai ,bi ,ci

be defined by the following relations:

ai = gcd(wi , ti), 1≤ i ≤ s;

b0 = 1; (7)

bi = ti/ai , 1≤ i ≤ s;

ci = ai gcd(lcm(b0,b1,b2, . . . ,bi−1),bi), 1≤ i ≤ s.

Then the following statements hold:

(i) |〈(w1,w2, . . . ,ws)〉| = lcm(b1, . . . ,bs−1,bs);

(ii) (c1,c2, . . . ,cs) is the lexicographically least non-zero element and generator of the subgroup

〈(w1,w2, . . . ,ws)〉;
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(iii) {(e1,e2, . . . ,es) : 0≤ ei < ci} is a complete set of coset representatives of〈(w1,w2, . . . ,ws)〉 in G.

Proof We first prove (i) and (ii) by induction ons, the number of groups in the product (6). Ifs= 1, then
b1 = t1/a1 andc1 = a1gcd(1,b1) = a1 = gcd(w1, t1). Since 0≤ c1 ≤ t1 andw1 < t1 andxw1 + yt1 = c1

for some integersx andy, it follows thatc1 = xw1 mod t1. Hencec1 ∈ 〈w1〉 and〈c1〉 ⊆ 〈w1〉. However,
w1 = zgcd(w1, t1) = zc1 implies that〈w1〉 ⊆ 〈c1〉. Hence〈c1〉 = 〈w1〉. For anyt, 1 ≤ t < c1, since
gcd(w1, t1) = c1 andc1 ∤ t, the congruencew1x≡ t (modt1) has no solution, so thatt 6∈ 〈w1〉. Therefore
c1 is the lexicographically least non-zero element of〈w1〉. Hence〈w1〉 = {xc1 : 0≤ x < t1/c1}. It follows
that|〈w1〉| = |〈c1〉| = t1/c1 = b1 = lcm(b1). Thus (i) and (ii) are true whens= 1.

Suppose now that (i) and (ii) are true when 1≤ s≤ j − 1. We prove that they remain true fors =
j. Clearly, the group〈(w1,w2, . . . ,w j)〉 is a subgroup of〈(w1,w2, . . . ,w j−1)〉× 〈w j〉. By the induction
hypothesis,|〈(w1,w2, . . . ,w j−1)〉| = lcm(b1,b2, . . . ,b j−1) and|〈w j〉| = b j . Then,

lcm(b1,b2, . . . ,b j−1)(w1,w2, . . . ,w j−1) = (w1,w2, . . . ,w j−1) and b jw j = w j .

Since
lcm(lcm(b1,b2, . . . ,b j−1),b j) = lcm(b1,b2, . . . ,b j)

and is a multiple of both lcm(b1,b2, . . . ,b j−1) andb j , it follows that

lcm(b1,b2, . . . ,b j)(w1,w2, . . . ,w j) = (w1,w2, . . . ,w j).

Since lcm(lcm(b1,b2, . . . ,b j−1),b j) is the least common multiple of lcm(b1,b2, . . . ,b j−1) andb j , then for
any 0≤ t < lcm(b1,b2, . . . ,b j),
either

0≤ t mod lcm(b1,b2, . . . ,b j−1) < lcm(b1,b2, . . . ,b j−1)

or
0≤ t modb j < b j .

This implies thatt(w1,w2, . . . ,w j) 6=(w1,w2, . . . ,w j). Therefore,|〈(w1,w2, . . . ,w j)〉|= lcm(b1,b2, . . . ,b j),
and so (i) is true.

Let (c′1,c
′
2, . . . ,c

′
j) be the lexicographically least non-zero element in〈(w1,w2, . . . ,w j)〉.

Then(c′1,c
′
2, . . . ,c

′
j−1) is an element of〈(w1,w2, . . . ,w j−1)〉. By the induction hypothesis,(c1,c2, . . . ,c j−1)

is the lexicographically least element of〈w1,w2, . . . ,w j−1〉, so that(c′1,c
′
2, . . . ,c

′
j−1) ≥ (c1,c2, . . . ,c j−1).

However,(c1,c2, . . . ,c j−1) ∈ 〈(w1,w2, . . . ,w j−1)〉.
Hence there exists an integerx such thatx(w1,w2, . . . ,w j−1) = (c1,c2, . . . ,c j−1). But

x(w1,w2, . . . ,w j−1,w j) = (c1,c2, . . . ,c j−1,xwj) ≥ (c′1,c
′
2, . . . ,c

′
j−1,c

′
j).

Hence(c′1,c
′
2, . . . ,c

′
j−1) ≤ (c1,c2, . . . ,c j−1). It follows that(c′1,c

′
2, . . . ,c

′
j−1) = (c1,c2, . . . ,c j−1).

It remains to show thatc′j = c j . Consider the mappingf : 〈(w1,w2, . . . ,w j−1,w j)〉 → 〈w j〉 such that
f (x1,x2, . . . ,x j−1,x j) = x j . Then f is a homomorphism. The kernel off is 〈(w1,w2, . . . ,w j−1,0)〉 and
〈(w1,w2, . . . ,w j−1,0)〉 ∼= 〈(w1,w2, . . . ,w j−1)〉. Sincef is a homomorphism,f (〈(w1,w2, . . . ,w j−1,w j)〉) is
a subgroup of〈w j〉 and isomorphic to the group quotient〈(w1,w2, . . . ,w j−1,w j)〉/〈(w1,w2, . . . ,w j−1,0)〉.
Therefore

| f (〈(w1,w2, . . . ,w j−1,w j)〉)| = |〈(w1,w2, . . . ,w j)〉)/〈(w1,w2, . . . ,w j−1,0〉|

=
lcm(b1,b2, . . . ,b j)

lcm(b1,b2, . . . ,b j−1)
.

(8)
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Since (ii) is true for a product of a single group by the initial case,a j is a lexicographically least element
of 〈w j〉 in Z/(t j) and〈a j〉 = 〈w j〉. Therefore the least element off (〈(w1,w2, . . . ,w j)〉) in 〈a j〉 is

a j
b j

lcm(b1,b2,...,b j )

lcm(b1,b2,...,b j−1)

=
a jb j lcm(b1,b2, . . . ,b j−1)

lcm(b1,b2, . . . ,b j−1,b j)

= a j gcd(lcm(b1,b2, . . . ,b j−1),b j) = c j .

But c j is also a generator off (〈(w1,w2, . . . ,w j)〉) in 〈a j〉 and

|〈c j〉| =
lcm(b1,b2, . . . ,b j)

lcm(b1,b2, . . . ,b j−1)
.

This implies thatc′j = f (c′1,c
′
2, . . . ,c

′
j) ≥ c j .

Since the image inf of any element in the coset〈(w1,w2, . . . ,w j−1,0)〉+(0, . . . ,0,c j) is (0, . . . ,0,c j),
it follows that(c1,c2, · · · ,c j−1,c j) ∈ 〈(w1,w2, · · · ,w j)〉. Then, by the choice of(c′1,c

′
2, . . . ,c

′
j),(c

′
1,c

′
2, . . . ,

c′j−1,c
′
j) ≤ (c1,c2, . . . ,c j−1,c j). This implies thatc′j ≤ c j . Therefore,c′j = c j and(c1,c2, · · · ,c j) is the

lexicographically least non-zero element of〈(w1,w2, . . . ,w j)〉.
By the induction hypothesis,(c1,c2, . . . ,c j−1) is a generator of the group〈(w1,w2, . . . ,w j−1)〉 and

|〈(c1,c2, . . . ,c j−1)〉| = lcm(b1,b2, . . . ,b j−1). Hence we have

|〈(c1,c2, . . . ,c j−1,c j)〉| = lcm(lcm(b1,b2, . . . ,b j−1), |〈c j〉|)

= lcm(lcm(b1,b2, . . . ,b j−1),
lcm(b1,b2, . . . ,b j)

lcm(b1,b2, . . . ,b j−1)
) = lcm(b1,b2, . . . ,b j).

This implies that〈(c1,c2, . . . ,c j−1,c j)〉 = 〈(w1,w2, . . . ,w j−1,w j)〉. Hence (i) and (ii) are true.
Finally, we prove (iii). LetE = {(e1,e2, . . . ,es) : 0 ≤ ei < ci}. Let e,e′ be distinct elements of

E and, without loss of generality, assume thate < e′. Then e′ − e < (c1,c2, . . . ,cs) and soe′ − e 6∈
〈(w1,w2, . . . ,ws)〉. This implies thate ande′ are not in the same coset of〈(w1,w2, . . . ,ws)〉 in Z/(t1)×
Z/(t2)×·· ·×Z/(ts). However, the number of cosets of〈(w1,w2, . . . ,ws)〉 in Z/(t1)×Z/(t2)×·· ·×Z/(ts)
is t1t2 · · · ts/lcm(b1,b2, . . . ,bs), and we have

|E| = c1 · · ·cs = a1gcd(lcm(b0),b1) · · ·asgcd(lcm(b1, . . . ,bs−1),bs)

= (a1 · · ·as)gcd(lcm(b0),b1) · · ·gcd(lcm(b1,b2, . . . ,bs−1),bs)

=
(a1 · · ·as)(b1 · · ·bs)

lcm(b1, . . . ,bs)

=
t1 · · · ts

lcm(b1, . . . ,bs)
.

ThereforeE is a complete set of coset representatives of〈(w1,w2, . . . ,ws)〉 in G. ✷
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4 The Algorithm and Complexity Analysis
In this section, we present an algorithm based on the principles described in the previous section. The
analysis of the time and space complexity of the algorithm follows that presented in [EKF00] for the 2-
way shuffle.

The Seed Set Generator for the(k,n)-Perfect Shuffle Permutation

Step 1 Let m= kn+1 andS= /0.

Step 2 Compute the prime factorisation ofm, saym= pe1
1 pe2

2 · · · per
r wherep1 ≥ p2 ≥ ·· · ≥ pr .

Step 3 For each prime factorpi , compute a primitive root ofpi and call itgi,1. If ei ≥ 2, compute a
primitive root of p2

i and call itgi,2.

Step 4 For each prime factorspi , computewi,1 := indgi,1 k (mod pi). If ei ≥ 2, computewi,2 := indgi,2 2
(mod p2

i ).

Step 5 Compute each divisor ofmand its prime factorisation. As a divisord is generated, carry out steps
5.1 to 5.3.

Step 5.1 Let the prime factorisation ofd bequ1
1 qu2

2 · · ·qus
s whereq1 ≥ q2 ≥ ·· · ≥ qs. For each prime

factorqi of d, supposej is the index such thatqi = p j .

Definegi as follows: ifui = 1 thengi = g j,1, if p j 6= 2 thengi = g j,2, if p j = 2 andui ≥ 2 then
gi = g j,2, otherwisegi = 5. Definewi = w j,1 if ui = 1 or wi = w j,2 if ui = 2. Otherwise, if
pi 6= 2, computewi = indgi j (modqui

i ) or if pi = 2 andui ≥ 3, compute and definewi ,w′
i such

that(−1)w′
i 5wi ≡ j (mod 2ui ).

Step 5.2 Setb0 = 1. Computeci for i = 1,2, . . . ,s by

ti =

{

2ui−2, if pi = 2, ui ≥ 3;
ϕ(qui

i ), otherwise;
ai = gcd(wi , ti),
bi = ti/ai ,
ci = ai gcd(lcm(b0,b1,b2, . . . ,bi−1),bi)

(9)

Step 5.3 If qs 6= 2, or qs = 2 andus ≤ 2, for every integer vector(k1,k2, . . . ,ks) with 0≤ ki < ci ,
solve the system of congruences



















x ≡ gk1
1 (modqu1

1 )

x ≡ gk2
2 (modqu2

2 )
...

x ≡ gks
s (modqus

s )

(10)

Obtain a solutionx in {1,2, . . . ,d} and addxm
d to S.
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Otherwise, for every integer vector(k1,k2, . . . ,ks,k′s) with 0≤ ki < ci andk′s = 0,1, solve the
system of congruences































x ≡ gk1
1 (modqu1

1 )

x ≡ gk2
2 (modqu2

2 )
...

x ≡ gks−1
s−1 (modqus−1

s−1 )

x ≡ (−1)k′s5ks (mod 2us)

(11)

obtain a solutionx in {1,2, . . . ,d} and addxm
d to S.

Step 6 OutputS.

Proof of Correctness: If d is not divisible by 2ui with ui ≥ 3, by Theorem 2 and equation (10), we know
that in step 5.3, each vector(k1,k2, . . . ,ks) with 0≤ ki < ci is a coset representative of the quotient

(Z/(ϕ(qu1
1 ))×Z/(ϕ(qu2

2 ))×·· ·×Z/(ϕ(qus
s )))/〈(w1,w2, . . . ,ws)〉

Then the solution of equation (10)

x = f−1(h−1((k1,k2, . . . ,ks))) = f−1((gk1
1 ,gk2

2 , . . . ,gks
s ))

where f and h are defined by forms (1) and (2) respectively, corresponds to a coset representative of
quotient(Z/(d))∗/〈k〉d and therefore,xm

d corresponds to a seed of a cycle by Theorem 1.
If d is divisible by 2us, us ≥ 3, then by Theorem 2, each vector(k1, . . . ,ks−1,ks,k′s) with 0 ≤ ki <

ci and k′s = 0,1 corresponds to a coset representative(k1, . . . ,ks−1,ks,k′s) of 〈(w1, . . . ,ws−1,ws,w′
s)〉 in

Z/(t1)× ·· ·×Z/(ts−1)×Z/(ts)×Z/(2). Hence it corresponds to a seedxm
d of a cycle, by Theorem 1,

sincex = f−1h′−1((k1, . . . ,ks−1,ks,k′s)) wherex is the solution of equation (11) andf andh′ are defined
by the forms (1) and (4) respectively. ✷

The algorithm just given is a generalisation of that presented in [EKF00]. There it was shown, using
some known results regarding the number and distribution of primitive roots, that the entire computation
of a seed set for the 2-way shuffle can be accomplished usingO(n) arithmetic operations.

The difference between the algorithm for thek-way shuffle and that for the 2-way shuffle is in the
computation of the indices. We can use the same method for computing indgi 2 to compute indgi k. We can
solve the congruence(−1)w′

i 5wi ≡ k (mod 2ui ) using the usual Hensel lifting technique (see for example
[VG99]) in O(u3

i ) = O(kn) bit operations. These differences do not increase the overall time complexity
of the algorithm. Therefore the more general algorithm can also be realised in timeO(kn).

The extra space needed for the variable used by the algorithm is the same as that in [EKF00], so the
space complexity is alsoO((logkn)2).

We conclude that a seed set for the(k,n)-perfect shuffle permutation can be computed in-place and
in time linear in the total number of elements being shuffled. It follows that the(k,n)-perfect shuffle
permutation can be realised in-place and in linear time by way of a cycle leader algorithm as described in
the introduction. We leave as open questions whether or not this result can be used to generalise the 2-way
merge algorithm in [EM00] tok-way merging and whether or not the space requirement can be further
reduced.
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