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Total Dominating Set, Connected Vertex Cover and Steiner Tree are well-known graph problems. Despite the fact
that they are NP-complete to optimize, it is easy (even trivial) to find some solutions, when ignoring the optimization
criterion. In this paper, we study a variant of these problems by adding conflicts, that are pairs of vertices that cannot
be both in a solution. This new constraint leads to situations where it is NP-complete to decide if there exists a
solution avoiding conflicts. We prove NP-completeness of deciding the existence of a solution for different restricted
classes of graphs and conflicts, improving recent results. We also propose polynomial time constructions in several
restricted cases and we introduce a new parameter, the stretch, to capture the locality of the conflicts.
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1 Introduction
In the field of discrete optimization, graph problems have been extensively studied. An instance of a
problem consists of a graph G (together with other parameters), and the goal is to compute a structure S
which satisfies some constraints and whose value is optimized for a criterion. It is the case for domination
problems, connected vertex cover, and Steiner tree for which coming up with approximation algorithms
is a field of active research [ACG+12]. However, deciding the existence of some solution ignoring the
optimization criterion can easily be done in polynomial time.

In the real world, there can be incompatibilities between some vertices ofG because of various reasons,
for example structural incompatibilities between components of a system, security reasons, mutually ex-
clusive funding, interface incompatibilities and so on. These plausible applications motivate us to extend
several classical optimization problems to understand better how these incompatibilities reflect on the
complexity of these problems. To model these situations, we say that two elements u and v are in conflict
if u and v cannot be both in a solution. A graph G = (V,E) will be called the support graph, and the set
of conflicts will be interpreted as a graph on the same vertices, called the conflict graph C. No solution
can contain both ends of an edge of C, i.e., any solution must be an independent set of C. A pair (G,C)
where G is the support graph and C is the conflict graph will be called a graph with conflicts. In the
following, we will not make distinction between a conflict between vertex a and vertex b and the edge
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ab of the conflict graph C. Given this additional constraint, deciding the existence of a solution becomes
harder. In fact, we show that deciding the existence of a solution for Total Dominating Set with no con-
flicts, Connected Vertex Cover with no conflicts and Steiner Tree with no conflicts is NP-complete even
for restricted graph classes.

Problems with conflicts, also known as forbidden pairs, have been studied in numerous problems. In a
recent serie of papers [KLM13a, KLM13b, KMMN15, LM14, LM15], authors deal with conflicts between
pairs of edges, in problems such as finding a path, spanning tree, Hamiltonian path and Hamiltonian cycle.
Most of the results are NP-completeness theorems on the existence of such objects. Conflicts between
vertices have also been studied until recently by several authors. Most of the works [GMO76, KP09,
Kov13, Yin97] study the complexity of finding paths without conflicts. In [DLP16], the authors prove
the NP-completeness of deciding the existence of a solution in some problems with conflicts, including
domination problems, Connected Vertex Cover and Steiner Tree. However, their reductions use graphs
of unbounded maximum degree, and a lot of conflicts. In an ongoing work [CL], we prove the NP-
completeness of deciding the existence of a dominating set with no conflicts and independent dominating
set with no conflicts in very restricted classes of graphs.

In this paper, in sections 2, 3 and 4, we investigate the complexity of Total Dominating Set with no
conflicts, Connected Vertex Cover with no conflicts and Steiner Tree with no conflicts for some graph
classes. The problems are trivially in NP, hence the NP-completeness proofs will only focus on the NP-
hardness of the problems. We aim to prove NP-completeness for the smallest possible classes, for both
the support graph and the conflict graph. In the process, we refine results of [DLP16] by drawing a more
accurate picture of the NP-completeness of the problems restricted to specific graph classes, both sparse
or dense. Since we obtain NP-completeness results for restricted classes of graphs, we introduce a new
parameter to capture the locality of conflicts: the stretch. In a graph with conflicts (G,C), for any conflict
ab of C, the stretch of ab is the distance between a and b in the support graph G. The graph with conflicts
(G,C) is of stretch at most k if no conflicts of C are of stretch strictly greater than k. A graph with
conflicts (G,C) is of stretch exactly k if any conflict of C is of stretch k.

Most of the following NP-completeness proofs use reductions from a restricted version of 3-SAT. Let
us define the problem formally.

• Instance: (X,Cl) where X is a set of boolean variables and Cl a set of disjunctive 3-clauses over
X .

• Question: Is there an assignment on X satisfying Cl?

The 3-SAT problem is NP-complete, even if each variable appears in at most 4 clauses [Tov84] (in a
positive or a negative form). This result will be useful to reduce the maximum degree of support graph or
conflict graph in several reductions. Moreover, one can suppose without loss of generality that each literal
appears in at most 3 clauses: otherwise its negation cannot appear and the literal can be set to true and
the variable removed from the instance together with clauses in which it appears.

In this paper we need several additional notations and graph classes. If G = (V,E) is a graph and
X ⊆ V then G[X] is the graph induced by X in G. Two vertices linked by an edge are neighbors. The
neighborhood of u in G is noted NG(u) or N(u) when there is no ambiguities. The path on n vertices is
denoted by Pn.

A graph of n vertices is a Dirac graph if each vertex has degree at least n/2. A graph is a split graph
if it can be partitioned into an independent set and a clique. A caterpillar is a tree that has a dominating
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Support graph G Conflict graph C Complexity Reference
Class max degree Class Stretch

TOTAL DOMINATING SET (TDSwnC)
Bipartite 4 Maximum degree 1 = 2 NPC Thm 1

Caterpillar 3 Maximum degree 1 Finite NPC Thm 2
- 2 - - P Thm 3

CONNECTED VERTEX COVER (CVCwnC)
Bipartite 4 Maximum degree 1 = 2 NPC Thm 4

Minimal degree (1/2− ε) · n - - - NPC Thm 6
Tree - - Finite P Rmk 1
Split - - - P Thm 5

STEINER TREE (STwnC)
Bipartite 4 Maximum degree 1 = 2 NPC Thm 7

Tree - - Finite P Rmk 2
Planar bipartite 3 Maximum degree 1 - NPC Thm 8
Planar chordal 4

⋃
complete bipartite ≤ 4 Finite NPC Thm 9

Split - Maximum degree 1 = 1 NPC Thm 10
Dirac - P1,P2 and P3 ≤ 2 NPC Thm 11
Dirac - Dirac ≤ 2 NPC Thm 12

VERTEX COVER (VCwnC)
- - - - P [DLP16]

Finding a path (PwnC)
- - - - NPC [Yin97]

INDEPENDANT DOMINATING SET (IDSwnC)
Bipartite 5 Maximum degree 1 = 2 NPC [CL]

Path 2 Maximum degree 1 Finite NPC [CL]
Path 2 Dirac Finite NPC [CL]
Dirac - P2 and P4 ≤ 2 NPC [CL]
Dirac - Dirac ≤ 2 NPC [CL]

DOMINATING SET (DwnC)
Bipartite 4 Maximum degree 1 = 2 NPC [CL]

Path 2
⋃
P3 Finite NPC [CL]

Union of paths 2 Maximum degree 1 - NPC [CL]
Path 2 Maximum degree 1 Finite O(1) [CL]
Path 2 Dirac Finite NPC [CL]
Dirac - Dirac ≤ 2 NPC [CL]

Fig. 1: Complexity results for problems with conflicts.
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path. A claw is a star graph with 4 vertices. A graph is chordal if every cycle of length at least 4 has a
chord. Figure 1 summarizes new results from this paper and from other works to provide a wider picture
of the complexity of problems with conflicts.

2 Total Dominating Set
Given (G,C) whereG = (V,E) is the support graph and C the conflict graph, a total dominating set with
no conflicts (TDSwnC) is a subset of vertices S ⊆ V such that:

- for each x ∈ V ∃y ∈ S with xy ∈ E
- for each xy ∈ C, x /∈ S or y /∈ S
We first prove a NP-completeness result when the stretch is exactly 2. This result shows that the

problem is hard even when the conflicts are very local.

Theorem 1 Given (G,C) a graph with conflicts, deciding whether there exists a TDSwnC is NP-complete
even if G is a bipartite graph of maximum degree 4 and C is a graph of maximum degree 1 and of stretch
exactly 2.

Proof: Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Suppose without
loss of generality that each literal is in at most 3 clauses. Construct (G,C) an instance of TDSwnC as
follows: for each variable xi ∈ X vertices xi, x̄i and ri are created along with the edges xiri and x̄iri,
and the conflict xix̄i. For each clause cm = (a ∨ b ∨ c) where a, b, c are literals, vertex cm and edges
cma, cmb, cmc are created. Vertices ri are of degree 2, vertices cm of degree 3, and vertices xi and x̄i of
degree at most 4 (neighbors from ri and at most 3 clauses). An example is given in Figure 2.

Let A be an assignment on X satisfying Cl. Construct S a TDSwnC of (G,C). For each i, ri ∈ S.
Thus, the only vertices of G not yet dominated are the vertices cm for each clause, and the vertices ri.
For each xi = 1 of A, set xi ∈ S. For each x̄i = 1 of A, set x̄i ∈ S. Since A is an assignment, it does
not induce conflicts in S. Moreover, each clause is satisfied, thus each cm has a neighbor in S. For each
variable xi, either xi or x̄i is set to 1, thus each ri is dominated. Then S is a TDSwnC of (G,C).

Let S be a TDSwnC of (G,C) and let A be the following assignment on X: xi = 1 if xi ∈ S and
xi = 0 if x̄i ∈ S. For each vertex ci there exists a vertex xj ∈ S connected to ci to dominate it, thus
the corresponding clause is satisfied by A. Moreover, xi and x̄i are in conflict, thus the assignment is
consistent. 2

We now prove the NP-completeness for caterpillars of maximum degree 3 when the conflict graph is of
maximum degree 1. To achieve this result, we first prove a weaker one in Lemma 1 and then in lemmas 2
and 3 we present gadgets to simplify both the support graph and the conflict graph.

Lemma 1 Given (G,C) a graph with conflicts, deciding whether there exists a TDSwnC is NP-complete
even if G is a disjoint union of claws and C is a disjoint union of complete bipartite graphs of at most 4
vertices.

Proof: Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Construct (G,C) an
instance of TDSwnC. For each clause ci = (a∨b∨c) where a, b, c are literals, construct a star of center ci
with 3 leaves a, b, c. For each pair {a, ā} of vertices, create the conflict aā. The graph G is then an union
of claws (which are caterpillars of maximum degree 3) and the conflict graph is an union of complete
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Fig. 2: Reduction from the 3-SAT instance (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) to an instance of TDSwnC. The dashed
edges denote conflicts.

Fig. 3: Graph equivalent to the 3-SAT formula (ā ∨ b ∨ c) ∧ (a ∨ b̄ ∨ c̄) ∧ (a ∨ b ∨ c). The dashed edges denote
conflicts.

bipartite graphs of at most 4 vertices (because each variable is in at most 4 clauses). An example of this
reduction is shown in Figure 3.

Let A be an assignment on X satisfying Cl. Construct S =
⋃
i{ci} ∪ P where P is the set of vertices

corresponding to the positive literals of A. Since A is an assignment, a vertex corresponding to a literal
and a vertex corresponding to its negation cannot be in S simultaneously. Thus S is without conflicts. For
each claw, leaves are dominated by the center. Moreover, each clause is satisfied thus for each claw, a leaf
belongs to S and the center is dominated. Thus S is a TDSwnC of G.

Let S be a TDSwnC of (G,C). Let A be the following assignment : li = 1 if li ∈ S, li = 0 otherwise.
A conflict exists for each pair a, ā, thus a literal and its negation cannot be set simultaneously to 1, hence
the assignment is consistent. Moreover, for each clause ci, there is a claw whose center can only be
dominated by a vertex representing one of its literals, thus each clause is satisfied. 2

In the above reduction, the conflict graph is a disjoint union of small complete bipartite graphs. The
next lemma presents gadgets to decompose these bipartite graphs into graphs of maximum degree 1.

Lemma 2 Given (G,C) a graph with conflicts where G is a disjoint union of caterpillars of maximum
degree δ > 1 and C an union of complete bipartite graph of at most 4 vertices, it is possible to construct
(G′, C ′) where G is a disjoint union of caterpillars of maximum degree δ and C a graph of maximum
degree 1 such that (G,C) has a TDSwnC if and only if (G′, C ′) has a TDSwnC.

Proof: Let (G,C) be a graph with conflicts whereG is a disjoint union of caterpillars of maximum degree
δ > 1 and C a disjoint union of complete bipartite graphs of at most 4 vertices. Split K1,2, K1,3 and K2,2
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Fig. 4: Gadget used to split K1,2(left), K2,2 (middle) and K1,3 (right) of conflicts into graphs of maximum degree 1.
The dashed edges denote conflicts.

of conflicts into graphs of maximum degree 1 using gadgets from Figure 4. One can see by exhaustive
search that the choice of a vertex a forbids all the vertices ā (and conversely), and that the new paths can
be dominated regardless of the choice of a or ā. Only paths were created in this transformation, hence the
maximum degree of the support graph did not changed and the conflict graph is of maximum degree 1. 2

The conflict graph is now of maximum degree 1 but the support graph is not connected. The next result
shows how to connect the disjoint caterpillars using gadgets.

Lemma 3 Given (G,C) a graph with conflicts where G is a disjoint union of caterpillars of maximum
degree δ > 2 and C a graph of maximum degree 1, it is possible to construct (G′, C ′) where G′ is a
connected caterpillar of maximum degree δ and C ′ a graph of maximum degree 1 such that (G,C) has a
TDSwnC if and only if (G′, C ′) has a TDSwnC.

Proof: Let (G,C) be a graph with conflicts whereG is a disjoint union of caterpillars of maximum degree
δ > 2 and C is a graph of maximum degree 1. If G is a single caterpillar, the lemma is true. Otherwise,
let p1 and p2 be two caterpillars of G and let (G1, C1) be the graph with conflicts where p1 and p2 are
connected by p, where p is the caterpillar shown in Figure 5. More specifically, connect vertices 1 and 4
of p to the extremities of the longest path of the caterpillars p1 and p2. Thus, the graph is still an union
of caterpillars. The extremities of paths are leaves, their degrees change from 1 to 2, hence the maximum
degree of the graph does not change. Moreover, p can be dominated only if 1 and 4 do not belong to
the TDSwnC. This can be proved by exhaustive search of the TDSwnC of the gadget. Thus it can be
used to connect two caterpillars without changing the existence of a solution. Moreover, G1 has one less
caterpillar than G. Repeat this transformation until there is only one caterpillar. 2

Theorem 2 Given (G,C) a graph with conflicts, deciding whether there exists a TDSwnC is NP-complete,
even if G is a caterpillar of maximum degree 3 and C a graph of maximum degree 1.

Proof: Since claws are caterpillars of maximum degree 3, Theorem 2 follows from lemmas 1, 2 and 3. 2

Previous results proved that TDSwnC is NP-complete in caterpillars of maximum degree 3. We now
prove that this result is in some way the strongest possible, since the problem becomes polynomial when
the maximum degree is 2.
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Fig. 5: Gadget used to connect two connected components without changing the existence of a solution. The dashed
edges denote conflicts.

Theorem 3 If G is a graph of maximum degree 2 then deciding whether (G,C) has a TDSwnC can be
done in polynomial time.

Proof: We reduce the problem to 2-SAT for which polynomial-time algorithms are known (see [APT79]).
Let (G = (V,E), C) be an instance of TDSwnC where G has maximum degree 2. Suppose without loss
of generality that there is no isolated vertex (otherwise the graph has no TDSwnC). Construct (X,Cl) the
following SAT instance: X = V and Cl =

∧
x∈V (

∨
y∈N(x) y)

∧
ab∈C(ā ∨ b̄). Each vertex has at most 2

neighbors hence we obtain a 2-SAT instance.
Let A be an assignment on X satisfying Cl. Then S = {x | x = 1} is without conflicts in C since for

each conflict ab the clause ā ∨ b̄ exists. Moreover, for each x ∈ V , the clause
∨
y∈N(x) y exists, hence x

is dominated by one of its neighbors. Thus S is a TDSwnC.
Let S be a TDSwnC of (G,C). Construct A an assignment on X as follows: x is set to 1 if x ∈ S, x is

set to 0 otherwise. For each clause c, there exists a vertex of V which can only be dominated by vertices
representing literals of the clause. One of these vertices belongs to S, thus the clause is satisfied. For each
clause ā ∨ b̄, there exists a conflict ab, thus at most one vertex belongs to S, hence the clause is satisfied.
Thus A satisfies Cl. 2

3 Connected Vertex Cover
Given (G,C) where G = (V,E), a connected vertex cover with no conflicts (CVCwnC) is a subset of
vertices S ⊆ V such that:

- for each xy ∈ E, x ∈ S or y ∈ S
- for each xy ∈ C, x /∈ S or y /∈ S
- G[S] is connected.

Theorem 4 Given (G,C) a graph with conflicts, deciding whether there exists a CVCwnC is NP-complete
even if G is a bipartite graph of maximum degree 4 and C is a graph of maximum degree 1 of stretch ex-
actly 2.

Proof: Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Construct (G,C)
an instance of CVCwnC as follows: for each variable α, vertices α, ᾱ and rα are created, along with the
edges αrα and ᾱrα and the conflict αᾱ. Vertices rα are connected by intermediate vertices ri. For each
clause ci = (a ∨ b ∨ c), vertices ci and c′i are created, along with the edges cic′i, cia, cib, cic. Thus G is
bipartite of maximum degree 4 and conflicts are a graph of maximum degree 1 of stretch exactly 2. An
example is shown in Figure 6.

Let A be an assignment on X satisfying Cl. Let S be the set of vertices corresponding to the positive
literals of A. Vertices rα and ri and ci are also added to S. Thus S is a vertex cover. Moreover, it is
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Fig. 6: Graph equivalent to the 3-SAT formula (a ∨ b̄ ∨ c) ∧ (a ∨ b ∨ d̄). The dashed edges denote conflicts.

without conflicts since a literal and its negation cannot be set to 1 simultaneously. Vertices rα, ri and
vertices corresponding to literals are connected, and for each clause ci = (a ∨ b ∨ c), a, b or c belong to
S, thus ci is connected.

Let S be a CVCwnC of (G,C). Literals corresponding to vertices of S are set to 1, other variables are
set to 0. Since conflicts exist between each literal and its negation, we obtain an assignment. Moreover,
vertices ci necessarily belong to S, and each needs to be connected by a vertex corresponding to a literal
of the associated clause. Thus, each clause is satisfied. 2

Let us point out two graph classes in which deciding the existence of a CVCwnC can be done in
polynomial time.

Remark 1 Deciding the existence of CVCwnC is polynomial in trees. There exists a unique connected
vertex cover minimal for inclusion, the set of internal vertices of the tree: it is sufficient to test if it is
without conflicts.

Theorem 5 Given (G,C) a graph with conflicts, deciding whether there exists a CVCwnC can be done
in polynomial time if G is a split graph.

Proof: Let G = (V,E) be a split graph where V = K ∪ I where K is a clique and I is an independent
set and C the conflict graph.

- If K is without conflicts, then K is a CVCwnC of (G,C).
- If C[K] is a star of center a, then if S = (K−a)∪NG(a) is without conflicts, S is a CVCwnC. (Two

possibilities for the center a if the star is an edge). If (K − a) ∪NG(a) has a conflict, then (G,C) does
not have a CVCwnC.

- If C[K] is not a star, then at least 2 vertices a and b of K cannot be in the solution: the edge ab will
not be covered and thus there is no CVCwnC. 2

In Theorem 4 we proved NP-completeness for bipartite graphs. We are now interested in dense graphs,
and prove NP-completeness for dense graphs.

Theorem 6 For all ε > 0, given (G,C) a graph with conflicts, deciding whether there exists a CVCwnC
is NP-complete even if G is of minimum degree (1/2− ε)n.

Proof: Let (X,Cl) be a 3-SAT instance of m clauses over n variables. Construct (G,C) an instance of
CVCwnC as follows. Let d be the least integer greater than (m+ 2n)/2ε. For each variable x ∈ X create
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Fig. 7: Construction of the dense graph. Dotted lines represent complete bipartites between subsets of vertices.

the vertices x, x̄. For each clause ci create vertex ci. Let GX be the set of vertices representing literals.
The graph GX has 2n vertices. Let GCl be the set of m vertices representing clauses. Construct GK a
clique of size d and GI an independent set of size d. Add edges such that each vertex of GK is connected
to each vetex of GX , each vertex of GCl is connected to each vertex of GI and each vertex of GK is
connected to each vertex of GI . For each clause ci = (a∨ b∨d) edges cia, cib, cid are created. Construct
C as follow. Each pair {x, x̄} is in conflict. Each vertex of GI is in conflict with all the other vertices
of G. We present a scheme of the support graph used in the reduction in Figure 7. To ensure readability,
conflicts are not represented.

The graph G has m + 2n + 2d vertices and d ≥ (m + 2n)/2ε. Because of the complete bipartite
graphs, vertices of GX , GCl, GI and GK have degree at least d. It can be derived by basic arithmetic on
inequalities that d > (1/2− ε)(m+ 2n+ 2d), hence the graph satisfies the assumption of the theorem.

Let A be an assignment on X satisfying Cl, and let A1 be the set of positive literals of A. Set VC =
A1∪GK∪GCl. The set VC does not contain simultaneously vertices representing a literal and its negation,
neither vertices of GI , thus it is a set without conflicts in C. Edges between GK and GX , GCl and GI ,
GK and GI , GX and GCl are covered. Thus VC is a vertex cover of G. Vertices of GK and GX are
connected. Moreover, for each vertex ci ∈ Cl there exists a vertex x of A1 corresponding to a positive
literal of ci. Thus VC is connected.

Let VC be a CVCwnC of (G,C). Let A be the following assignment: for each literal x, if x is
represented by a vertex of VC, then x = 1, otherwise, x = 0. The set VC is not reduced to a single vertex,
hence VC cannot contain vertices of GI because of conflicts between GI and all the vertices. The set VC
must contain the neighborhood of GI : GCl ∪ GK . Moreover, each vertex of GCl must be connected to
GK . It can only be done via vertices of GX . For each vertex representing a clause (a∨ b∨ c) there exists
a vertex representing one of its literals in VC. Hence, A satisfies Cl. Moreover, a vertex representing a
variable and a vertex representing its negation cannot be set to 1 simultaneously, thus the assignment is
consistent. 2
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Fig. 8: Graph equivalent to the 3-SAT formula (a∨ b̄∨ c)∧ (a∨ b∨ d̄). Vertices of M are squares. The dashed edges
denote conflicts.

4 Steiner tree
A Steiner tree of (G = (V,E),M) where M ⊆ V is a subtree of G that includes all the vertices of M .

Given (G,M,C) where G = (V,E) and M ⊆ V , a Steiner Tree without conflicts (STwnC) is a subset
of vertices S ⊆ V such that :

- for each xy ∈ C, x /∈ S or y /∈ S
- M ⊆ S
- G[S] is connected.
If G[S] is connected and without conflicts, it is easy to extract a covering tree of S, hence we are

interested only in the set of vertices of the tree.
First, we prove NP-completeness when the conflicts are local.

Theorem 7 Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there exists
a STwnC is NP-complete even if G is a bipartite graph of maximum degree 4 and C a graph of maximum
degree 1 and of stretch exactly 2.

Proof: Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Suppose without
loss of generality that each literal is in at most 3 clauses. Construct (G,M,C) an instance of STwnC as
follows: for each variable α vertices α, ᾱ and rα are created, along with the edges αrα and rαᾱ and the
conflict αᾱ. Vertices rα are connected by intermediate vertices mi. For each clause ci = (a ∨ b ∨ c), a
vertex ci is created along with the edges cia, cib, cic. The graph is of maximum degree 4, and the conflict
graph is a graph of maximum degree 1 and of stretch exactly 2. The set M is composed of all the vertices
mi and ci. An example is shown in Figure 8.

Let A be an assignment on X satisfying Cl. Set S = M
⋃
α{rα} ∪ P where P is the set of vertices

representing positive literals of A. Since a variable cannot be set to 1 simultaneously with its negation, S
is without conflicts. Vertices mi and rα are connected. Moreover, for each vertex ci, there exists a clause
ci in which one of the literals is set to 1 in A, thus ci is connected to the other vertices of S. Thus, S is
connected in G.

Let S be a STwnC of (G,M,C). The value of literals of X which vertices are in S is set to 1. Since
conflicts exist between variables and their negation, we obtain an assignment. Moreover, for each vertex
ci representing a clause a ∨ b ∨ c, one of the vertices a, b, c must belong to S to ensure connectivity with
mj vertices of M , hence the clause is satisfied. 2
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Fig. 9: Graph equivalent to the 3-SAT formula (a∨ b∨ c)∧ (ā∨ b∨ c̄)∧ (ā∨ b∨ c̄)∧ (ā∨ b∨ c). Vertices of M are
squares. In the black rectangle, gadget corresponding to the clause (ā ∨ b ∨ c̄). The dashed edges denote conflicts.

The next theorems are NP-completeness results for more restricted class of support graph, but the
conflicts are no longer local (i.e., stretch is not bounded).

Theorem 8 Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there
exists a STwnC is NP-complete even if G is a planar bipartite graph of maximum degree 3 and C a graph
of maximum degree 1.

Proof: Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Construct (G,M,C)
an instance of STwnC where G is a planar bipartite graph of maximum degree 3 and C a graph of maxi-
mum degree 1 such that there exists an assignment on X satisfying Cl if and only if there exists a STwnC
of (G,M,C).

For each clause, create a gadget of 15 vertices composed of 3 non-disjoint paths having the same
extremities, each corresponding to a literal. One can see this gadget in Figure 9. These gadgets are
connected linearly, and the set M , composed of only two vertices, is the first vertex of the first gadget and
the last vertex of the last gadget. For each pair of literals {x, x̄}, add a conflict between a vertex with no
conflicts of the path representing x and a vertex with no conflicts of the path representing x̄. The graph is
planar bipartite of maximum degree 3 and the conflict graph is of maximum degree 1.

Let A be an assignment on X satisfying Cl. Construct S a subset of G as follows. For each gadget
representing a clause (a ∨ b ∨ c), choose in S a path representing a positive literal. Each gadget is passed
through, hence vertices of M are connected. The set S is the path of vertices connecting the two vertices
of M . Moreover, this path does not pass through paths representing variable and their negation, hence it
is without conflicts.

Let S be a STwnC of (G,M,C). Suppose without loss of generality that S is minimal for inclusion
(otherwise, it can be minimalized). Construct A an assignment on X satisfying Cl as follows: for each
gadget representing a clause (a∨b∨c), S contains a path representing one of its literals. This one is set to
1 in A. Since there exist conflicts between paths representing variable and their negation, the assignment
A is consistent. Moreover, for each clause, a literal is set to 1 hence A satisfies Cl. 2

Theorem 9 Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there
exists a STwnC is NP-complete even if G is a planar chordal graph of maximum degree 4 and C a disjoint
union of complete bipartite graphs of at most 4 vertices.

Proof: Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Construct (G,M,C)
the following instance of STwnC. For each clause ci = (a ∨ b ∨ c), vertices ci, c′i, a, b, c,mi and edges
c′ici,cia,cib, cic, ab, ac, ami, bmi, bc, cmi are created. The set M is the set of all vertices mi and c′i.
Vertices c′i are connected to form a path. For each pair of vertices {α, ᾱ} representing a literal and its
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Fig. 10: Graph equivalent to the 3-SAT formula (a ∨ b ∨ c) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ c). Vertices of M are squares.
The dashed edges denote conflicts.

negation, the conflict αᾱ is created. The graph is chordal planar of maximum degree 4, and the conflict
graph is an union of complete bipartite graphs of at most 4 vertices. An example is shown in Figure 10.

Let A be an assignment on X satisfying Cl. Construct S = M
⋃
i{ci} ∪ P where P is the set of

vertices representing positive literals of A. Then
⋃
i{ci}

⋃
i{c′i} is connected. Moreover, for each clause

ci, a vertex x corresponding to a positive literal belongs to S. Hence, the vertex mi is connected and S
is connected in G. Moreover, conflicts are only between variables and their negation, which can not be
simultaneously set to 1 in A. Thus, S is without conflicts.

Let S be a STwnC of (G,M,C). Literals corresponding to vertices of S are set to 1, the other variables
are set to 0. Since there exist conflicts between vertices representing variables and their negation, we
obtain an assignment. Moreover, each vertex mi must be connected to the other vertices of S by a vertex
representing a literal of the associated clause, which is satisfied. 2

Remark 2 Deciding the existence of a STwnC is polynomial in trees. There exists an unique Steiner tree
minimal for inclusion, hence it is sufficient to test if it is without conflicts.

Theorem 10 Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there
exists a STwnC is NP-complete even if G is a split graph and C a graph of maximum degree 1 and of
stretch 1.

Proof: Let (X,Cl) be a 3-SAT instance. Suppose without loss of generality that Cl contain several clauses.
Create (G = (K, I,E),M,C) an instance of STwnC as follows. Each literal becomes a vertex of K and
each clause a vertex of I . Conflicts are added between variable and their negations, and edges between
clauses and their literals. The graph is a split graph, and the conflict graph is a graph of maximum degree
1 and of stretch 1. Set M = I . An example is shown in Figure 11.

Let A be an assignment on X satisfying Cl. Construct S = I ∪ P where P is the set of vertices
corresponding to positive literals of A. Since a literal and its negation cannot both be set to 1, S is without
conflicts. Moreover, for each ci ∈ I , the associated clause is satisfied, thus there exists a neighbor in
K ∩ S. Hence, each vertex of I is connected to K ∩ S and since K is a clique, S is connected.

Let S be a STwnC of (G = (K, I,E),M,C). The value of literals corresponding to vertices of S is
set to 1, and the value 0 is set to other variables. Since there exist conflicts between vertices representing
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Fig. 11: Graph equivalent to the 3-SAT formula (a ∨ c̄ ∨ b) ∧ (ā ∨ b ∨ c̄). Vertices of M are squares. The dashed
edges denote conflicts.

literals and vertices representing their negation, we have an assignment. Moreover, each vertex ci must be
connected to K by a vertex representing a literal of the associated clause, thus the clause is satisfied. 2

Previous theorems proved NP-completeness for sparse (or split) support and conflict graphs. We now
prove that the problem remains NP-complete in a class of dense graphs: Dirac graphs (which are graphs
of minimum degree n/2).

Theorem 11 Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there
exists a STwnC is NP-complete even if G is a Dirac graph and C a disjoint union of P1, P2 and P3.

Proof: Let (G1 = (V1, E1),M1, C1) be an instance of STwnC whereC1 is a graph of maximum degree 1.
This problem is NP-complete from Theorem 7. Construct (G2 = (V2, E2),M2, C2) a graph with conflicts
such that there exists a STwnC of (G2,M2, C2) if and only if there exists a STwnC of (G1,M1, C1). Let
n = |V1|. Set V2 = V1 ∪ A ∪ B where A is a path of length n and B an independent set of size 2n.
M2 = M1 ∪A. A is connected to an arbitrary vertex of M1. A complete bipartite graph is added between
B and V2 − B. Conflicts of C1 are added to C2. Moreover, each vertex of A is in conflict with 2 distinct
vertices of B. By construction, G2 is a Dirac graph and C2 a disjoint union of P1, P2 and P3.

Let T1 be a STwnC of G1. Then T2 = T1 ∪A is a STwnC of G2.
Suppose there exists T2 a STwnC of (G2,M2, C2). Then T2 ∩ B = ∅. Moreover, vertices of A do not

connect vertices of V1. Hence, T1 = T2 −A is a STwnC of (G1,M1, C1). 2

Theorem 12 Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there
exists a STwnC is NP-complete even if G is a Dirac and C a Dirac graph.

Proof: Let (G1 = (V1, E1),M1, C1) be an instance of STwnC. Construct (G2 = (V2, E2),M2, C2)
a Dirac graph with conflicts such that there exists a STwnC of (G2,M2, C2) if and only if there exists
a STwnC of (G1,M1, C1). Let n = |V1|. Set V2 = V1 ∪ A where A is an independent set of size
n. M2 = M1. A complete bipartite graph is created between V1 and A. Conflicts of C1 exist in C2.
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Moreover, each vertex of A is in conflict with all vertices of V1. By construction, G2 and C2 are Dirac
graphs.

Let T be a STwnC of (G1,M1, C1). Thus it is a STwnC of G2.
Suppose that there exists T a STwnC of (G2,M2, C2). Then T ∩ A = ∅. Hence, T is a STwnC of

(G1,M1, C1). 2

5 Conclusion
Our paper strengthens the results of [DLP16] for CVCwnC and STwnC, by proving NP-completeness of
deciding their existence in smaller graph classes. More exactly, we proved that these problems remain NP-
complete for some classes of sparse graphs. For STwnC, we proved that the problem is also NP-complete
in dense graphs. We also extended the notion of conflicts to a new problem. We proved NP-completeness
of deciding the existence of a TDSwnC in a very sparse graph class: caterpillars of maximum degree 3.
Moreover, we proved that this result is in some way the strongest possible since the problem becomes
polynomial in graph of maximum degree 2. Furthermore, we proved that all these problems are NP-
complete even when the stretch of the conflicts is two at most, i.e., when the conflicts are local.

A natural extension of this work would be to work on the complexity of CVCwnC and TDSwnC in
dense graphs, and the complexity of CVCwnC in other classes of sparse graphs, for example planar
graphs. It would also be interesting to study other graph problems with conflicts.
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