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Bijections for lattice paths between two boundaries
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Abstract. We prove that on the set of lattice paths with steps N = (0, 1) and E = (1, 0) that lie between two bound-
aries B and T , the two statistics ‘number of E steps shared with B’ and ‘number of E steps shared with T ’ have a
symmetric joint distribution. We give an involution that switches these statistics, preserves additional parameters, and
generalizes to paths that contain steps S = (0,−1) at prescribed x-coordinates. We also show that a similar equidis-
tribution result for other path statistics follows from the fact that the Tutte polynomial of a matroid is independent of
the order of its ground set. Finally, we extend the two theorems to k-tuples of paths between two boundaries, and we
give some applications to Dyck paths, generalizing a result of Deutsch, and to pattern-avoiding permutations.

Résumé. On montre que, sur l’ensemble des chemins avec des pas N = (0, 1) et E = (1, 0) qui se trouvent
entre deux chemins donnés B et T , les deux statistiques “nombre des pas E en commun avec B” et “nombre des
pas E en commun avec T ” ont une distribution conjointe symétrique. On donne une involution qui échange ces
deux statistiques, préserve quelques autres paramètres additionelles, et admet une généralisation à des chemins avec
des pas S = (0,−1) dans des positions données. On montre aussi un autre résultat d’équidistribution similaire, lié
au polynôme de Tutte d’un matroı̈de. Finalement, on étend les deux théorèmes à k-tuples de chemins entre deux
frontières, et on donne quelques applications aux chemins de Dyck, en généralisant un résultat de Deutsch, et aux
permutations avec des motifs exclus.
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1 Introduction
Directed lattice paths are fundamental combinatorial objects. One reason is that they have have appli-
cations to statistical physics, algebra and computer science. Another reason is that many enumeration
questions can be restated in terms of lattice paths inside a certain region.

Perhaps the most frequently occurring lattice paths are Dyck paths. It is well known that they are
counted by the Catalan numbers, and hundreds of Dyck path statistics have been studied in the literature.
For example, a frequently quoted result of Deutsch [5] states that on Dyck paths of a given length, the
number of returns has the same distribution as the height of the first peak, and in fact the joint distribution
of these two statistics is symmetric (see Section 5.1 for definitions and details). One of the motivations
of this paper came from the realization that this symmetry property holds for a much larger family of
lattice paths, namely paths with unit north and east steps that lie between two arbitrary fixed boundaries,
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which are themselves paths of the same type with common endpoints. While Dyck paths have a lot of
beautiful properties that have been thoroughly studied, little is known about paths between two arbitrary
boundaries, and so it is surprising that such a symmetry result holds in general.

Our second motivation is that, when generalized to k-tuples of non-crossing paths between two bound-
aries, our results have implications to existing work in the literature involving watermelon configurations,
flagged semistandard Young tableaux, k-triangulations, and pattern-avoiding permutations, as explained
in Section 5.

Let B and T be two lattice paths in N2 with north steps (N = (0, 1)) and east steps (E = (1, 0)) from
the origin to some prescribed point (x, y) ∈ N2 such that B is weakly below T , i.e., no point of B is
strictly above or strictly left of T . Let P(B, T ) be the set of lattice paths with north and east steps from
the origin to (x, y) that lie between B and T , i.e., weakly above B and weakly below T . Thus, the paths
B and T are the lower and upper boundaries of the paths in P(B, T ).

Our goal is to show that several natural statistics on lattice paths in P(B, T ) have a symmetric distri-
bution. Formally, a statistic on such lattice paths is simply a function from P(B, T ) to N. Two k-tuples
of statistics (f1, f2, . . . , fk) and (g1, g2, . . . , gk) have the same joint distribution over P(B, T ), denoted
(f1, f2, . . . , fk) ∼ (g1, g2, . . . , gk), if∑

P∈P(B,T )

x
f1(P )
1 . . . x

fk(P )
k =

∑
P∈P(B,T )

x
g1(P )
1 . . . x

gk(P )
k .

The distribution of (f1, f2, . . . , fk) is symmetric overP(B, T ) if (f1, f2, . . . , fk) ∼ (fπ(1), fπ(2), . . . , fπ(k))
for every permutation π of [k] = {1, 2, . . . , k}.

We consider statistics counting the following special steps of paths P ∈ P(B, T ):
• a bottom contact is an east step that is also a step of B,
• a top contact is an east step that is also a step of T ,
• a left contact is a north step that is also a step of T ,
• a right contact is a north step that is also a step of B.

We denote the number of bottom (top, left, right) contacts of P by b(P ) (respectively t(P ), `(P ), r(P )).

Fig. 1: A path P ∈ P(B, T ) with b(P ) = 3, t(P ) = 4, `(P ) = 2, and r(P ) = 1.

We will give bijective proofs of the following two results.

Theorem 1.1 The distribution of the pair (b, t) over P(B, T ) is symmetric.
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Theorem 1.2 The pairs (b, `) and (t, r) have the same joint distribution over P(B, T ).

We point out that is not true that (b, t, `) ∼ (t, b, r) in general. In Section 2 we provide a direct,
relatively simple involution proving a refined and generalized version of Theorem 1.1. The refinement
consists of keeping track of the sequence of y-coordinates of the east steps that are not contacts, while the
generalization allows the paths to have south steps at prescribed x-coordinates. The analogous refinement
and generalization of Theorem 1.2 do not hold, and in fact our proof of Theorem 1.1, given in Section 3,
is quite indirect and very different from that of Theorem 1.2. Namely, we show that both∑

P∈P(B,T )

xb(P )y`(P ) and
∑

P∈P(B,T )

xt(P )yr(P )

can be interpreted as the Tutte polynomial of the lattice path matroid associated with P(B, T ), as defined
in [2]. To do so, we use the definition of the Tutte polynomial in terms of activities, which relies on a linear
ordering on the ground set of the matroid. The independence of the Tutte polynomial of this ordering then
implies Theorem 1.2. In the full paper [7] we provide a bijective proof for this independence property.

In Section 4, the two above theorems are generalized to k-tuples of non-crossing paths. Let Pk(B, T )
be the set of k-tuples P = (P1, P2, . . . , Pk) such that Pi ∈ P(B, T ) for all i, and Pi is weakly below
Pi+1 for 1 ≤ i ≤ k − 1. Let P0 = B and Pk+1 = T . For 0 ≤ i ≤ k, denote by ti = ti(P) the number
of east steps where Pi and Pi+1 coincide. We provide a bijective proof of the following generalization of
Theorem 1.1, for any fixed k ≥ 1.

Theorem 1.3 The distribution of (t0, t2, . . . , tk) over Pk(B, T ) is symmetric.

To generalize Theorem 1.2, define the bottom contacts of P to be the bottom contacts of P1, and denote
their number by b(P) = t0(P). Similarly, let r(P) be the number of right contacts of P1, and denote by
t(P) = tk(P) (resp. `(P)) be the number of top (resp. left) contacts of Pk.

Theorem 1.4 The pairs (b, `) and (t, r) have the same joint distribution over Pk(B, T ).

In Section 5 we show some consequences of our work to Dyck paths, watermelon configurations,
semistandard Young tableaux, and pattern-avoiding permutations.

2 The symmetry (b, t) ∼ (t, b) for a single path
In this section we construct an involution that proves a generalized version of Theorem 1.1. It applies to
a more general set of paths, and also gives a refined result by preserving the sequence of y-coordinates of
the east steps that are not contacts.

Let P̃(B, T ) be the set of lattice paths from the origin to (x, y) with north, east and south (S = (0,−1))
steps, lying weakly above B and weakly below T . Given such a lattice path P , the descent set of P is the
set of x-coordinates where south steps occur. For a fixed subset D ⊂ N, denote by P̃(B, T,D) the set of
paths P ∈ P̃(B, T ) having descent set D. Note that P̃(B, T, ∅) = P(B, T ) by defintion.

Furthermore, for a given sequence H of integers, let P̃(B, T,D,H) (respectively P(B, T,H)) be the
subset of P̃(B, T,D) (respectively P(B, T )) containing those paths whose sequence of y-coordinates of
the east steps that are not bottom or top contacts equals H. Fig. 4 shows some paths in P̃(B, T,D,H)
with B = EENEEENNN , T = NNNEEENEE, D = {2}, and H = 2 2 3.
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Theorem 2.1 For any setD and any sequence H of integers, the distribution of (b, t) over P̃(B, T,D,H)
is symmetric.

Remark. Without the refinement involving H, a non-bijective proof of this result has been found inde-
pendently by Guo Niu Han [8]. See also the remark after Theorem 4.1.

In what follows, we encode a path in P̃(B, T ) by the sequence of y-coordinates of its east steps, except
that we record bottom contacts using b’s and top contacts using t’s. For example, the first path in Fig. 4
is encoded by 2t23t.

The main ingredient in the proof of Theorem 2.1 is a transformation φ between certain subsets of
P̃(B, T,D,H), mapping paths with e bottom and f top contacts to paths with e+ 1 bottom and f − 1 top
contacts. The map φ is a bijection between subsets of paths satisfying certain restrictions. This bijection
relies on two constructions. The first one, which we denote by µ, transforms a sequence of e b’s and f t’s
into a sequence of e+ 1 b’s and f − 1 t’s. The second construction modifies a given path by changing a
single top contact into a bottom contact.

2.1 A transformation on words
Let us first describe the map µ, which is defined on sequences of b’s and t’s. We say that a word
c1c2 . . . c2n over the alphabet {b, t} is a Dyck word if it contains the same number of b’s and t’s, and in
every prefix c1c2 . . . ci with 1 ≤ i ≤ 2n, the number of b’s never exceeds the number of t’s.

Definition 2.2 Let c = c1c2 . . . ce+f be a word over the alphabet {b, t}. Any such c can be factorized
uniquely as

c = D1bD2b . . .bDjtDj+1tDj+2t . . . tDm, (1)

where each Di for 1 ≤ i ≤ m is a (possibly empty) Dyck word. In such a factorization, the letters b
and t which are not part of a Dyck word are called unmatched letters. Suppose that there is at least one
unmatched t. Then, define µ(c) to be the word obtained from c by replacing the leftmost unmatched t
with a b, that is,

µ(c) = D1bD2b . . .bDjbDj+1tDj+2t . . . tDm. (2)

The above factorization can be visualized by representing a word with a path, drawing an north-east
step (1, 1) for each letter t and a south-east (1,−1) for each letter b. In Fig. 2, the effect of the map µ
applied to the word bttbtbbbttbttbtbtt is shown. In this example, the Dyck words D2, D4 and D5

are non-empty, and they are indicated by the dotted areas.
We omit the proofs of the following lemmas due to space constraints, but they appear in the full pa-

per [7]. In different context, the map µ belongs to mathematical folklore (see for example [13, p. 26]).

Lemma 2.3 Let e, f, u be nonnegative integers with u ≥ max{f−e, e−f+2}. The map µ is a bijection
between

(i) the set of words with e b’s and f t’s having at least u unmatched letters, and
(ii) the set of words with e+ 1 b’s and f − 1 t’s having at least u unmatched letters.

Lemma 2.4 Let e < f . For 0 ≤ i ≤ f − e, letWi be the set of words with e+ i b’s and f − i t’s having
at least f − e unmatched letters. Specifically,W0 is the set of all words with e b’s and f t’s, andWf−e
is the set of all words with f b’s and e t’s. Then the map µ produces a sequence of bijections

W0
µ→W1

µ→ . . .
µ→Wf−e.
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Fig. 2: A visual description of the map µ.

2.2 A transformation on paths with one contact
Our next goal is to translate µ, which is a map on words, into a transformation on paths. For this purpose,
we first give a construction for path fragments containing a single contact. In the following, I = [x1, x2]

is the interval bounded by two integers x1 < x2. We denote by P̃I(B, T ) the set of path fragments
obtained by restricting paths P ∈ P̃(B, T ) to the segment that lies strictly between the vertical lines
x = x1 and x = x2. In other words, P̃I(B, T ) is the set of paths which start on the line x = x1, end on
the line x = x2, start and end with an east step, and lie weakly between B and T . Define P̃I(B, T,D,H)

similarly by restricting paths in P ∈ P̃(B, T,D,H) to I .

Definition 2.5 Let Q be a path in P̃I(B, T ) with exactly one top contact and no bottom contacts. Its east
steps can be decomposed uniquely as Q = WXtY Z, where
• X is maximal such that there is no descent after any of its steps and no (right) endpoint of any of

its steps lies on B, and
• Y is maximal such that there is a descent before each of its steps.

Let hX (respectively hY ) be −∞ if X (respectively Y ) is empty, and otherwise the y-coordinate of its
last (respectively first) east step. Define

φI(Q) =

{
WXY bZ if hX ≤ hY ,
WbXY Z if hX > hY .

Remark. In the case of paths with no descents, the definition of φI is simpler: writing Q as Q = WXtZ,
where X is maximal not touching B, we have φI(Q) = WbXZ.

Lemma 2.6 The map φI is a bijection from the set of paths in P̃I(B, T,D,H) with exactly one top
contact and no bottom contacts to the set of paths in P̃I(B, T,D,H) with exactly one bottom contact and
no top contacts.

Proof: Let Q ∈ P̃I(B, T,D,H) be a path with one top contact and no bottom contacts. It is clear
that φI(Q) ∈ P̃I(B, T,H), and that this path has one bottom contact and no top contacts. Let us now
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W X t Y Z

φI7→

W X Y b Z

W X t Y Z

φI7→

W b X Y Z

Fig. 3: Two examples of φI : one where hX ≤ hY (top) and one where hX > hY (bottom). In both cases, I = [0, 8].

check that Q and φI(Q) have the same descent set. Suppose that Q = WXtY Z, and consider the case
hX ≤ hY , so φI(Q) = WXY bZ, that is, the block tY in Q becomes Y b in φI(Q). By the choice of
Y and because there cannot be a descent just before a top contact, it is clear that Q has no descent just
before and just after the block tY , and there are descents at all positions inside the block. Let us check
that this is also the case for the block Y b in φI(Q).

• Just before Y b: if X is non-empty, then hY ≥ hX > −∞, which implies that Y is non-empty and
there is no descent between X and Y ; if X is empty, then either W is empty or its last east step has
its right endpoint on B, so there is no descent just before Y b either.

• Just after Y b: there cannot be a descent just after a bottom contact.

• Inside Y b: by the definition of Y , there are descents at all positions inside Y ; at the position
between Y and b (if Y is non-empty), there is a descent because the last east step of Y was not a
bottom contact in Q, so its y-coordinate is strictly larger than that of b in φI(Q).

The arguments for the case that hX > hY and φI(Q) = WbXY Z are very similar and thus omitted.
To show that φI is invertible we will exhibit its inverse. The description of φ−1I is analogous to that of

φI if we rotate the paths by 180 degrees. Explicitly, let Q′ ∈ P̃I(B, T,D,H) be a path with exactly one
bottom contact and no top contacts. Its east steps can be decomposed uniquely as Q′ = RSbUV , where

• S is maximal such that there is a descent after each of its steps, and

• U is maximal such that there is no descent before any of its steps and no (left) endpoint of any of
its east steps lies on T .
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Let hS (hU ) be +∞ if S (respectively U ) is empty, and otherwise the y-coordinate of its last (respectively
first) east step. Define

φ−1I (Q) =

{
RtSUV if hS ≤ hU ,
RSUtV if hS > hU .

Let us check φ−1I is indeed the inverse of φI . Suppose that Q = WXtY Z and hX ≤ hY , and let
Q′ = φI(Q) = WXY bZ. When applying φ−1I to Q′, the decomposition Q′ = RSbUV has S = Y ,
by definition of S and the fact that there is no descent just before Y but there are descents in all the
positions inside Y b. Additionally, hS ≤ hU because there was no descent just after Y in Q. Thus,
φ−1I (Q′) = RtSUV = Q. The case that hX > hY is similar. 2

2.3 The maps φ and Φ

Now we are ready to define the map φ on arbitrary paths in P̃(B, T ).

Definition 2.7 Let P ∈ P̃(B, T ) be a path with e bottom and f top contacts, and let c = c1c2 . . . ce+f
be the word over {b, t} obtained by recording the top and bottom contacts of P from left to right, except
for the steps that are simultaneously top and a bottom contacts, which are not recorded. We call c the
sequence of contacts of P . Suppose that c contains some unmatched t, and let i be such that ci is the last
unmatched t, which becomes a b in µ(c).

Let I = [x1, x2] be the maximal interval of x-coordinates that contains the contact ci = t and no other
contact of P . Let Q ∈ P̃I(B, T ) be the fragment of P between with x-coordinates in the interval I .
Define φ(P ) to be the path obtained from P by replacing the fragment Q with φI(Q). Note that the
sequence of contacts of φ(P ) is µ(c).

The following lemmas are proved in the full paper [7].

Lemma 2.8 Let e, f, u be nonnegative integers with u ≥ max{f−e, e−f+2}. The map φ is a bijection
between

(i) the set of paths in P̃(B, T,D,H) whose sequence of contacts has e b’s, f t’s, and at least u
unmatched letters, and

(ii) the set of paths in P̃(B, T,D,H) whose sequence of contacts has e+ 1 b’s, f − 1 t’s, and at least
u unmatched letters.

Lemma 2.9 Let e < f . For 0 ≤ i ≤ f − e, let Ri be the set of paths in P̃(B, T,D,H) whose sequence
of contacts has e + i b’s, f − i t’s, and at least f − e unmatched letters. Specifically, R0 is the set of
all paths in P̃(B, T,D,H) having e bottom contacts and f top contacts, andRf−e is the set of all paths
in P̃(B, T,D,H) having f bottom contacts and e top contacts. Then the map φ produces a sequence of
bijections

R0
φ→ R1

φ→ . . .
φ→ Rf−e.

We can now describe the bijection Φ that proves Theorem 2.1, which in turn generalizes Theorem 1.1.

Definition 2.10 For P ∈ P̃(B, T ), define Φ(P ) = φf−e(P ), where e = b(P ) and f = t(P ).

Lemma 2.11 The map Φ is an involution on P̃(B, T ) that preserves the descent set, as well as the
sequence of y-coordinates of the east steps that are not contacts, and satisfies b(Φ(P )) = t(P ) and
t(Φ(P )) = b(P ).



834 Sergi Elizalde and Martin Rubey

φ7→ φ7→

Fig. 4: The map Φ applied to a path with two top contacts and no bottom contact. In this example, φ first performs
the transformation φ[0,3], followed by φ[3,5].

3 The symmetry (b, `) ∼ (t, r) for a single path
In this section we prove Theorem 1.2. Although this theorem looks superficially similar to Theorem 1.1,
we have not found a comparable ‘natural’ bijective proof. Instead, our theorem below is an easy conse-
quence of work of Anna de Mier, Joseph Bonin and Marc Noy [2], and also Federico Ardila [1].

Again, let B and T be lattice paths in N2 with north and east steps from the origin to (x, y) such that B
is weakly below T . The paths in this section have no south steps. We encode a path P ∈ P(B, T ) as the
subset P̂ of N = {1, 2, . . . , x+ y} given by the indices of the north steps in P . For example, the path P
in Fig. 1 is specified by the subset P̂ = {2, 3, 4, 8, 9, 15, 16} ⊆ [17].

Definition 3.1 The set B = {P̂ : P ∈ P(B, T )} is the set of bases of a matroid with ground set N ,
called a lattice path matroid.

Let ≺ by an arbitrary linear order on N , and let P̂ ∈ B. Then an element e 6∈ P̂ is externally active
with respect to (P̂ ,≺) if @n ∈ P̂ such that n ≺ e and P̂ \ n ∪ e ∈ B. Similarly, an element n ∈ P̂ is
internally active with respect to (P̂ ,≺) if @e ∈ N \ P̂ such that e ≺ n and P̂ \ n ∪ e ∈ B.

The internal activity of P̂ is the number of its internally active elements, and the external activity is the
number of its externally active elements. The Tutte polynomial of the matroid with set of bases B is the
generating polynomial for the internal and external activities of its bases:∑

P̂∈B

xinternal activity of P̂ yexternal activity of P̂ . (3)

The Tutte polynomial for matroids was introduced by Henry Crapo [4]. He also showed that it is
independent of the order on the ground set, and thus well defined. This property is the main ingredient in
the proof of Theorem 1.2, which we restate below for convenience. In [7] we give an activity-preserving
bijection on the bases of a matroid relative to different orderings. This bijection works for any matroid,
and in particular it gives a bijective proof of Theorem 3.2, but it is iterative and rather tedious to apply. It
would be interesting to find a direct bijective proof of this theorem.

Theorem 3.2 The pairs (b, `) and (t, r) have the same joint distribution over P(B, T ).

Proof: Let≺ be the usual order 1 ≺ 2 ≺ 3 ≺ · · · of the ground setN of the matroid described above. As
shown in [2, Theorem 5.4], an internally active edge of P̂ ∈ B with respect to this order is a left contact of
P ∈ P(B, T ), and an externally active edge of P̂ is a bottom contact of P . It follows from equation (3)
that the Tutte polynomial of the matroid equals

∑
P∈P(B,T ) x

b(P )y`(P ).
Since the Tutte polynomial is independent of the ordering on the ground set, it can also be obtained as

follows. Let now ≺ be the order · · · ≺ 3 ≺ 2 ≺ 1. With respect to this order, an internally active edge
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of P̂ ∈ B is a right contact of P ∈ P(B, T ), and an externally active edge of P̂ is a top contact of P . It
follows that the Tutte polynomial of the matroid also equals

∑
P∈P(B,T ) x

t(P )yr(P ). 2

4 A k-tuple of paths between two boundaries
In this section we show how to extend Theorems 1.1 and 1.2 to families of k non-crossing paths. In both
cases, the idea is to repeatedly apply the theorems for single paths.

4.1 The symmetry (b, t) ∼ (t, b)

Here we extend Theorem 1.1 to k-tuples of paths. Although we do not allow paths with south steps as
in the more general Theorem 2.1, we are able to partially incorporate the refinement keeping track of the
y-coordinates of the non-contact east steps.

Recall from Section 1 that, given P = (P1, P2, . . . , Pk) ∈ Pk(B, T ), with the convention that P0 = B
and Pk+1 = T , we denote by ti = ti(P) the number of east steps where Pi and Pi+1 coincide, for
0 ≤ i ≤ k. Such east steps will be called top contacts of Pi. For s ≥ 1, let ms = ms(P) be the number
of positive integers x such that some path among P1, . . . , Pk has an east step (x − 1, s) → (x, s) which
does not coincide with an east step of either B or T . Let m(P) = (m1,m2, . . . ). For a fixed sequence m
of nonnegative integers, let Pk(B, T,m) be the set of k-tuples P ∈ Pk(B, T ) with m(P) = m.

Theorem 4.1 For any sequence m of nonnegative integers, the distribution of (t0, t1, . . . , tk) overPk(B, T,m)
is symmetric.

Remark. Without the refinement involving m, non-bijective proofs of this theorem have been given by
Carlos Nicolas [11, Theorem 3] and Guo Niu Han [8].

Proof sketch: It suffices to show that (t0, . . . , ti−1, ti, . . . , tk) ∼ (t0, . . . , ti, ti−1, . . . , tk) for any i with
1 ≤ i ≤ k. Fix such an i, and let P = (P1, P2, . . . , Pk) ∈ Pk(B, T,m). Regarding Pi as a path
in P(Pi−1, Pi+1), we can apply the bijection Φ from Definition 2.10 to it, obtaining a path Φ(Pi) ∈
P(Pi−1, Pi+1). Let Q = (Q1, Q2, . . . , Qk), where Qi = Φ(Pi) and Qj = Pj for j 6= i.

By definition, tj(P) = tj(Q) and mj(P) = mj(Q) for j /∈ {i− 1, i}. By Lemma 2.11, the number of
east steps where Pi and Pi+1 (respectively Pi−1) coincide equals the number of east steps where Φ(Pi)
and Pi−1 (respectively Pi+1) coincide, so ti(P) = ti−1(Q) and ti−1(P) = ti(Q). It remains to show
that mi−1(P) +mi(P) = mi−1(Q) +mi(Q), which we do in [7]. 2

4.2 The symmetry (b, `) ∼ (t, r)

Given P = (P1, P2, . . . , Pk) ∈ Pk(B, T ), letting P0 = B and Pk+1 = T , a left contact of Pi is a north
step that coincides with a north step of Pi+1. We denote by `i = `i(P) the number of left contacts of Pi.
Note that b(P) = t0(P), t(P) = tk(P), `(P) = `k(P) and r(P) = `0(P).

Theorem 4.2 The pairs (b, `) and (t, r) have the same joint distribution over Pk(B, T ).

Proof: As in the proof of Theorem 4.1, eachPi, for 1 ≤ i ≤ k, can be regarded as a path inP(Pi−1, Pi+1).
In this setting, the statistics involved in the statement of Theorem 3.2 are b(Pi) = ti−1(P), `(Pi) = `i(P),
t(Pi) = ti(P) and r(Pi) = `i−1(P). Applying Theorem 3.2 to Pi ∈ P(Pi−1, Pi+1), it follows that



836 Sergi Elizalde and Martin Rubey

there is a bijection between families P ∈ Pk(B, T ) with ti−1(P) = e and `i(P) = f , and fami-
lies P ∈ Pk(B, T ) with ti−1(P) = e and `i(P) = f , which preserves the statistics tj and `j for all
j /∈ {i− 1, i}.

Given P ∈ Pk(B, T ) with b(P) = t0(P) = e and `(P) = `k(P) = f , one can apply this bijection
first to P1, then to P2 in the resulting tuple, and successively up to Pk. This composition gives a bijection
between families P ∈ Pk(B, T ) with b(P) = e and `(P) = f , and families P ∈ Pk(B, T ) with
`k−1(P) = f and t(P) = tk(P) = e. On the latter set, one can now apply the bijection to Pk−1, then
to Pk−2, and successively down to P1, proving that families P ∈ Pk(B, T ) with `k−1(P) = f and
t(P) = e are in turn in bijection with families P ∈ Pk(B, T ) with r(P) = `0(P) = f and t(P) = e. 2

5 Corollaries and Applications
5.1 Dyck paths and generalizations
In the particular case that B = EnNn and T = (NE)n, the statistics b and t become two familiar
Dyck path statistics: the height of the first peak and the number of returns to the x-axis, respectively. A
bijective proof of the fact that these statistics are equidistributed on Dyck paths was given by Deutsch [5],
who later also gave an involution [6] proving the symmetry of their joint distribution. Our involution Φ,
when restricted to the case of Dyck paths, is quite different from Deutsch’s involution, which is defined
recursively. The symmetry of these Dyck paths statistics can also be proved using standard generating
function techniques, based on the usual recursive decomposition of Dyck paths. However, neither these
techniques nor Deutsch’s involution seems to extend to the general setting of Theorem 1.1. In addition to
providing an extension to paths between arbitrary boundaries B and T , our involution can also be used to
prove the following statement (see [7]).

Corollary 5.1 Let B = ExNy , and let T be a path weakly above B which begins with a north step.
Then, for i, j ≥ 0, the number of paths in P(B, T ) with i bottom and j top contacts equals the number of
paths with north and east steps from (i+ j, 2) to (x, y) staying weakly below T and thus depends only on
i+ j.

For B = EnNn and T = (NE)n, Corollary 5.1 specializes to the fact that the number of Dyck paths
of fixed semilength n + 1 with j + 1 returns whose first peak has height i + 1 depends only on the sum
i+ j. In this case, the number of paths from (i+ j, 2) to (n, n) weakly below T is the ballot number

i+ j

n

(
2n− i− j − 1

n− i− j

)
.

5.2 Watermelon configurations
As a consequence of Theorem 1.3, we can recover a theorem of Richard Brak and John Essam [3, Corol-
lary 1] concerning certain families of k non-intersecting paths called watermelon configurations.

Definition 5.2 A watermelon configuration of length x and deviation y is a family of k non-intersecting
lattice paths with north-east (1, 1) and south-east (1,−1) steps, starting at (0, 2i) and terminating at
(x, y + 2i) for 0 ≤ i ≤ k − 1, not going below the x-axis.

Brak and Essam derive the following statement using manipulations of a determinant.
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Theorem 5.3 ([3]) The number of watermelon configurations of length x and deviation y whose bottom
path has e returns to the x-axis is the same as the number of families of k non-intersecting paths where
the lower k − 1 paths form a watermelon configuration of length x and deviation y, and the top path
terminates at (x− e− 1, y + 2k + e− 3).

Christian Krattenthaler [10, Proposition 6] gives a bijective proof by transforming the configurations into
certain semi-standard Young tableaux and applying a variant of jeu de taquin. However, as we show in [7],
one obtains a more straightforward proof by interpreting it as a special case of Theorem 1.3.

5.3 Flagged semistandard Young tableaux
The case of watermelon configurations with deviation 0 (also known as fans of Dyck paths) is particularly
interesting. Carlos Nicolas [11, Conjecture 1] discovered experimentally that the distribution of degrees
of k consecutive vertices in a k-triangulation of the n-gon equals the distribution of (t0, t1, . . . , tk−1)
over Pk(B, T ) with B = En−2k−1Nn−2k−1 and T = (NE)n−2k−1. An important special case has
been shown by Luis Serrano and Christian Stump [12, Theorem 4.4], who prove that the degree of a fixed
vertex in the set of k-triangulations of the n-gon is equidistributed with the number of bottom contacts of
families in Pk(B, T ).

As it turns out, much more seems to be true. Namely, let B = ExNy and let T be arbitrary. The region
enclosed by B and T can be interpreted as a Young diagram λ by rotating it 180 degrees. Recall that
the content of a semistandard Young tableau of shape λ is µ = (µ1, µ2, . . . ) where µi is the number of
entries i in the tableau. Using this notation, the following theorem is proved in the full length version of
this extended abstract [7].

Theorem 5.4 For B, T and λ as above, there is an explicit bijection between k-tuples of paths P ∈
Pk(B, T ) with ti(P) = ti (0 ≤ i ≤ k) and ms(P) = ms (1 ≤ s < y), and semistandard Young tableaux
of shape λ and content

(λ1 − t0, λ1 − t1, . . . , λ1 − tk, λ2 −m1, λ3 −m2, . . . , λy −my−1)

whose entries in row j are at bounded by k + j for 1 ≤ j ≤ y.

Using the Edelman-Greene correspondence as described in [12], we show in [7] that Theorem 5.4 implies
Carlos Nicolas’ conjecture [11, Conjecture 1].

5.4 Pattern-avoiding permutations
We now describe an application of Theorem 2.1 to pattern-avoiding permutations. Let Sn denote the set
of permutations of [n].

Definition 5.5 Let π ∈ Sn. We say that π(i) is a left-to-right minimum (left-to-right maximum) of π if
π(i) < π(j) (respectively, π(i) > π(j)) for all j < i. For 1 < i < n, we say that π has an occurrence of
the (dashed) pattern 2-31 at position i if there is a j < i such that π(i+ 1) < π(j) < π(i).

Proposition 5.6 The set of permutations in Sn with e left-to-right minima, f left-to-right maxima, and
having occurrences of the pattern 2-31 exactly at positions D is in bijection with the set of paths in
P̃(B, T,D) with e bottom contacts and f top contacts, where B = EnNn and T = (EN)n.
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Proof sketch: Given a path P ∈ P̃(B, T,D), let p1, p2, . . . , pn be the sequence of y-coordinates of its
east steps from left to right. We associate to P a permutation π ∈ Sn as follows: π(n) = pn + 1 and, for
each i from n− 1 to 1, let π(i) be the (pi + 1)-st smallest number in [n] \ {π(i+ 1), π(i+ 2), . . . , π(n)}.
2

Corollary 5.7 Let D ⊆ [n − 1]. In the set of permutations π ∈ Sn having occurrences of 2-31 exactly
at positions D, the joint distribution of the statistics ‘number of left-to-right minima’ and ‘number of
left-to-right maxima’ is symmetric.
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