
Discrete Mathematics and Theoretical Computer Science6, 2004, 483–496

Optimal Sequential and Parallel Algorithms
for Cut Vertices and Bridges on Trapezoid
Graphs†

Hon-Chan Chen1‡

1Department of Information Management, National Chin-Yi Institute of Technology, Taichung, Taiwan

received Aug, 13 2004, accepted Nov, 16 2004.

Let G be a graph. A component ofG is a maximal connected subgraph inG. A vertexv is a cut vertex ofG if κ(G−
v) > κ(G), whereκ(G) is the number of components inG. Similarly, an edgee is a bridge ofG if κ(G−e) > κ(G).
In this paper, we will propose newO(n) algorithms for finding cut vertices and bridges of a trapezoid graph, assuming
the trapezoid diagram is given. Our algorithms can be easily parallelized on the EREW PRAM computational model
so that cut vertices and bridges can be found inO(logn) time by usingO(n

logn) processors.

Keywords: cut vertex, bridge, trapezoid graph, algorithm

1 Introduction
Let G = (V,E) be a graph with vertex setV and edge setE. A graphH = (V ′,E′) is asubgraphof G if
V ′ ⊆V andE′ ⊆ E. If H is a maximal connected subgraph, thenH is acomponentof G. Let G−v, v∈V,
be the graph obtained by deletingv and all edges incident tov from G. A vertexv is called acut vertexof
G if κ(G−v) > κ(G), whereκ(G) is the number of components inG. Similarly, letG−e, e∈ E, be the
graph obtained by deletinge from G, and an edgee is abridgeof G if κ(G−e) > κ(G).

The class of trapezoid graphs is introduced by Dagan et al. [4] and independently by Corneil et al.
[3]. It is a superclass of interval graphs and permutation graphs. A trapezoid graphG can be represented
by a trapezoid diagram. In the diagram, a trapezoidi is defined by four corner pointsai , bi , ci , anddi ,
which stand for the upper left, the upper right, the lower left, and the lower right corner ofi, respectively.
We assume that trapezoids are labeled in increasing order of theirb corner points. Each trapezoid in the
diagram corresponds to a distinct vertex ofG, and(i, j) is an edge ofG if and only if trapezoidi intersects
trapezoidj in the diagram. Figure 1 shows an example of a trapezoid graph.

†This work was supported by National Science Council, Republic of China, under contract NSC89-2218-E-022-002.
‡All correspondence should be addressed to Dr. Hon-Chan Chen, Department of Information Management, National Chin-Yi

Institute of Technology, 35, Lane 215, Section 1, Chung-Shan Road, Taiping City, Taichung County, Taiwan 411, R.O.C. (E-mail:
chenhc@chinyi.ncit.edu.tw)

1365–8050c© 2004 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/

484 Hon-Chan Chen

 2

1 5 4 8 10

3 6

7

9

a1
 a2

 b1
 b2

 b3
 a3

 a5
 a4

 b4
 b5

 a6
 b6

 a7
 a8

 a9
 b7

 b9
 b8

 a10
 b10

c
2
 c

1
 d

2
 c

3
 d

1
 c

5
 c

6
 d

3
 c

4
 d

5
 d

6
 c

8
 c

7
 d

4
 d

8
 d

7
 c

9
 c

10
 d

10
 d

9

Fig. 1: A trapezoid graph and the corresponding diagram.

A trapezoid graph can be recognized inO(n2) time by Ma and Spinrad’s algorithm [8]. Applying their
algorithm, the corresponding trapezoid diagram can be constructed. It is easy to see that for any three
verticesi, j, andk of a trapezoid graph, wherei < j < k, if i is adjacent tok, then j is adjacent toi or k.
Generally, the input for a trapezoid graph isO(n), according to the number of vertices. The number of
edges could be more, but it is generally not an issue for algorithms in this class of graphs.

The problem of finding cut vertices and bridges on graphs is well-known. It can be solved sequentially
in O(n+ m) time by a depth-first search algorithm [10], wheren is the number of vertices andm the
number of edges. Parallel algorithms for this problem on general graphs can be found in [11, 12]. If
we restrict ourselves to special types of graphs, the complexity of finding cut vertices and bridges can
be reduced. For example, in [9], Sprague et al. presented optimal parallel algorithms for this problem
on interval graphs. The complexity of their algorithms isO(logn) time usingO(n

logn) processors on the
EREW PRAM computational model if the endpoints of intervals are sorted. Optimal parallel algorithms
for finding cut vertices and bridges on permutation graphs were proposed by Arvind et al. [1], which also
takeO(logn) time withO(n

logn) processors on the EREW PRAM model.

An O(n) time algorithm for the depth-first search on trapezoid graphs was proposed by Chen et al.
[2], but they did not describe the way to find cut vertices. Recently, Hota et al. have presented optimal
sequential and parallel algorithms to compute all cut vertices on trapezoid graphs [5]. The complexities
of their algorithms areO(n) time for sequential computation andO(logn) time with O(n

logn) processors
on the EREW PRAM model for parallel computation. However, their algorithms are not simple because
they recognize a cut vertex by many types of connectivity. Moreover, they did not address how to find
bridges by cut vertices. In this paper, we propose a simplerO(n) algorithm for finding cut vertices and
the firstO(n) algorithm for finding bridges on a trapezoid graph, assuming the trapezoid diagram is given.
Our algorithms can be easily parallelized on the EREW PRAM model so that cut vertices and bridges can
be found inO(logn) time by usingO(n

logn) processors. The algorithms on this paper use the properties of
vertex adjacency instead of the corner points. These properties are new and interesting.

The rest of this paper is organized as follows. In Section 2, we introduce an easy way to find a dominat-

Finding Cut Vertices and Bridges on Trapezoid Graphs 485

ing path of a trapezoid graph. In Sections 3 and 4, the algorithms of finding cut vertices and bridges are
presented respectively. The parallelization of our algorithms is shown in Section 5. Finally, in Section 6,
we give the concluding remarks of this paper.

2 Preliminaries
Let G be a connected trapezoid graph ofn vertices which are labeled by 1,2, · · · ,n in increasing order of
their b corner points. A pathP of G is adominating pathif every vertexv of G, v 6∈ P, is adjacent to at
least one vertex ofP. It is obvious that any vertexv 6∈ P is not a cut vertex since graphG− v remains
connected. There may be many different dominating paths inG, and the minimum dominating path can be
found inO(n) time by Köhler’s algorithm [7]. However, for a trapezoid graph, a path connecting vertices
1 andn is also a dominating path. We call such a path a(1,n)-path. The following describes an easy way
to find a(1,n)-path.

Let v be a vertex ofG. Themaximal neighbor(minimal neighbor, respectively) ofv, denoted byNmax[v]
(Nmin[v], respectively), is the vertex inN[v] with the maximal label (minimal label, respectively), where
N[v] is the set of vertices adjacent tov andv itself. To determineNmax[v], we need to scana andc corner
points from left to right respectively on the trapezoid diagram. Letxv (yv, respectively) be the maximal
label ofa (c, respectively) corner point left tobv (dv, respectively), thenNmax[v] = max{xv,yv}. Similarly,
we can determineNmin[v] by scanningb andd corner points from right to left respectively on the trapezoid
diagram then choosing the minimal label among those whoseb or d corner points are right toav or cv.
For example, in Figure 1, the maximal label ofa corner point left tob5 is 5, and the maximal label ofc
corner point left tod5 is 6. Then,Nmax[5] = max{5,6} = 6. Moreover,Nmin[5] = min{4,1} = 1 since
the minimal label ofb corner point right toa5 is 4 and the minimal label ofd corner point right toc5 is
1. Trivially, all maximal and minimal neighbors can be determined inO(n) time if we record each latest
maximal label and minimal label respectively during our scanning.

For any vertexv of G, the superior pair of v, denoted byAv, is the pair[i,Nmax[i]] such thati =
max{ j|Nmax[j] = max{Nmax[1],Nmax[2], · · · ,Nmax[v]},1 ≤ j ≤ v}. A (1,n)-path can be constructed by
some or all superior pairs, and a superior pair on the(1,n)-path is called adominating pace(DP). Let
[l i , r i] be a dominating paceDPi . The dominating paces ofG can be determined by the following manner:

Step 1. LetDP1 = [l1, r1] = A1 and leti = 1.

Step 2. Whiler i 6= n, do loop: leti = i +1 andDPi = [l i , r i] = Ar i−1.

In the example of Figure 1, the dominating paces areDP1 = A1 = [1,5], DP2 = A5 = [4,8], DP3 = A8 =
[8,9], andDP4 = A9 = [9,10] as shown in Table 1.

Suppose there arek dominating paces inG. With verticesl1, r1, l2, r2, · · · , lk, rk, we can construct a
(1,n)-path, denoted byl1-r1-l2-r2-. . .-lk-rk. Note that ifr i = l i+1, 1≤ i ≤ k−1, we omit one ofr i andl i+1.
The correctness of our method to find a(1,n)-path can be proved as follows.

Lemma 1 Let [l i , r i] and[l i+1, r i+1], 1≤ i ≤ k−1, be two consecutive dominating paces. If ri 6= l i+1, then
r i must be adjacent to li+1.

Proof. Assume to the contrary thatr i 6= l i+1 andr i is not adjacent tol i+1. Sincer i 6= l i+1, we obtain
l i+1 < r i according to Step 2. Moreover, sincel i+1 < r i < r i+1 andr i is not adjacent tol i+1, verticesr i and

486 Hon-Chan Chen

Tab. 1: The process of determining the dominating paces.
vertexi 1 2 3 4 5 6 7 8 9 10
Nmax[i] 5 2 6 8 6 6 8 9 10 10
Nmin[i] 1 1 1 4 1 3 4 4 8 9

[i,Nmax[i]] 1,5 2,2 3,6 4,8 5,6 6,6 7,8 8,9 9,10 10,10
Ai 1,5 1,5 3,6 4,8 4,8 4,8 7,8 8,9 9,10 10,10

dominating paces 1,5 4,8 8,9 9,10

r i+1 are adjacent. By the definition of a superior pair,[r i , r i+1] is a superior pair and is the next dominating
pace of[l i , r i]. It is a contradiction. ✷

Lemma 2 A (1,n)-path can be constructed by vertices l1, r1, l2, r2, . . . , lk, rk.

Proof. It is clear thatl1 = 1 andrk = n by Steps 1 and 2. By definitions, we havel i < l i+1 andr i < r i+1

andl i is adjacent tor i .

Case 1.r i = l i+1 for all i, 1≤ i ≤ k−1. Then,l1-r1-l2-r2-. . .-lk-rk is the same asl1-l2-. . .-lk-rk, which is
trivially a (1,n)-path.

Case 2.r i 6= l i+1 for somei, 1≤ i ≤ k−1. By Lemma 1,r i is adjacent tol i+1. Sincel i < l i+1 andr i < r i+1,
there is no cycle inl1-r1-l2-r2-. . .-lk-rk, and it is a(1,n)-path.

✷

The(1,n)-path in our example is 1-5-4-8-9-10. It is easy to see that the(1,n)-path can be found inO(n)
time. We will use the dominating paces to find cut vertices and bridges in the following sections. For the
sake of computational boundary, we add two dummy dominating pacesDP0 = [0,1] andDPk+1 = [n,n+1].

3 Finding cut vertices
Cut vertices of a trapezoid graph are in the vertices of the(1,n)-path. However, not all vertices of the
(1,n)-path are cut vertices. We need to examine each vertex of the(1,n)-path.

Let arrayS= (s1,s2, · · · ,sn) be theprefix maximaof all maximal neighbors; i.e.si = max{Nmax[1],
Nmax[2], · · · ,Nmax[i]} for i = 1,2, · · · ,n. Similarly, let arrayT = (t1, t2, · · · , tn) be thesuffix minimaof all
minimal neighbors; i.e.ti = min{Nmin[i],Nmin[i + 1], · · · ,Nmin[n]} for i = 1,2, · · · ,n. From Table 1, we
obtain arraysS= (5,5,6,8,8,8,8,9,10,10) andT = (1,1,1,1,1,3,4,4,8,9).

Observation 3 A trapezoid graph is connected if and only if

(i) si > i for all i, i = 1,2, · · · ,n−1, and

(ii) t i < i for all i, i = 2,3, · · · ,n.

Observation 4 A trapezoid graph is disconnected if and only if

(i) si = i for some i,1≤ i ≤ n−1, and

Finding Cut Vertices and Bridges on Trapezoid Graphs 487

(ii) t i = i for some i,2≤ i ≤ n.

Assume trapezoid graphG is connected. LetSv = (s
′

1,s
′

2, · · · ,s
′

n) be the prefix maxima of allN
′

max[i], i =
1,2, · · · ,n, whereN

′

max[i] = i if i = v andN
′

max[i] = Nmax[i] otherwise. Obviously, inSv, s
′

i = si for all i < v
ands

′

v = s
′

v−1 = sv−1. For example,S4 = (5,5,6,6,6,6,8,9,10,10) sinceN
′

max[4] = 4. We will useSv to
determine ifv is a cut vertex.

Lemma 5 Let [l i , r i], 2≤ i ≤ k, be a dominating pace of G. Then, vertex li is a cut vertex if and only if
there exists some v, li ≤ v≤ l i+1−1, such that s

′

v = v in Sl i .

Proof. SinceN
′

max[l i] = l i in Sl i , vertexl i is assumed to be adjacent to vertices whose labels are not greater
thanl i . We denote the new graph byG

′
. By Observation 3, we knows

′

v > v in Sl i for all v, 1≤ v≤ l i −1.
Moreover,l i+1-r i+1-l i+2-r i+2-. . .-lk-n is a path connecting verticesl i+1 andn. Vertices froml i+1 to n are
connected, ands

′

v > v in Sl i for all v, l i+1 ≤ v ≤ n− 1. Thus, if there exists somev, l i ≤ v ≤ l i+1 − 1,
such thats

′

v = v in Sl i , thenG
′
is disconnected. It means that the removal of edges(l i ,x), l i < x, makesG

disconnected, andl i is certainly a cut vertex.
For the other part of the proof, sincel i is a cut vertex,G− l i is disconnected. Sincel i ≤ r i−1 and 1-r1-l2-

r2-. . .-l i−1-r i−1 is a path, vertices from 1 tor i−1 are connected, and the removal of any edge(l i ,x), x < l i ,
still remains these vertices connected. Thus, we only consider the removal of edge(l i ,x), l i < x, and we
setN

′

max[l i] = l i . Sincel i+1-r i+1-l i+2-r i+2-· · ·-lk-n is a path connecting vertices froml i+1 to n, we have
s
′

v > v in Sl i for all v, l i+1 ≤ v≤ n−1. Thus, ifl i is a cut vertex, then there exists somev, l i ≤ v≤ l i+1−1,
such thats

′

v = v in Sl i . ✷

Similarly, we can letTv = (t
′

1, t
′

2, · · · , t
′

n) be the suffix minima of allN
′

min[i], i = 1,2, · · · ,n, whereN
′

min[i] =
i if i = v andN

′

min[i] = Nmin[i] otherwise; then determine ifv is a cut vertex byTv.

Lemma 6 Let [l i , r i], 1≤ i ≤ k−1, be a dominating pace of G. Then, vertex ri is a cut vertex if and only
if there exists some v, ri−1 +1≤ v≤ r i , such that t

′

v = v in Tr i .

Corollary 7 Vertex1 is a cut vertex if and only if there exists some v,2≤ v≤ l2−1, such that s
′

v = v in
S1. Moreover, vertex n is a cut vertex if and only if there exists some v, rk−1 + 1 ≤ v ≤ n−1, such that
t
′

v = v in Tn.

For any two dominating paces[l i , r i] and[l j , r j], the examination ofl i andl j uses mutually independent
vertex sets, and so does the examination ofr i andr j . It is reasonable to design a linear time algorithm
for finding all cut vertices. GivenS= (s1,s2, · · · ,sn),T = (t1, t2, · · · , tn), and all dominating paces[l i , r i],
1≤ i ≤ k, definepv andqv, v = 1,2, · · · ,n, as follows:

pv =

1 if v = 1;
sv−1 if v∈ {l2, l3, · · · , lk};
Nmax[v] otherwise;

(1)

and

qv =

n if v = n;
tv+1 if v∈ {r1, r2, · · · , rk−1};
Nmin[v] otherwise.

(2)

488 Hon-Chan Chen

Let S∗ = (s∗1,s
∗
2, · · · ,s

∗
n) be the prefix maxima of allpv andT∗ = (t∗1, t∗2, · · · , t∗n) be the suffix minima of

all qv for v= 1,2, · · · ,n. In our example,S∗ = (1,2,6,6,6,6,8,8,9,10) andT∗ = (1,1,1,3,3,3,4,8,9,10).
For any dominating pace[l i , r i] with Sl i = (s

′

1,s
′

2, · · · ,s
′

n) andTr i = (t
′

1, t
′

2, · · · , t
′

n), we can find thats
′

v = s∗v,
l i ≤ v≤ l i+1−1, andt

′

v = t∗v , r i−1 +1≤ v≤ r i . Thus, all cut vertices can be found directly fromS∗ and
T∗. The following is our algorithm to find cut vertices.

Algorithm A (Finding cut vertices of a trapezoid graph)

Input: The dominating paces of a trapezoid graph G

Output: All cut vertices of G

Step 1. Compute S= (s1,s2, · · · ,sn) and T= (t1, t2, · · · , tn).

Step 2. Compute S∗ = (s∗1,s
∗
2, · · · ,s

∗
n) and T∗ = (t∗1, t∗1, · · · , t∗n).

Step 3. For each dominating pace[l i , r i], 1≤ i ≤ k, do case:

Case 1. i= 1. If there exists some v,2≤ v≤ l2−1, such that s∗v = v, then vertex 1 is a cut vertex.

Case 2.2≤ i ≤ k. If there exists some v, li ≤ v≤ l i+1−1, such that s∗v = v, then vertex li is a cut
vertex.

Step 4. For each dominating pace[l i , r i], 1≤ i ≤ k, do case:

Case 1.1≤ i ≤ k−1. If there exists some v, ri−1 +1≤ v≤ r i , such that t∗v = v, then vertex ri is a
cut vertex.

Case 2. i= k. If there exists some v, rk−1 +1≤ v≤ n−1, such that t∗v = v, then vertex n is a cut
vertex.

We use dominating pace[1,5] of our example to explain Steps 3 and 4. Vertex 1 is a cut vertex since
s∗2 = 2; however, vertex 5 is not a cut vertex since there exists no vertexv, 2≤ v≤ 5, such thatt∗v = v. The
cut vertices in our example are vertices 1, 4, 8, and 9.

Theorem 8 Algorithm A finds all cut vertices of a trapezoid graph in O(n) time.

Proof. Since cut vertices are in{l1, r1, l2, r2, · · · , lk, rk} and Algorithm A examinesl i and r i for each
dominating pace[l i , r i], 1≤ i ≤ k, all cut vertices can be found by Algorithm A. By the computation of
prefix maxima and suffix minima, Steps 1 and 2 can be done inO(n) time. Steps 3 and 4 can also be done
in O(n) time totally. The complexity of Algorithm A is thereforeO(n). ✷

4 Finding bridges
An edgee is a bridge ofG if G−e is disconnected. A bridge must be incident to one or two cut vertices.
However, we cannot conclude that an edge incident to any cut vertices is a bridge. In this section, we will
find bridges by cut vertices. We use the same notation as in the previous section.

A vertex isisolatedif it is not adjacent to any other vertices in the graph. From Observation 4, we can
make the following observation.

Finding Cut Vertices and Bridges on Trapezoid Graphs 489

Observation 9 Let i be a vertex of a disconnected trapezoid graph. Then,

(i) vertex i,2≤ i ≤ n−1, is isolated if and only if si−1 = i −1 and si = i (or if t i = i and ti+1 = i +1);

(ii) vertex1 is isolated if and only if s1 = 1 (or t2 = 2);

(iii) vertex n is isolated if and only if sn−1 = n−1 (or tn = n).

An edge is apendant edgeif its removal makes one vertex isolated. A pendant edge is certainly a
bridge, which is incident to one cut vertex. Lemmas 10 and 11 will show how to use dominating paces,
S∗, andT∗ to determine pendant edges. Their correctness is directly from the above observation.

Lemma 10 Suppose li , 1≤ i ≤ k, is a cut vertex of G. Then, edge(l i ,v), li < v< l i+1, is a pendant edge if
and only if s∗v−1 = v−1 and s∗v = v. Moreover, edge(lk,n) is a pendant edge if and only if s∗

n−1 = n−1.

Lemma 11 Suppose ri , 1≤ i ≤ k, is a cut vertex of G. Then, edge(r i ,v), ri−1 < v < r i , is a pendant edge
if and only if t∗v = v and t∗v+1 = v+1. Moreover, edge(1, r1) is a pendant edge if and only if t∗

2 = 2.

A pendant edge is a bridge; however, not all bridges are pendant edges. A bridge, not a pendant edge,
must be incident to two cut vertices. LetCm be a cycle ofm vertices without any chord. By the definition
of trapezoid graphs [4], a trapezoid graphG may contain onlyC3 orC4, and we have the following lemma.

Lemma 12 An edge e incident to two cut vertices of G is a bridge if and only if it is an edge of the
(1,n)-path and not contained in any C3 or C4.

Proof. It is trivial that a bridge cannot be contained in a cycle. Lete= (u,v). Sinceu andv are cut
vertices, they are vertices of the(1,n)-path. Assume to the contrary thate is not an edge of the(1,n)-path,
then the path connectingu andv forms a cycle with edge(u,v). It contradicts thate is a bridge. ✷

To determine if an edge of the(1,n)-path is contained in a cycle, we need to know what vertices edge
(l i , r i) and(r i , l i+1) may be incident to, respectively.

Lemma 13 Suppose li and ri , 1 ≤ i ≤ k, are two cut vertices of G, and let v be a vertex other than li

and ri .

(i) If v is adjacent to ri , then v> r i−1 when li 6= r i−1 or v > l i−1 when li = r i−1;

(ii) If v is adjacent to li , then v< l i+1 no matter ri 6= l i+1 or r i = l i+1.

Proof. Consider the following two cases for condition i:

Case 1.l i 6= r i−1. If v < r i−1, thenv must be adjacent to somel j or r j , 1 ≤ j ≤ i − 1. Without loss
of generality, assumev is adjacent tor j . Then, l1-r1-l2-r2-. . .-l j -r j -v-r i-l i+1-r i+1-. . .-lk-rk is a
(1,n)-path, and it contradicts thatl i is a cut vertex.

Case 2.l i = r i−1. If v < l i−1, thenv must be adjacent tol i−1 sincev < l i−1 < r i−1 < r i andv is adjacent
to r i andl i−1 is not adjacent tor i . We can find thatl1-r1-l2-r2-. . .-l i−1-v-r i-l i+1-r i+1-. . .-lk-rk is a
(1,n)-path, andl i cannot be a cut vertex.

For condition ii, we need to consider the following two cases:

490 Hon-Chan Chen

 r
i–1 l

i
 v l

i+1 r
i

(a)

l
i–1 v l

i
 = r

i–1 r
i

(b)

l
i+1

Fig. 2: The illustration of Lemma 15. (a) condition i. (b) condition ii.

Case 1.r i 6= l i+1. If v > l i+1, thenv must be adjacent to somel j or r j , i +1≤ j ≤ k, and it will contradict
thatr i is a cut vertex.

Case 2.r i = l i+1. Sincev is adjacent tol i , we havev < Nmax[l i] = r i = l i+1.

✷

Lemma 14 Suppose ri and li+1, 1 ≤ i ≤ k−1, are two distinct cut vertices of G, and let v be a vertex
other than ri and li+1.

(i) If v is adjacent to li+1, then v> r i−1;

(ii) If v is adjacent to ri , then v< l i+2.

Proof. For condition (i), ifv < r i−1, thenv must be adjacent to somel j or r j , 1≤ j ≤ i −1, and it will
contradict thatr i is a cut vertex. For condition (ii), ifv > l i+2, thenv must be adjacent to somel j or r j ,
i +2≤ j ≤ k, andl i+1 cannot be a cut vertex. ✷

The following lemmas show the ways to determine whether an edge incident to both cut vertices is
contained in a cycle.

Lemma 15 Suppose li and ri , 1 ≤ i ≤ k, are two cut vertices of G. If edge(l i , r i) is contained in a C3,
then one of the following conditions holds:

(i) When li 6= r i−1, there exists some vertex v, ri−1 < v < l i+1, such that v is adjacent to li and ri ;

(ii) When li = r i−1, there exists some vertex v, li−1 < v < l i+1, such that v is adjacent to li and ri .

Proof. The correctness is from Lemma 13. (See Figure 2.) ✷

Finding Cut Vertices and Bridges on Trapezoid Graphs 491

 r
i–1 l

i
 u l

i+1 r
i

(a)

u+1 r
i–1 l

i
 u l

i+1 r
i

(b)

N
max

[u] l
i
 = r

i–1 l
i–1 u l

i+1 r
i

(c)

N
max

[u]

Fig. 3: The illustration of Lemma 16. (a) condition i. (b) condition ii. (c) condition iii.

Lemma 16 Suppose li and ri , 1 ≤ i ≤ k, are two cut vertices of G. If edge(l i , r i) is contained in a C4,
then one of the following conditions holds:

(i) No matter li 6= r i−1 or l i = r i−1, there exist two consecutive vertices v and v+1, ri−1 < v < l i+1−1,
such that v(v+ 1, respectively) is adjacent to ri (l i , respectively) but not adjacent to li (r i , respec-
tively);

(ii) When li 6= r i−1, there exist two vertices v and Nmax[v], ri−1 < v≤Nmax[v] < l i+1, such that v(Nmax[v],
respectively) is adjacent to li (r i , respectively) but not adjacent to ri (l i , respectively);

(iii) When li = r i−1, there exist two vertices v and Nmax[v], l i−1 < v≤ Nmax[v] < l i+1, such that v(Nmax[v],
respectively) is adjacent to li (r i , respectively) but not adjacent to ri (l i , respectively).

Proof. We assume that no one vertex is adjacent to bothl i and r i to form aC3. Let u andv be two
adjacent vertices such thatu, v, l i , andr i form aC4. Without loss of generality, assumeu < v. Consider
the following two cases:

Case 1.u is adjacent tor i andv is adjacent tol i . Assumev> u+1. If vertexu+1 is adjacent tol i , thenu,
u+1, l i , andr i form aC4; otherwise,u+1 is adjacent tor i and we letu be vertexu+1. Similarly,
if vertex v−1 is adjacent tor i , thenv−1, v, l i , andr i form aC4; otherwise,v−1 is adjacent to
l i and we letv be vertexv−1. With this argument, we can deduce that verticesu, v = u+1, l i ,
andr i form aC4. Sinceu is adjacent tor i andv is adjacent tol i , we obtainr i−1 < u < v < l i+1

if l i 6= r i−1 andl i−1 < u < v < l i+1 if l i = r i−1 by Lemma 13. However, in the case ofl i = r i−1,
if l i−1 < u < l i = r i−1, thenu must be adjacent tol i−1 sincel i−1 is adjacent tor i−1 andu is not
adjacent tol i = r i−1. It contradicts thatl i is a cut vertex sincel1-r1-l2-r2-. . .-l i−1-u-r i-l i+1-r i+1-
. . .-lk-rk is a(1,n)-path. Thus, we haver i−1 < u < v < l i+1 no matterl i 6= r i−1 or l i = r i−1. (See
Figure 3 (a).)

Case 2.u is adjacent tol i andv is adjacent tor i . Sinceu is adjacent tov, we havev≤ Nmax[u]. If Nmax[u]
is adjacent tol i , thenv, Nmax[u], l i , andr i form aC4, which is in Case 1. Thus,Nmax[u] is adjacent
to r i , and we can letv beNmax[u]. If Nmax[u] > l i+1, thenNmax[u] must be adjacent to somel j or
r j , i +1≤ j ≤ k. Without loss of generality, assumeNmax[u] is adjacent tol j . Then,l1-r1-l2-r2-
. . .-l i-u-Nmax[u]-l j -r j -. . .-lk-rk is a (1,n)-path, andr i cannot be a cut vertex. Therefore, we have
Nmax[u] < l i+1. Consider the following two subcases:

492 Hon-Chan Chen

Subcase 1.l i 6= r i−1. If u < r i−1, thenu must be adjacent to somel j or r j , 1≤ j ≤ i −1, and
it will contradict thatl i is a cut vertex. We obtainr i−1 < u ≤ Nmax[u] < l i+1. (See
Figure 3 (b).)

Subcase 2.l i = r i−1. SinceNmax[u] is adjacent tor i , we havel i−1 < Nmax[u] by Lemma 13.
Moreover,l i−1 cannot be adjacent toNmax[u]; otherwise,l1-r1-l2-r2-. . .-l i−1-Nmax[u]-
r i-l i+1-r i+1-. . .- lk-rk is a (1,n)-path which contradicts thatl i is a cut vertex. Ifu <

l i−1, thenu must be adjacent tol i−1 sinceu < l i−1 < Nmax[u] andl i−1 is not adjacent
to Nmax[u]. However, this contradicts thatl i is a cut vertex sincel1-r1-l2-r2-. . .-l i−1-u-
Nmax[u]-r i-l i+1-r i+1-. . .- lk-rk is a(1,n)-path. Thus, we havel i−1 < u≤Nmax[u]< l i+1.
(See Figure 3 (c).)

✷

Lemma 17 Suppose ri and li+1, 1≤ i ≤ k−1, are two distinct cut vertices of G.

(i) If edge(r i , l i+1) is contained in a C3, then there exists some vertex v, ri−1 < v < l i+2, such that v is
adjacent to ri and li+1;

(ii) If edge(r i , l i+1) is contained in a C4, then there exist two vertices v and Nmax[v], where ri−1 < v< l i+1

and ri < Nmax[v] < l i+2, such that v(Nmax[v], respectively) is adjacent to ri (l i+1, respectively) but
not adjacent to li+1 (r i , respectively).

Proof. Condition i is directly from Lemma 14. (See Figure 4 (a).) In condition ii, we assume that no one
vertex is adjacent to bothr i andl i+1 to form aC3. Let u andv be two adjacent vertices such thatu, v, r i ,
andl i+1 form aC4. Without loss of generality, assumeu < v. Consider the following two cases:

Case 1.u is adjacent tor i andv is adjacent tol i+1. If u < r i−1, thenu must be adjacent to somel j or r j ,
1≤ j ≤ i−1, and it will contradict thatr i is a cut vertex. Note thatu< l i+2 by Lemma 14 andu is
not adjacent tol i+1. If u > l i+1, thenu must be adjacent tor i+1 sincel i+1 < u < l i+2 ≤ r i+1 andu
is not adjacent tol i+1. This will contradict thatl i+1 is a cut vertex sincel1-r1-l2-r2-. . .-l i-r i-u-r i+1-
. . .-lk-rk is a(1,n)-path. Therefore,r i−1 < u< l i+1. Similarly, we can obtainr i < v< l i+2. Sinceu
is adjacent tov, v≤ Nmax[u]. It is easy to see thatNmax[u] < l i+2; otherwise,Nmax[u] is adjacent to
somel j or r j , l i+2 < j < k, andl i+1 cannot be a cut vertex. Thus, we haver i < v≤ Nmax[u] < l i+2.
It means that ifu, v, r i , and l i+1 form aC4, thenu, Nmax[u], r i , and l i+1 also form aC4. (See
Figure 4 (b).)

 l
i+1 r

i–1 u l
i+2 r

i

(a)

l
i
 r

i+1

(b)

li+1 ri–1 u ri li r
i+1 N

max
[u] l

i+2

Fig. 4: The illustration of Lemma 17. (a) condition i. (b) condition ii.

Finding Cut Vertices and Bridges on Trapezoid Graphs 493

Case 2.u is adjacent tol i+1 andv is adjacent tor i . By Lemma 14,r i−1 < u andv < l i+2. If r i−1 < u < r i ,
thenu must be adjacent tol i sincel i ≤ r i−1 < u < r i andu is not adjacent tor i . We can find that
l1-r1-l2-r2-. . .-l i-u-l i+1-r i+1-. . .-lk-rk is a(1,n)-path, and it contradicts thatr i is a cut vertex. Thus,
r i < u. Similarly, we can obtainv < l i+1. However, it contradictsu < v sincev < l i+1 < r i < u.
Case 2 cannot hold.

✷

Algorithm B below describes the steps of finding bridges of a trapezoid graph.

Algorithm B (Finding bridges of a trapezoid graph)

Input: Dominating paces, S∗, T∗, and cut vertices of G.

Output: All bridges of G.

Step 1. If s∗n−1 = n−1, then(lk,n) is a pendant edge. Moreover, if t∗
2 = 2, then(1, r1) is a pendant edge.

Step 2. For each dominating pace[l i , r i], 1≤ i ≤ k, if li is a cut vertex, then find pendant edges incident
to li as follows: for each vertex v, li < v < l i+1, if s∗v−1 = v−1 and s∗v = v, then(l i ,v) is a bridge.

Step 3. For each dominating pace[l i , r i], 1≤ i ≤ k, if ri is a cut vertex, then find pendant edges incident
to ri as follows: for each vertex v, ri−1 < v < r i , if t∗v = v and t∗v+1 = v+1, then(r i ,v) is a bridge.

Step 4. For i = 1 to k, if both li and ri are cut vertices, then(l i , r i) is a bridge if none of the conditions in
Lemmas 15 and 16 holds.

Step 5. For i = 1 to k− 1, if both ri and li+1 are cut vertices, then(r i , l i+1) is a bridge if none of the
conditions in Lemma 17 holds.

We use our example again to illustrate Algorithm B. The dominating paces are[1,5], [4,8], [8,9], [9,10],
and vertices 1, 4, 8, 9 are cut vertices. In dominating pace[1,5], sinces∗1 = 1 ands∗2 = 2, edge(1,2) is a
pendant edge. In dominating pace[9,10], sinces∗9 = 9, edge(9,10) is a pendant edge. In Step 4,(4,8)
and(8,9) are the edges of(l i , r i) incident to two cut vertices. Edge(4,8) is not a bridge since vertex 7
is adjacent to vertices 4 and 8, while edge(8,9) is a bridge since none of the conditions in Lemmas 15
and 16 holds. In Step 5, only(5,4) is the edge of(r i , l i+1). Since vertex 5 is not a cut vertex,(5,4) is not
a bridge. All bridges in our example are(1,2), (8,9), and(9,10).

Theorem 18 Algorithm B finds all bridges of a trapezoid graph in O(n) time.

Proof. A bridge is an edge incident to one cut vertex (a pendant edge) or two cut vertices (an edge of the
(1,n)-path). Since cut vertices are in{l1, r1, l2, r2, · · · , lk, rk} and the(1,n)-path is composed of(l i , r i) and
(r i , l i+1), all bridges can be found by Algorithm B. It is trivial that each step of Algorithm B takesO(n)
time, thus the complexity of Algorithm B isO(n). ✷

5 The parallel algorithms
In this section, we will parallelize algorithms A and B so that the problem of finding cut vertices and
bridges of a trapezoid graphG can be solved inO(logn) time usingO(n

logn) processors on the EREW
PRAM model.

494 Hon-Chan Chen

A1 = [1, 5] A2 = [1, 5] A
3
 = [3, 6]

A
4
 = [4, 8] A

5
 = [4, 8] A6 = [4, 8] A7 = [7, 8]

A8 = [8, 9]

A
9
 = [9, 10]

Fig. 5: The rooted tree of superior pairs.

At first, we can use the parallel algorithms of prefix maxima and suffix minima [6] to find the maximal
and minimal neighbors for each vertex ofG. These parallel algorithms takeO(logn) time with O(n

logn)
processors on the EREW PRAM model.

Secondly, we need to find the dominating paces ofG in parallel. Using the parallel computation of prefix
maxima on[l i , r i], i = 1,2, · · · ,n, we can obtain all superior pairsAi . For each superior pairAi = [pi ,qi],
i = 1,2, · · · ,n−1, letAqi be the successor (or parent) ofAi if qi 6= n. It is trivial that these superior pairs
form a rooted tree (or forest) which hasO(n) nodes andO(n) edges. The(1,n)-path is identical to the
chain fromA1 to its rootAk = [pk,qk], 1≤ k≤ n−1, whereqk = n. Figure 5 shows the rooted tree formed
by the superior pairs in Table 1. Applying the technique of list ranking [6], all dominating paces can be
determined inO(logn) time withO(n

logn) processors on the EREW PRAM model.

Also by the parallel algorithms of prefix maxima and suffix minima, arraysS, T, S∗, andT∗ of G can
be obtained. Steps 3 and 4 of Algorithm A find cut vertices by usingl i andr i . It is easy to see that there
is no concurrent memory access in these two steps, and Algorithm A can be done inO(logn) time using
O(n

logn) processors on the EREW PRAM model.

In Algorithm B, Step 1 can be done inO(1) time with O(1) processor. In Step 2, we can first simulta-
neously examine ifs∗v−1 = v−1 for all verticesv, l i < v < l i+1, then simultaneously examine ifs∗v = v for
the same vertices. Step 3 can use the similar way to examine ift∗v = v andt∗v+1 = v+1 for all verticesv,
r i−1 < v < r i . Since there is no concurrent memory access in these three steps, all pendant edges can be
found inO(logn) time withO(n

logn) processors on the EREW PRAM model.
To transform Lemmas 15, 16, and 17 into parallel steps, we need some additional variables to avoid

concurrent memory access. Lemma 15 has two conditions. In condition (i), we can letxv = l i andyv = r i

for each vertexv, r i−1 < v < l i+1, then examine ifv is adjacent to bothxv andyv. There is no concurrent
read and write in condition (i). Condition (ii) can be implemented by two stages for avoiding concurrent
memory access. The first stage uses verticesv, l i−1 < v < r i−1, while the second stage uses verticesv,
r i−1 < v < l i+1. We examine ifv is adjacent to bothxv andyv for the first stage then for the second stage,
wherexv = l i andyv = r i . Thus, all dominating paces ofl i = r i−1 can be done without any concurrent read
and write.

Lemma 16 has three conditions. In condition (i), we can letxv = l i , yv = r i , andzv = v+1 for all vertices
v, r i−1 < v < l i+1−1, then examine ifv is adjacent toyv andzv is adjacent toxv. In condition (ii), we can
let xv = l i , yv = r i , andzv = Nmax[v] for all verticesv, r i−1 < v < l i+1, then examine ifv is adjacent toxv

Finding Cut Vertices and Bridges on Trapezoid Graphs 495

andzv is adjacent toyv. In condition (iii), we need two stages for parallel computation. The first stage
uses verticesv, l i−1 < v < r i−1, and the second stage uses verticesv, r i−1 < v < l i+1. Then, we examine
if v is adjacent toxv andzv is adjacent toyv for these two stages respectively, wherexv = l i , yv = r i , and
zv = Nmax[v].

Condition (i) of Lemma 17 also needs two stages: verticesv, r i−1 < v < l i+1, are for the first stage and
verticesv, l i+1 < v < l i+2 are for the second stage. Letxv = r i andyv = l i+1, then we examine ifv is
adjacent to bothxv andyv for each stage. In condition (ii), we can letxv = r i , yv = l i+1, andzv = Nmax[v]
for all verticesv, r i−1 < v < l i+1, then examine ifv is adjacent toxv and zv is adjacent toyv, where
r i < Nmax[v] < l i+2. Therefore, Lemmas 15, 16, and 17 can be implemented inO(logn) time using
O(n

logn) processors on the EREW PRAM model. We have the following theorem.

Theorem 19 All cut vertices and bridges of a trapezoid graph can be found in parallel in O(logn) time
with O(n

logn) processors on the EREW PRAM computational model.

6 Concluding remarks
In this paper, we use dominating paces[l i , r i] to find cut vertices and bridges. This idea is different from
other proposed algorithms for trapezoid graphs, which almost use the corner points. The properties ofl i
andr i are new and interesting.

Using the properties of the dominating paces, we presentedO(n) time algorithms to find cut vertices
and bridges on trapezoid graphs. Our algorithms can be easily parallelized so that cut vertices and bridges
can be found inO(logn) time usingO(n

logn) processors on the EREW PRAM computational model.
Since the lower bound of complexity for finding cut vertices and bridges on trapezoid graphs isΩ(n), our
algorithms are optimal.

References
[1] K. Arvind, V. Kamakoti, and C. P. Rangan, Efficient Parallel Algorithms for Permutation Graphs,

Journal of Parallel and Distributed Computing, vol. 26, 1995, pp. 116-124.

[2] H. C. Chen and Y. L. Wang, A Linear Time Algorithm for Finding Depth-First Spanning Trees on
Trapezoid Graphs,Information Processing Letters, vol. 63, 1997, pp. 13-18.

[3] D. G. Corneil and P. A. Kamula, Extensions of Permutation and Interval Graphs,Congressus Nu-
merantium, vol. 58, 1987, pp. 267-275.

[4] I. Dagan, M. C. Golumbic, and R. Y. Pinter, Trapezoid Graphs and Their Coloring,Discrete Applied
Mathematics, vol. 21, 1988, pp. 35-46.

[5] M. Hota, M. Pal, and T. K. Pal, Optimal Sequential and Parallel Algorithms to Compute All Cut
Vertices on Trapezoid Graphs,Computational Optimization and Applications, vol. 27, 2004, pp.
95-113.

[6] J. J́aJ́a, Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[7] E. Köhler, Connected Domination and Dominating Clique in Trapezoid Graphs,Discrete Applied
Mathematics, vol. 99, 2000, pp. 91-110.

496 Hon-Chan Chen

[8] T. H. Ma and J. P. Spinrad, On the 2-Chain Subgraph Cover and Related Problems,Journal of
Algorithms, vol. 17, 1994, pp. 251-268.

[9] A. P. Sprague and K. H. Kulkarni, Optimal Parallel Algorithms for Finding Cut Vertices and Bridges
of Interval Graphs,Information Processing Letters, vol. 42, 1992, pp. 229-234.

[10] R. E. Tarjan, Depth-First Search and Linear Graph Algorithms,SIAM Journal on Computing, vol. 1,
1972, pp. 146-160.

[11] R. E. Tarjan and U. Vishkin, An Efficient Parallel Biconnectivity Algorithm,SIAM Journal on Com-
puting, vol. 14, 1985, pp. 862-874.

[12] Y. H. Tsin and F. Y. Chen, Efficient Parallel Algorithms for a Class of Graph Theoretic Problems,
SIAM Journal on Computing, vol. 13, 1984, pp. 580-599.

	Introduction
	Preliminaries
	Finding cut vertices
	Finding bridges
	The parallel algorithms
	Concluding remarks

