
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 19:1, 2017, #3

Postorder Preimages

Colin Defant1

1 University of Florida

received 7th Apr. 2016, revised 19th Jan. 2017, accepted 31st Jan. 2017.

Given a set Y of decreasing plane trees and a permutation π, how many trees in Y have π as their postorder? Using
combinatorial and geometric constructions, we provide a method for answering this question for certain sets Y and all
permutations π. We then provide applications of our results to the study of the deterministic stack-sorting algorithm.

Keywords: Tree traversal; decreasing plane tree; postorder; permutation; stack-sorting

1 Introduction
If X is a finite set of positive integers, then a decreasing plane tree on X is a rooted plane tree with vertex
set X in which each nonroot vertex is smaller than its parent. Decreasing plane trees play a significant
role in computer science. In that field, one is often interested in listing the vertices of the tree in some
meaningful order. A scheme by which one reads these vertices is a tree traversal. Two of the most
common tree traversals are known as postorder and preorder; both are defined recursively.

To read a decreasing binary plane tree (“binary” means that each vertex has at most two children) in
postorder, we first read the left subtree of the root in postorder. We then proceed to read the right subtree
in postorder before finally reading the root. This postorder traversal easily generalizes to any decreasing
plane tree. Namely, we read the subtrees of the root in postorder from left to right before finally reading
the root. As an example, the postorder of each tree in Figure 1 is 127358. To read a tree in preorder,
we read the root first, and then proceed to read the subtrees of the root from left to right in preorder.
Alternatively, one can find the preorder reading of a tree by first reflecting the tree through a vertical
axis and then taking the reverse of the postorder reading of the resulting tree. Because of this simple
connection between the preorder and postorder, we will concern ourselves primarily with the postorder
traversal; analogous results for the preorder traversal will follow trivially.

Tree traversals have been incredibly useful tools in combinatorics and computer science. For example,
the postorder reading has been instrumental in the study of the deterministic stack-sorting algorithm [1, 2,
3, 4, 5, 8]. In fact, the study of this stack-sorting algorithm was the original motivation for developing the
results in this article. However, there has been surprisingly little research concerning the combinatorics of
the tree traversals themselves. In this article, we investigate the following very natural question.

Question 1. If Y is a set of decreasing plane trees and π is a permutation, then how many trees in Y have
postorder π?

ISSN 1365–8050 c© 2017 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

60
4.

01
72

3v
3

 [
m

at
h.

C
O

]
 2

 F
eb

 2
01

7

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/1428

2 Colin Defant

8 8

537

1 2

3 57

1 2

Fig. 1: This figure depicts two decreasing plane trees on X = {1, 2, 3, 5, 7, 8}. They are the same as
decreasing {0, 1, 2, 3, 4}-trees, but they are different as decreasing 4-ary trees.

Before proceeding, let us establish some terminology. We consider two major types of unlabeled plane
trees. The first, which we call a d-ary plane tree, is either an empty tree or a root along with a d-tuple
of d-ary plane trees. Therefore, the ordinary generating function Ad(x) for d-ary plane trees satisfies the
equation

Ad(x) = 1 + xAd(x)d.

The second type depends on a set S of nonnegative integers with 0 ∈ S. Each of these trees, which we call
S-trees, consists of a root along with a j-tuple of S-trees for some j ∈ S. When S = {0, 1, 2}, S-trees
are commonly known as unary-binary trees. The ordinary generating function BS(x) for S-trees satisfies
the functional equation

BS(x) = x
∑
j∈S

BS(x)j .

If X is a finite set of positive integers, then a decreasing d-ary plane tree on X is a d-ary plane tree
whose vertices are labeled with the elements of X so that the label of any nonroot vertex is smaller than
the label of its parent (distinct vertices are given distinct labels, and all elements of X are used as labels).
Similarly, a decreasing S-tree on X is an S-tree whose vertices are labeled with the elements of X so that
the label of any nonroot vertex is smaller than the label of its parent. In both types of trees, we will speak
of the hth child of a vertex. This is simply the hth child from the left.

Example 1.1. In this example let S = {0, 1, 2, 3, 4}. Figure 1 shows two decreasing plane trees. As
decreasing S-trees, they are identical. In both trees, the first child of 7 is 1 and the second child of 7 is 2.
However, if we instead view the trees as decreasing 4-ary trees, then they are distinct. In this case, in the
tree on the right, the first child of 7 is 1, the fourth child of 7 is 2, and the second and third children of 7
are empty. This contrasts the situation in the tree on the left, in which the first and second children of 7
are 1 and 2 while the third and fourth children of 7 are empty.

We will give a bijective method for attacking Question 1 when Y is the collection of decreasing N-trees.
We then show how our method applies to general decreasing S-trees and decreasing d-ary plane trees with
only slight modifications. In the end, we apply a special case of our results to gain new information about
the deterministic stack-sorting algorithm.

A descent of a permutation π = π1π2 · · ·πn is an index i such that πi > πi+1 (we do not consider n to
be a descent). A descent top is simply an entry in a descent position. That is, a descent top is an entry πi
such that πi > πi+1. We denote by P (τ) the postorder reading of a decreasing plane tree τ . We convene
to let N = {0, 1, 2, . . .} and [m] = {1, 2, . . . ,m}.

Postorder Preimages 3

2 Valid Hook Configurations
Our method relies on a geometric construction of objects that we call valid hook configurations. The
purpose of this section is to describe this construction.

Given a permutation π = π1π2 . . . πn ∈ Sn, we obtain a standard diagram for π by plotting the points
of the form (i, πi) in the plane. A hook in this diagram is the union of two line segments. One is a vertical
line segment connecting a point (i, πi) to a point (i, πj), where i < j and πi < πj . The second is a
horizontal line segment connecting the points (i, πj) and (j, πj). One can think of drawing a hook by
starting at the point (i, πi), moving upward, and then turning right to meet with the point (j, πj). The
point (i, πi) is the southwest endpoint of the hook while (j, πj) is the northeast endpoint of the hook. We
let eH and He denote the southwest and northeast endpoints, respectively, of the hook H .

In a valid hook configuration of π, each entry can be the southwest endpoint of at most one hook, but
an entry can be the northeast endpoint of several hooks. If i is a descent of π, then we require (i, πi) to be
the southwest endpoint of a hook. On the other hand, if (j, πj) is a northeast endpoint of some hook, then
at least one of the hooks with northeast endpoint (j, πj) must have a southwest endpoint (k, πk) for some
descent k of π. We also insist that if (j, πj) is a northeast endpoint of some hook, then there is some hook
whose northeast endpoint is (j, πj) and whose southwest endpoint is (j − 1, πj−1). Finally, in order for a
configuration of hooks to be valid, we impose a restriction on the projections of hooks onto the x-axis. Let
H and H ′ be hooks, and let I and I ′ be their respective projections onto the x-axis (which are intervals).
Let eH = (i, πi), He = (j, πj), eH ′ = (i′, πi′), and H ′e = (j′, πj′). If I ∩ I ′ contains more than one
point and πj ≤ πj′ , then we require I ⊆ I ′. Any configuration of hooks that satisfies these criteria is
valid. Valid hook configurations are of fundamental importance in the development of our results, so we
will make their definition formal.

Definition 2.1. Let π ∈ Sn. We say that an m-tuple H = (H1, H2, . . . ,Hm) is a valid hook configura-
tion of π if H1, H2, . . . ,Hm are hooks in the diagram of π that satisfy the following properties.

(a) If eH` = (i`, πi`) for each ` ∈ [m], then i1 < i2 < · · · < im.

(b) If i is a descent of π, then (i, πi) = eH` for some ` ∈ [m].

(c) If (j, πj) = He
` for some ` ∈ [m], then there exist `′, `′′ ∈ [m] such that the x-coordinate of eH`′ is a

descent of π, (j − 1, πj−1) = eH`′′ , and He
`′ = He

`′′ = (j, πj).

(d) If `, `′ ∈ [m], eH` = (i, πi), He
` = (j, πj), eH`′ = (i′, πi′), He

`′ = (j′, πj′), πj ≤ πj′ , and
|[i, j] ∩ [i′, j′]| > 1, then [i, j] ⊆ [i′, j′].

Let SW (H) = {eH1, eH2, . . . , eHm} and NE(H) = {He
1 , H

e
2 , . . . ,H

e
m}. LetH(π) denote the set of

valid hook configurations of π.

Let us take a moment to briefly explain the necessity of some of the technical notions introduced in
Definition 2.1. We are going to use the valid hook configurations of a permutation π to construct trees
whose postorders are π. In such a tree, the entries πj such that (j, πj) ∈ NE(H) will be the parents
of the descent tops of π. Furthermore, the hooks will become edges in the tree. More precisely, if
(j, πj) ∈ NE(H), then πi will be a child of πj if and only if (i, πi) is the southwest endpoint of some
hook whose northeast endpoint is (j, πj). We require property (b) for this reason. This is also why
property (c) guarantees that each element of NE(H) is the northeast endpoint of some hook whose
southwest endpoint is (i, πi) for some descent i. Moreover, this explains why each point can be the

4 Colin Defant

southwest endpoint of at most one hook while it can be the northeast endpoint of multiple hooks (a node
in a tree can have at most one parent, but it can have multiple children). Property (c) also states that
if (j, πj) is a northeast endpoint of a hook, then it must be a northeast endpoint of some hook whose
southwest endpoint is (j − 1, πj−1). Indeed, if (j, πj) is a northeast endpoint of some hook, then πj will
not be a leaf in the tree we construct. Since π is the postorder of this tree, this implies that the entry πj−1
must be the rightmost child of πj . Hence, (j − 1, πj−1) and (j, πj) must be connected by a hook.

There are some immediate consequences of the criteria in the above definition that are useful to keep in
mind. First, the only way that two hooks can intersect in exactly one point is if that point is the northeast
endpoint of one of the hooks and the southwest endpoint of the other. Also, no entry in the diagram can lie
above a hook. More formally, if H` is a hook with eH` = (i, πi) and He

` = (j, πj), then πk < πj for all
k ∈ {i+1, i+2, . . . , j−1}. Indeed, suppose instead that πk > πj for some k ∈ {i+1, i+2, . . . , j−1}.
Then π must have a descent i′ ∈ {k, k + 1, . . . , j − 1} such that πi′ > πj . According to criterion (b) in
the above definition, (i′, πi′) = eH`′ for some hook H`′ . Let He

`′ = (j′, πj′). Since πj < πi′ < πj′ and
[i′, i′ + 1] ⊆ [i, j] ∩ [i′, j′], condition (d) in the above definition states that we must have [i, j] ⊆ [i′, j′].
However, this is impossible because i < i′.

After drawing a diagram of a permutation π with a valid hook configuration H = (H1, H2, . . . ,
Hm) ∈ H(π), we can color the diagram withm+1 colors c0, c1, . . . , cm as follows. First, if eH` = (i, πi)
and He

` = (j, πj), then we refer to the line segment connecting the points (i+ 1/2, πj) and (j, πj) as the
top part of the hook H`. Assign H` the color c` for each ` ∈ [m]. Color each point (k, πk) as follows.
Start at (k, πk), and move directly upward until hitting the top part of a hook. Color (k, πk) the same
color as the hook that you hit. If you hit multiple hooks at once, use the color of the hook that was hit
whose southwest endpoint if farthest to the right. If you do not hit the top part of any hook, give (k, πk)
the color c0. Note that if (k, πk) = eH` for some ` ∈ [m], then we ignore the hook H` while moving
upward from (k, πk) to find the hook that is to lend its color to (k, πk). Moreover, if (k, πk) ∈ NE(H),
then we give (k, πk) the color cr, where r is the largest element of [m] such that (k, πk) = He

r .

Example 2.1. Figure 2 depicts the colored diagram obtained from a valid hook configuration of the
permutation π = 2.7.3.5.9.10.11.4.8.1.6.12.13.14.15.16.

Remark 2.1. We convene to say that the identity permutation 123 · · ·n has a single empty valid hook
configuration that induces a colored diagram in which every point is given the color c0.

If π ∈ Sn, then each valid hook configuration H = (H1, H2, . . . ,Hm) ∈ H(π) partitions [n] into
color classes. Let Qt(H) be the set of entries π` such that (`, π`) is assigned the color ct. If we let
qt(H) = |Qt(H)|, then (q0(H), q1(H), . . . , qm(H)) is a composition of n into m + 1 parts. Let
|H | = m denote the number of hooks in the valid hook configuration H . In the next section, we show
that the number of decreasing N-trees whose postorder is π is given by

∑
H ∈H(π)

|H |∏
t=0

Cqt(H)−1, (1)

where Ci is the ith Catalan number. In Section 4, we refine this enumeration and provide analogous results
aimed at answering Question 1 for other collections of tress Y .

Remark 2.2. Suppose H ∈ H(π) and (j, πj) ∈ NE(H). If (j, πj) is given the color ct in the colored
diagram of π induced by H , then Qt(H) = {πj} and qt(H) = 1. Indeed, the hook colored ct is the
hook with southwest endpoint (j − 1, πj−1) and northeast endpoint (j, πj).

Postorder Preimages 5

2

7

3

5

9

10

11

4

8

1

6

12

13

14

15

16

Fig. 2: The colored diagram arising from a valid hook configuration.

Before we proceed to the next section, we record the following simple but useful lemma, which essen-
tially states that the color classes mentioned above form increasing subsequences in π.

Lemma 2.1. Let π ∈ Sn, and let H = (H1, H2, . . . ,Hm) ∈ H(π). Let r ∈ {0, 1, . . . ,m}. IfQr(H) =
{(h1, πh1

), (h2, πh2
), . . . , (hk, πhk

)}, where h1 < h2 < · · · < hk, then πh1
< πh2

< · · · < πhk
.

Proof: Suppose instead that hp < hp′ and πhp > πhp′ for some p, p′ ∈ [k]. There is some descent i of π
such that hp ≤ i < hp′ . Let us choose i maximally. According to part (b) of Definition 2.1, (i, πi) = eH`

for some ` ∈ [m]. Let He
` = (j, πj). Then πj > πi, so j > hp′ because i is the largest descent of π that

is less than hp′ . It follows that (hp′ , πhp′) lies below the hook H` while (hp, πhp
) does not. Since Hr is

supposed to be the lowest hook lying above (hp′ , πhp′), Hr must lie belowH`. Since (hp, πhp) lies below
Hr but does not lie below H`, this means that Hr lies below H` but does not lie completely below H`. In
other words, we have contradicted part (d) of Definition 2.1.

3 From Entries to N-Trees
Throughout this section, let π = π1π2 · · ·πn ∈ Sn. Let H = (H1, H2, . . . ,Hm) ∈ H(π). At the end
of the previous section, we defined Qt(H) to be the set of entries π` such that (`, π`) is given the color
ct in the colored diagram induced by H . For each t ∈ {0, 1, . . . ,m}, let Tt be a decreasing N-tree on
Qt(H) whose postorder lists the elements of Qt(H) in increasing order. Let T = (T0, T1, . . . , Tm).
Choosing each tree Tt amounts to choosing the (unlabeled) N-tree with qt(H) = |Qt(H)| vertices that
serves as the underlying shape of Tt; the labeling of Tt is then completely determined by the requirement
that P (Tt), the postorder of Tt, be in increasing order. Therefore, the number of ways to choose the tree
Tt is equal to the number of N-trees with qt(H) vertices, which is Cqt(H)−1. It follows that the number

6 Colin Defant

2

7

3 5 9

10
11

84

6
12 13

14
15

16

1

Fig. 3: A collection of N-trees T0, T1, . . . , T7.

of ways to choose T is
m∏
t=0

Cqt(H)−1.

Example 3.1. Figure 3 shows one possible collection of trees T0, T1, . . . , T7 that could arise from the
permutation π and the valid hook configuration H given in Example 2.1. Observe that the postorder of
each one of these trees is in increasing order.

We are going to describe a procedure for building N-trees whose postorders are π from the valid hook
configuration H and the collection of trees T0, T1, . . . , Tm. We will then show that this procedure pro-
vides a one-to-one correspondence between pairs (H ,T) and decreasing N-trees whose postorders are
π. This is how we obtain the formula (1) for the number of decreasing N-trees with postorder π.

The procedure works by constructing a sequence of decreasing N-trees τn, τn−1, . . . , τ1, where the
vertices of τi are the entries πi, πi+1, . . . , πn. The final tree in the sequence, τ1, will be the N-tree with
postorder π that we want. To begin the procedure, let τn be the tree consisting of the single vertex πn.
Now, suppose we have built the trees τn, τn−1, . . . , τ`+1. We will build the tree τ` from τ`+1 by attaching
π` as a leaf under one of the vertices of τ`+1. We consider two cases.

Case 1: Suppose (`, π`) ∈ SW (H). In this case, (`, π`) is the southwest endpoint of a unique hook
Hi. Let He

i = (j, πj). To build the tree τ` from τ`+1, attach π` as child of πj so that π` is the first
(leftmost) child of πj in the tree τ`.

Case 2: Suppose (`, π`) 6∈ SW (H). In this case, let cr be the color assigned to (` + 1, π`+1) (so
(`+ 1, π`+1) ∈ Qr(H)). Let u be the largest element of the set [`] such that (u, πu) ∈ Qr(H). Let πv
be the parent of πu in the tree Tr. To build the tree τ` from τ`+1, attach π` as child of πv so that π` is the
first (leftmost) child of πv in the tree τ`.

In Case 2, we need to make sure that u always exists and that the parent πv of πu in Tr exists and
is also a vertex in τ`+1. To show that u exists, we need to show that there is some i ∈ [`] such that
(i, πi) ∈ Qr(H). If r = 0, then we may set i = 1, so assume r > 0. Recall from part (c) of Definition
2.1 that if (j, πj) ∈ NE(H), then (j − 1, πj−1) ∈ SW (H). Therefore, (`+ 1, π`+1) 6∈ NE(H). Let
(h, πh) = eHr. The points (`, π`) and (` + 1, π`+1) must both lie below Hr, so h < `. This means that
h + 1 ∈ [`] and (h + 1, πh+1) ∈ Qr(H), so we may set i = h + 1. Now, Lemma 2.1 tells us that the
entries πs such that (s, πs) ∈ Qr(H) form an increasing subsequence of π. Consequently, π`+1 > πu.
It follows that πu cannot be the root of Tr, so πu has a parent πv in Tr. Because Tr is a decreasing tree,
πv > πu. Therefore, v > u by Lemma 2.1. Because u was chosen to be the largest element of [`] such
that (u, πu) ∈ Qr(H), it follows that v ≥ `+ 1. Thus, πv is a vertex in τ`+1.

Figure 4 shows the tree τ1 that results from this procedure when π, H , and T are the permutation, the
valid hook configuration, and the 8-tuple of trees given in Example 2.1 and Example 3.1. Observe that
each of the trees T0, T1, . . . , T7 is, in some sense, embedded in this tree τ1. For example, the green tree T1
is an actual subgraph of τ1. If we imagine deleting the vertex 13 and then contracting the edge that joined
the vertices 8 and 13, we will see a copy of the blue tree T3 sitting inside of the larger tree. By appealing to

Postorder Preimages 7

2

7

3 5 9

10 11

8

4
6
12

13

14

15

16

1

Fig. 4: The tree τ1 obtained when π, H , and T are as in Examples 2.1 and 3.1.

the description of the above procedure, the reader may convince herself that this phenomenon will always
occur for all of the trees T0, T1, . . . , Tm. More precisely, if πi and πj are vertices of a tree Tt, then πi is
in the hth subtree (meaning the hth subtree from the left) of πj in τ1 if and only if πi is in the hth subtree
of πj in Tt. We make use of this fact in the proof of the following proposition.

Proposition 3.1. Let τn, τn−1, . . . , τ1 be the sequence of decreasing N-trees constructed in the above
procedure. The postorder reading of the tree τ` is P (τ`) = π`π`+1 · · ·πn. In particular, P (τ1) = π.

Proof: We prove the proposition by inducting backward on `, noting first that the claim is trivial if ` = n.
Suppose ` < n, and assume that P (τ`+1) = π`+1π`+2 · · ·πn. Because τ` is built by attaching π` to the
tree τ`+1 as a leaf, the postorder of τ` is obtained by inserting π` somewhere into P (τ`). In other words,
there are strings L and R such that P (τ`+1) = LR and P (τ`) = Lπ`R. In order to complete the proof
of the proposition, we need to show that L is empty. This amounts to showing that π` precedes π`+1 in
P (τ`).

Suppose first that (`, π`) ∈ SW (H). Let Hs be the hook with eHs = (`, π`), and let (j, πj) = He
s .

Note that the point (` + 1, π`+1) is given the color cs. It follows from the description of the procedure
used to build the sequence of trees τn, τn−1, . . . , τ`+1 that π`+1 is a descendant of πj in τ`+1 (therefore,
also in τ`). In τ`, the vertex π` is a leaf which is the leftmost child of πj . Consequently, π` precedes π`+1

in P (τ`).
Next, suppose (`, π`) 6∈ SW (H). Preserve the notation from the description of the procedure in Case

2 above. Lemma 2.1 tells us that πu < π`+1 because u < ` + 1. We constructed Tr so that its postorder
would be in increasing order, so πu precedes π`+1 in P (Tr). In the paragraph preceding this proposition,
we mentioned that Tr is embedded in τ1. Therefore, πu precedes π`+1 in P (τ1). Moreover, πu must be
a descendant of πv in τ1 because πu is a descendant of πv in Tr. Now, suppose that π`+1 precedes π`
in P (τ`). Then π`+1 precedes π` in P (τ1), so π`+1 appears between πu and π` in P (τ1). Because πu
and π` are both descendants of πv in τ1, π`+1 must be a descendant of πv in τ1. Consequently, π`+1 is a
descendant of πv in τ`. However, this implies that π` precedes π`+1 in P (τ`) because π` is a leaf which
is the leftmost child of πv in τ`.

Now that we have shown that the above procedure creates a tree τ1 with postorder π, our goal is to

8 Colin Defant

show that each decreasing N-tree with postorder π is obtained in this way from a unique pair (H ,T). In
the following theorem, let g(H ,T) denote the tree τ1 that our procedure produces from the valid hook
configuration H and the tuple of decreasing N-trees T . It might be useful to keep Example 2.1, Example
3.1, and Figure 4 in mind during the following proof.

Theorem 3.1. Let τ be a decreasing N-tree whose postorder reading is P (τ) = π. There is a unique pair
(H ,T) such that τ = g(H ,T).

Proof: Let N be the set of entries πj of π such that πj is a parent of a descent top of π in τ . Suppose
g(H ,T) = τ , where H = (H1, H2, . . . ,Hm) and T = (T0, T1, . . . , Tm). According to Definition 2.1,
a point (j, πj) is a northeast endpoint of a hook in H if and only if it is the northeast endpoint of a hook
whose southwest endpoint is (i, πi) for some descent i of π. Referring to Case 1 of the procedure, this
happens if and only if πj is the parent of πi in τ . Therefore, NE(H) is precisely the collection of points
(j, πj) such that πj ∈ N . We can now determine exactly what the hooks in H must be by observing that
the points in SW (H) correspond to the children in τ of the points πj such that (j, πj) ∈ NE(H). More
precisely, there is a hook H in H with eH = (h, πh) and He = (j, πj) if and only if πj ∈ N and πh is a
child of πj in τ . Hence, H is uniquely determined by τ .

The paragraph preceding the proof of Proposition 3.1 tells us that each tree Tt is embedded in τ . More
precisely, if t ∈ {0, 1, . . . ,m} and (i, πi), (j, πj) ∈ Qt(H), then πi is in the hth subtree of πj in Tt if and
only if πi is in the hth subtree of πj in τ . Therefore, T is uniquely determined by τ . We have shown that
there is at most one pair (H ,T) such that g(H ,T) = τ .

On the other hand, it turns out that these properties of H and T , which are necessary for g(H ,T) =
τ , are sufficient. We may define a valid hook configuration H ′ = (H ′1, H

′
2, . . . ,H

′
m′) by requiring that

there is a hook in H with southwest endpoint (i, πi) and northeast endpoint (j, πj) if and only if πi is a
child of πj in τ and πj ∈ N . For each t ∈ {0, 1, . . . ,m′}, define a decreasing N-tree T ′t on Qt(H ′) by
insisting that for any (i, πi), (j, πj) ∈ Qt(H ′), πi is in the hth subtree of πj in T ′t if and only if πi is in
the hth subtree of πj in τ . Let T ′ = (T ′0, T

′
1, . . . , T

′
m′). With these definitions, g(H ′,T ′) = τ .

We are now able to obtain the formula (1). Recall the definition of H(π) from Definition 2.1. For any
H ∈ H(π), recall that |H | denotes the number of hooks in H and that qt(H) denotes the number of
points (i, πi) that are given the color ct in the colored diagram induced by H .

Theorem 3.2. Let π ∈ Sn. The number of decreasing N-trees with postorder π is

∑
H ∈H(π)

|H |∏
t=0

Cqt(H)−1.

Proof: Theorem 3.1 tells us that there is a one-to-one correspondence between decreasing N-trees with
postorder π and pairs of the form (H ,T). In the beginning paragraph of this section, we showed that for

any given H ∈ H(π), the number of ways to choose T is
|H |∏
t=0

Cqt(H)−1.

Postorder Preimages 9

4 Extensions and Refinements
We continue to let π = π1π2 · · ·πn be an arbitrary permutation in Sn.

In the last section, we gave a procedure for constructing a sequence of decreasing N-trees τn, τn−1, . . . , τ1
such that P (τ1) = π. The purpose of this section is to show how modifying that procedure can lead to
results similar to Theorem 3.2 concerning different types of decreasing plane trees.

Recall from the introduction that we defined two important types of plane trees: S-trees and d-ary plane
trees. If S is a set of nonnegative integers with 0 ∈ S, then an S-tree is constructed from a root along
with a j-tuple of S-trees for some j ∈ S. If d is a positive integer, then a d-ary plane tree is either empty
or is a root along with a d-tuple of (possibly empty) d-ary plane trees. If X is a set of positive integers,
then a decreasing plane tree (of either type) on X is a plane tree whose vertices have been labeled with
the elements of X so that the label of any nonroot vertex is smaller than the label of its parent.

Definition 4.1. If H ∈ H(π) and j ∈ [n], let wj(H) denote the number of hooks in H with northeast
endpoint (j, πj). If 0 ∈ S ⊆ N, defineHS(π) to be the set of valid hook configurations H ∈ H(π) such
that wj(H) ∈ S for all j ∈ [n].

According to the definition ofNE(H) in Definition 2.1, (j, πj) ∈ NE(H) if and only ifwj(H) > 0.
In the proof of Theorem 3.1, we were given a decreasing N-tree τ with P (τ) = π and showed that
τ = g(H ,T) for a unique pair (H ,T). We let N be the set of entries πj such that πj was a parent of
a descent top of π in τ . It then turned out that πj ∈ N if and only if (j, πj) ∈ NE(H). The number of
children of each vertex πj ∈ N was wj(H), the number of hooks in H with northeast endpoint (j, πj).
Furthermore, if (j, πj) 6∈ NE(H) and πj was a vertex in Tt, then the number of children of πj in τ was
equal to the number of children of πj in Tt. We will make use of these observations in the proofs of the
following theorems.

Theorem 4.1. Let S be a set of nonnegative integers with 0 ∈ S. Let DS(r) denote the number of S-trees
with r vertices. The number of decreasing S-trees with postorder π is

∑
H ∈HS(π)

|H |∏
t=0

DS(qt(H)).

Proof: The proof is very similar to those of Theorems 3.1 and 3.2 because a decreasing S-tree is just a
special type of decreasing N-tree. As mentioned in the paragraph preceding this theorem, each tree τ with
postorder π corresponds to a pair (H ,T). If (j, πj) ∈ NE(H), then the number of children of πj in τ
is wj(H). This is the reason for summing over the set HS(π). Because the number of children of each
of the other vertices of τ must be an element of S, the tuple of trees T = (T0, T1, . . . , Tm) must be such
that each tree Tt is a decreasing S-tree whose postorder is in increasing order. This explains why we have

replaced the product
|H |∏
t=0

Cqt(H)−1 from Theorem 3.2 with the product
|H |∏
t=0

DS(qt(H)).

We can also modify our techniques in order to count decreasing d-ary trees.

10 Colin Defant

Theorem 4.2. Let d be a positive integer. Let Ed(r) denote the number of d-ary plane trees with r
vertices. The number of decreasing d-ary plane trees with postorder π is

∑
H ∈H[d]∪{0}(π)

 n∏
j=1

(
d

wj(H)

)|H |∏
t=0

Ed(qt(H))

 .

Proof: We have made two simple modifications to the ideas used in the proof of Theorem 4.1. The
first is that we have replaced DS(qt(H)) with Ed(qt(H)) because we are considering different types

of trees. The second is the introduction of the factors of the form
n∏
j=1

(
d

wj(H)

)
. The reason for these

new factors comes from the fact that vertices in decreasing d-ary trees can have empty subtrees. For each

(j, πj) ∈ NE(H), there are
(

d

wj(H)

)
ways to choose which of the d subtrees of πj are nonempty.

When (j, πj) 6∈ NE(H), the factor
(

d

wj(H)

)
does not change anything because wj(H) = 0.

The following theorems serve to refine the enumerative results we have found so far. We omit their
proofs because they are straightforward consequences of ideas that we have already used, especially the
observations mentioned in the paragraph immediately preceding Theorem 4.1. We need some notation
before stating these results. IfR is a set of nonnegative integers, let ΦR(u) denote the set of all decreasing
plane trees (of either of our two types) in which there are exactly u vertices v such that the number
of children of v is an element of R. If H is a valid hook configuration of π, let Θ(H) be the set of all
i ∈ {0, 1, . . . , |H |} such that the color ci is not used in the colored diagram induced by H to color a point
in NE(H). We let |̂H | = |Θ(H)| − 1 = |H | − |NE(H)|. For example, the colors c6 and c7 (pink
and teal) are used in Example 2.1 to colors the points in NE(H). Therefore, in that example, we have
Θ(H) = {0, 1, 2, 3, 4, 5} and |̂H | = 5. If Θ(H) =

{
i0, i1, . . . , i|̂H |

}
, where i0 < i1 < · · · < i|̂H |,

then we let q̂t(H) = qit(H). In other words, the tuple
(
q̂0(H), q̂1(H), . . . , q̂|̂H |(H)

)
is obtained by

starting with the tuple
(
q0(H), q1(H), . . . , q|H |(H)

)
and removing all of the coordinates qi(H) such

that the color ci is used to color a point in NE(H).

Theorem 4.3. Let R ⊆ S ⊆ N with 0 ∈ S. Let HS(π;R, u) be the set of H ∈ HS(π) such that
|{(j, πj) ∈ NE(H) : wj(H) ∈ R}| = u. Let DS(r;R, u) be the number of S-trees in ΦR(u) with r
vertices. The number of decreasing S-trees τ ∈ ΦR(p) with P (τ) = π is

p∑
u=0

∑
H ∈HS(π;R,u)

∑
j0+j1+···+j ̂|H |=p−u

|̂H |∏
t=0

DS(q̂t(H);R, jt),

where the innermost sum ranges over all nonnegative integers j0, j1, . . . , j|̂H | that sum to p− u.

Theorem 4.4. Let R ⊆ [d] ∪ {0}. Let H[d]∪{0}(π;R, u) be the set of H ∈ H[d]∪{0}(π) such that
|{(j, πj) ∈ NE(H) : wj(H) ∈ R}| = u. Let Ed(r;R, u) be the number of d-ary plane trees in ΦR(u)

Postorder Preimages 11

with r vertices. The number of decreasing d-ary plane trees τ ∈ ΦR(p) with P (τ) = π is

p∑
u=0

∑
H ∈H[d]∪{0}(π;R,u)

 n∏
j=1

(
d

wj(H)

) ∑
j0+j1+···+j ̂|H |=p−u

|̂H |∏
t=0

Ed(q̂t(H);R, jt),

where the innermost sum ranges over all nonnegative integers j0, j1, . . . , j|̂H | which sum to p− u.

It may seem as though Theorems 4.3 and 4.4 provide unnecessarily lengthy expressions by merely
summing over appropriate sets. As these theorems stand, they appear too complicated to be of much use.
However, our real interest lies in some special cases in which the given expressions simplify considerably.

Recall from Definition 2.1 that if H ∈ H(π) and (j, πj) ∈ NE(H), then (j, πj) is the northeast
endpoint of at least two hooks: one with southwest endpoint (j−1, πj−1) and one with southwest endpoint
(i, πi) for some descent i of π. It is natural to consider the set of valid hook configurations H in which
each point in NE(H) is a northeast endpoint of exactly two hooks. In the notation of Definition 4.1, this
is the set H{0,2}(π). It is particularly easy to work with this set of valid hook configurations because the
number of hooks in any such configuration must be twice the number of descents of π.

The following corollary invokes the numbers D{0,1,2}(r;R, u) for certain sets R ⊆ {0, 1, 2}. These
numbers are known(i) and are listed in Table 1.

R D{0,1,2}(r;R, u) E2(r;R, u)

{0} 1
u

(
r−1
u−1
)(
r−u
u−1
)

2r−2u+1
(
r−1
2u−2

)
Cu−1

{1}
(
r−1
u

)
C(r−u−1)/2 2u

(
r−1
u

)
C(r−u−1)/2

{2} 1
u+1

(
r−1
u

)(
r−u−1
u

)
2r−2u−1

(
r−1
2u

)
Cu

{0, 1, 2} Mr−1δr,u Crδr,u

Tab. 1: Values of D{0,1,2}(r;R, u) and E2(r;R, u) for R ⊆ {0, 1, 2}. Here, Mr−1 denotes the (r − 1)th

Motzkin number. We convene to let Cx = 0 if x 6∈ Z. In the last row, δr,u is the Kronecker delta. Observe
that if R = {0, 1, 2} \ {a} for some a ∈ {0, 1, 2}, then D{0,1,2}(r;R, u) = D{0,1,2}(r; {a}, r − u) and
E2(r;R, u) = E2(r; {a}, r − u).

Corollary 4.1. Let π ∈ Sn be a permutation with exactly k descents. Let R ⊆ {0, 1, 2}. Let χ = k if
2 ∈ R, and let χ = 0 if 2 6∈ R. The number of decreasing {0, 1, 2}-trees τ ∈ ΦR(p) with P (τ) = π is

∑
H ∈H{0,2}(π)

j0+j1+···+jk=p−χ

k∏
t=0

D{0,1,2}(q̂t(H);R, jt),

where the numbers j0, j1, . . . , jk are assumed to be nonnegative integers.

Proof: Set S = {0, 1, 2} in Theorem 4.3. Note that H{0,1,2}(π) = H{0,2}(π) because a point cannot
be the northeast endpoint of exactly one hook. Suppose H ∈ H{0,2}(π). Each point in NE(H) is the

(i) See sequences A000108, A001006, A055151, A097610, A091894, A121448 in the Online Encyclopedia of Integer Sequences
[6].

12 Colin Defant

northeast endpoint of two hooks, exactly one of which has a southwest endpoint (i, πi) for some descent
i of π. Therefore, |NE(H)| = k and |H | = 2k. By definition, |̂H | = |H | − |NE(H)| = k. Because
wj(H) = 2 whenever (j, πj) ∈ NE(H), H{0,1,2}(π;R, u) is empty if u 6= 0 and 2 6∈ R. Similarly,
H{0,1,2}(π;R, u) is empty when u 6= k and 2 ∈ R. When u = 0 and 2 6∈ R, H{0,1,2}(π;R, u) =
H{0,2}(π). When u = k and 2 ∈ R,H{0,1,2}(π;R, u) = H{0,2}(π).

Example 4.1. By definition, Φ{0}(`) is the set of all decreasing plane trees with ` leaves. According to
Table 1, D{0,1,2}(r; {0}, u) = 1

u

(
r−1
u−1
)(
r−u
u−1
)

if u > 0. Therefore, Corollary 4.1 tells us that if π ∈ Sn has
exactly k descents, then the number of decreasing {0, 1, 2}-trees with exactly p leaves that have postorder
π is ∑

H ∈H{0,2}(π)
j0+j1+···+jk=p

k∏
t=0

1

jt

(
q̂t(H)− 1

jt − 1

)(
q̂t(H)− jt
jt − 1

)
.

It is understood that the numbers j0, j1, . . . , jk in the sum are positive.

In the next corollary, recall the definition of the numbers Ed(r;R, u) from Theorem 4.4. When d = 2
and R ⊆ {0, 1, 2}, these numbers are given in Table 1.

Corollary 4.2. Let π ∈ Sn be a permutation with exactly k descents. Let R ⊆ {0, 1, 2}. Let χ = k if
2 ∈ R, and let χ = 0 if 2 6∈ R. The number of decreasing binary plane trees τ ∈ ΦR(p) with P (τ) = π
is ∑

H ∈H{0,2}(π)
j0+j1+···+jk=p−χ

k∏
t=0

E2(q̂t(H);R, jt),

where the numbers j0, j1, . . . , jk are assumed to be nonnegative integers.

Proof: Set d = 2 in Theorem 4.3. The simplification of the formula in Theorem 4.4 results from the
same argument used to simplify the formula from Theorem 4.3 in the proof of Corollary 4.1. In this case,

we must also consider the expression
n∏
j=1

(
d

wj(H)

)
. This product simplifies to 1 because d = 2 and

wj ∈ {0, 2} for all j ∈ [n] and H ∈ H{0,2}(π).

Example 4.2. According to Table 1, E2(r; {0}, u) = 2r−2u+1
(
r−1
2u−2

)
Cu−1 if u > 0. Therefore, Corol-

lary 4.1 tells us that if π ∈ Sn has exactly k descents, then the number of decreasing binary plane trees
with exactly p leaves that have postorder π is∑

H ∈H{0,2}(π)
j0+j1+···+jk=p

k∏
t=0

2q̂t(H)−2jt+1

(
q̂t(H)− 1

2jt − 2

)
Cjt−1.

Because q̂0(H) + q̂1(H) + · · ·+ q̂k(H) = n− k, this expression simplifies further to

2n−2p+1
∑

H ∈H{0,2}(π)
j0+j1+···+jk=p

k∏
t=0

(
q̂t(H)− 1

2jt − 2

)
Cjt−1.

Postorder Preimages 13

5 The Stack-Sorting Algorithm
In his 1990 Ph.D. thesis, Julian West [8] studied a function s that transforms permutations into permuta-
tions through the use of a vertical stack. We call the function s the deterministic stack-sorting algorithm.
Given an input permutation σ = σ1σ2 · · ·σn, the permutation s(σ) is computed as follows. At any point
in time during the algorithm, if the leftmost entry in the input permutation is larger than the entry at the
top of the stack or if the stack is empty, the leftmost entry in the input permutation is placed at the top of
the stack. Otherwise, the entry at the top of the stack is annexed to the right end of the growing output
permutation. For example, s(35214) = 31245.

Example 4.2 has a natural interpretation in terms of the deterministic stack-sorting algorithm. This is
because the map s is intimately related to the postorder readings of decreasing binary plane trees. If we
are given any decreasing binary plane tree, we can read its labels in symmetric order by first reading the
left subtree of the root in symmetric order, then reading the root, and finally reading the right subtree of
the root in symmetric order. If we let Dn denote the set of decreasing binary plane trees on [n], then the
map S : Dn → Sn that sends a tree to its symmetric order reading is a bijection [7]. Furthermore, one
can show that s(σ) = P (S−1(σ)) for any σ ∈ Sn [2, Corollary 8.22]. Therefore, the preimages of a
permutation π ∈ Sn under s are in bijective correspondence with the decreasing binary plane trees with
postorder π (the bijection being the map S).

A leaf of a decreasing binary plane tree corresponds to a valley in the tree’s symmetric order reading (a
valley of a permutation σ1σ2 · · ·σn is an index i ∈ {2, 3, . . . , n − 1} such that σi < min{σi−1, σi+1}).
Therefore, we may rephrase the result from Example 4.2 as follows:

Corollary 5.1. If π ∈ Sn is a permutation with exactly k descents, then the number of permutations
σ ∈ Sn that have exactly p valleys and that satisfy s(σ) = π is given by

2n−2p+1
∑

H ∈H{0,2}(π)
j0+j1+···+jk=p

k∏
t=0

(
q̂t(H)− 1

2jt − 2

)
Cjt−1.

Corollary 5.1 provides a method for calculating a refined enumeration of the preimages of any permu-
tation π under s. The reader may very well ask “what about the total number of preimages of π under s?”
West originally asked about preimages of permutations under s, and he defined the fertility of a permu-
tation to be the total number of these preimages [8]. Subsequently, Bousquet-Mélou gave a method for
determining whether or not the feritility of any permutation is 0 (that is, whether or not a permutation is
in the image of s), and she stated that it would be interesting to find a method for computing the fertility
of any given permutation [5]. Fortunately, we have such a method (reliant on the construction of the set
H{0,2}(π)).

Theorem 5.1. If π ∈ Sn is a permutation with exactly k descents, then the number of permutations
σ ∈ Sn such that s(σ) = π is given by

∑
H ∈H{0,2}(π)

k∏
t=0

Cq̂t(H).

Proof: Set d = 2 in Theorem 4.2, and use the fact that H[2]∪{0}(π) = H{0,2}(π). By definition,
wj(H) ∈ {0, 2} for all j ∈ [n] and H ∈ H{0,2}(π). Therefore, the first product in the summation

14 Colin Defant

in Theorem 4.2 simplifies to 1. The second product becomes
|H |∏
t=0

Cqt(H). This is because E2(qt(H)),

the number of (unlabeled) binary plane trees with qt(H) vertices, is the Catalan number Cqt(H). Finally,
note that if ct is a color used to color an element of NE(H) in the colored diagram of π induced by H ,

then Cqt(H) = C1 = 1 by Remark 2.2. Therefore, the product simplifies further to
k∏
t=0

Cq̂t(H).

As a final application, we count the number of preimages of a permutation under s which have a fixed
number of descents. In the following theorem, recall that the Narayana number N(a, b) is defined by
N(a, b) = 1

a

(
a
b

)(
a
b−1
)
.

Theorem 5.2. If π ∈ Sn has exactly k descents and m is a nonnegative integer, then the number of
permutations σ ∈ Sn which have exactly m descents and satisfy s(σ) = π is given by

∑
H ∈H{0,2}(π)

j0+j1+···+jk=m−k

k∏
t=0

N(q̂t(H), jt + 1),

where the numbers j0, j1, . . . , jk in the sum are nonnegative integers that sum to m− k.

Proof: The descents of a permutation σ are in one-to-one correspondence with the right edges of the
decreasing binary plane tree S−1(σ). Therefore, we are really counting the number of decreasing binary
plane trees that have exactly m right edges and that have postorder π.

Choose some H ∈ H{0,2}(π). Observe that if (j, πj) ∈ NE(H), then wj(H) = 2. This means that
for any collection of trees T = (T0, T1, . . . , T2k), πj will have two children in g(H ,T). In particular,
πj will have a right child in g(H ,T). Consequently, g(H ,T) will automatically have k right edges
that attach the k elements of the set {πj : (j, πj) ∈ NE(H)} to their right children.

We now need to choose a collection of trees T = (T0, T1, . . . , T2k) such that the total number of right
edges in all of the trees T0, T1, . . . , T2k is m− k. If ct is a color used to color a point in NE(H) in the
colored diagram of π induced by H , then the number of vertices of Tt is qt(H) = 1 by Remark 2.2.
Such a tree has no right edges, and there is only one way to choose each such tree. Therefore, we are left
to choose the trees Ti for i ∈ Θ(H). Let Θ(H) = {i0, i1, . . . , ik}, where i0 < i1 < . . . < ik. Choose a
collection of nonnegative integers j0, j1, . . . , jk with j0 + j1 + · · · + jk = m − k. It is well known that
N(a, b+ 1) is the number of unlabeled binary plane trees with a vertices that have exactly b right edges.
Therefore, the number of ways to choose the trees Ti0 , Ti1 , . . . , Tik so that each tree Tit has exactly jt

right edges is
k∏
t=0

N(q̂t(H), jt + 1). The result now follows by summing over all possible j0, j1, . . . , jk

and all possible H ∈ H{0,2}(π).

6 Concluding Remarks
The formulas given in this paper include sums over sets of the form HS(π), where 0 ∈ S ⊆ N and
π ∈ Sn. For this reason, it would be interesting to have a method for efficiently generating all of the

Postorder Preimages 15

valid hook configurations in the set HS(π) if we are given S and π. Alternatively, suppose we fix S and
let Λ be a specific family of permutations (such as the family of layered permutations or the family of
involutions). We would be interested in calculating (or at least estimating) the number of hooks in the set
HS(π) for each π ∈ Λ.

7 Acknowledgments
The author would like to thank Miklós Bóna for very helpful advise concerning the submission and or-
ganization of this paper. The author would also like to thank the anonymous referees for their useful
suggestions.

References
[1] M. Albert and M. Bouvel, Operators of equivalent sorting power and related Wilf-equivalences.

DMTCS proc. AS, (2013), 701–712.

[2] Bóna, Miklós, Combinatorics of permutations. Second Edition. CRC Press, 2012.

[3] Bóna, Miklós, Symmetry and unimodality in t-stack sortable permutations. Journal of Combinatorial
Theory, Series A 98.1 (2002): 201–209.

[4] Bóna, Miklós, A survey of stack-sorting disciplines, Electron. J. Combin. 9.2 (2003): 16.

[5] Bousquet-Melou, Mireille, Sorted and/or sortable permutations, Discrete Math., 225 (2000), no. 1-3,
25—50.

[6] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

[7] Stanley, Richard, Enumerative Combinatorics, Volume 1, Second Edition. Cambridge University
Press, Cambridge UK, 2012.

[8] West, Julian, Permutations with restricted subsequences and stack-sortable permutations, Ph.D. The-
sis, MIT, 1990.

	1 Introduction
	2 Valid Hook Configurations
	3 From Entries to N-Trees
	4 Extensions and Refinements
	5 The Stack-Sorting Algorithm
	6 Concluding Remarks
	7 Acknowledgments

