A characterization of trees with equal 2-domination and 2-independence numbers

Christoph Brause ${ }^{1,2}$ Michael A. Henning ${ }^{2 *}$ Marcin Krzywkowski ${ }^{2,3 \dagger}$
${ }^{1}$ Institute of Discrete Mathematics and Algebra, TU Bergakademie Freiberg, Germany
${ }^{2}$ Department of Pure and Applied Mathematics, University of Johannesburg, South Africa
${ }^{3}$ Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland

received $25^{\text {th }}$ Apr. 2016, accepted $12^{\text {th }}$ Jan. 2017.

Abstract

A set S of vertices in a graph G is a 2 -dominating set if every vertex of G not in S is adjacent to at least two vertices in S, and S is a 2 -independent set if every vertex in S is adjacent to at most one vertex of S. The 2-domination number $\gamma_{2}(G)$ is the minimum cardinality of a 2 -dominating set in G, and the 2 -independence number $\alpha_{2}(G)$ is the maximum cardinality of a 2 -independent set in G. Chellali and Meddah [Trees with equal 2-domination and 2-independence numbers, Discussiones Mathematicae Graph Theory 32 (2012), 263-270] provided a constructive characterization of trees with equal 2 -domination and 2 -independence numbers. Their characterization is in terms of global properties of a tree, and involves properties of minimum 2-dominating and maximum 2-independent sets in the tree at each stage of the construction. We provide a constructive characterization that relies only on local properties of the tree at each stage of the construction.

Keywords: 2-domination, 2-domination number, 2-independence, 2-independence number, tree

1 Introduction

We continue the study of 2-domination and 2-independence in trees. For $k \geq 1$, a k-dominating set of a graph G is a set S of vertices of G such that every vertex outside S has at least k neighbors in S, while S is a k-independent set if every vertex in S is adjacent to at most $k-1$ vertices of S. The k-domination number of G, denoted by $\gamma_{k}(G)$, is the minimum cardinality of a k-dominating set of G, and the k-independence number of G, denoted by $\alpha_{k}(G)$, is the maximum cardinality of a k-independent set of G. In particular, we note that for $k=1$, a 1-dominating set and a 1 -independent set are the classical dominating and independent sets, respectively. Thus, the 1-domination number of $G, \gamma_{1}(G)$, is the domination number $\gamma(G)$ and the 1 -independence number of $G, \alpha_{1}(G)$, is the independence number $\alpha(G)$. A k-dominating set of G of minimum cardinality is called a $\gamma_{k}(G)$-set, and a k-independent set of G of maximum cardinality is called an $\alpha_{k}(G)$-set.

The concepts of k-domination and k-independence in graphs were introduced by Fink and Jacobson [9] in 1985 and is now very well studied in the literature (see for example $[1-8,10,11]$). We refer the reader to

[^0]the two books on domination by Haynes, Hedetniemi, and Slater [12, 13], as well as to the excellent survey on k-domination and k-independence in graphs by Chellali, Favaron, Hansberg, and Volkmann [2].

Fink and Jacobson [9] proved that $\gamma_{2}(G) \leq \alpha_{2}(G)$ for every graph G. Recently, Chellali and Meddah [3] gave a constructive characterization of trees T satisfying $\gamma_{2}(T)=\alpha_{2}(T)$. Their characterization is in terms of global properties of a tree, and involves properties of minimum 2-dominating and maximum 2independent sets in the tree at each stage of the construction. We provide a constructive characterization that relies only on local properties of the tree at each stage of the construction.

1.1 Notation

For notation and graph theory terminology not defined herein, we refer the reader to [14]. Let G be a graph with vertex set $V(G)$ of order $n(G)=|V(G)|$ and edge set $E(G)$ of size $m(G)=|E(G)|$. A path on n vertices is denoted by P_{n}. For two vertices u and v in a connected graph G, the distance $d_{G}(u, v)$ between u and v is the length of a shortest (u, v)-path in G. The maximum distance among all pairs of vertices of G is called the diameter of G, which is denoted by $\operatorname{diam}(G)$. A path of length $\operatorname{diam}(G)$ between two vertices at maximum distance apart in G is a diametrical path of G. A vertex of degree one is called a leaf and its neighbor a support vertex. We denote the set of leaves of a tree T by $L(T)$. A star is a tree $K_{1, k}$ for some $k \geq 1$, while for $r, s \geq 1$, a double star $S_{r, s}$ is a tree with exactly two vertices that are not leaves, one of which is adjacent to r leaves and the other to s leaves.

The open neighborhood of a vertex $v \in V(G)$ is the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$, and the closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of v is $d_{G}(v)=\left|N_{G}(v)\right|$. The open neighborhood of a set of vertices $S \subseteq V(G)$ is the set $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$, and the closed neighborhood of S is $N_{G}[S]=N_{G}(S) \cup S$.

For a set $S \subseteq V(G)$, we let $G[S]$ denote the subgraph induced by S. The graph obtained from G by removing the vertices of S along with all edges incident to vertices in S is denoted by $G-S$. If $S=\{v\}$, then we simply denote $G-S$ by $G-v$. We define the boundary of S, denoted by $\partial(S)$, to be the set of vertices of S that have a neighbor in $V(G) \backslash S$.

A rooted tree T distinguishes one vertex r called the root. For each vertex $v \neq r$ of T, the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any other neighbor of v. The set of all children of v we denote by $C(v)$. A descendant of v is a vertex $u \neq v$ such that the unique (r, u)-path contains v. Thus every child of v is a descendant of v. We let $D(v)$ denote the set of all descendants of v, and we define $D[v]=D(v) \cup\{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and it is denoted by T_{v}^{r}. If the root r is clear from the context, then we simply denote the maximal subtree at v by T_{v}.

1.2 Known Results

Fink and Jacobson [9] proved that $\gamma_{2}(G) \leq \alpha_{2}(G)$ for every graph G, and conjectured that for every graph G and integer $k \geq 1$ we have $\gamma_{k}(G) \leq \alpha_{k}(G)$. Their conjecture was proven by Favaron [6] by the following stronger result.
Theorem 1 ([6]). For every graph G and integer $k \geq 1$, the graph G contains a set that is both k-dominating and k-independent, and therefore $\gamma_{k}(G) \leq \alpha_{k}(G)$.

A graph G that satisfies $\gamma_{k}(G)=\alpha_{k}(G)$ we call a $\left(\gamma_{k}, \alpha_{k}\right)$-graph. Recently, Chellali and Meddah [3] gave a constructive characterization of $\left(\gamma_{2}, \alpha_{2}\right)$-trees. For this purpose, they defined a family \mathcal{O} of trees $T=T_{i}$ that can be obtained as follows. Let \mathcal{O} be the family of trees that T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ of trees, where T_{1} is a star $K_{1, p}(p \geq 1), T=T_{k}$, and, if $k \geq 2$, then T_{i+1} is obtained recursively from T_{i} by one of the following operations:

- Operation \mathcal{R}_{1} : Add a star $K_{1, p}, p \geq 2$, centered at a vertex u and join u by an edge to a vertex of T_{i}.
- Operation \mathcal{R}_{2} : Add a double star $S_{1, p}$ with support vertices u and v, where $\left|L_{v}\right|=p$ and join v by an edge to a vertex w of T_{i} with the condition that if $\gamma_{2}\left(T_{i}-w\right)=\gamma_{2}\left(T_{i}\right)-1$, then no neighbor of w in T_{i} belongs to a $\gamma_{2}\left(T_{i}-w\right)$-set.
- Operation \mathcal{R}_{3} : Add a path $P_{2}=u^{\prime} u$ and join u by an edge to a leaf v of T_{i} that belongs to every $\alpha_{2}\left(T_{i}\right)$-set and satisfies in addition $\alpha_{2}\left(T_{i}-v\right)+1=\alpha_{2}\left(T_{i}\right)$.
- Operation \mathcal{R}_{4} : Add a path $P_{3}=u^{\prime} u v$ and join v by an edge to a vertex w that belongs to a $\gamma_{2}\left(T_{i}\right)$-set and satisfies further $\gamma_{2}\left(T_{i}-w\right) \leq \gamma_{2}\left(T_{i}\right)$, with the condition that if $\gamma_{2}\left(T_{i}-w\right)=\gamma_{2}\left(T_{i}\right)-1$, then no neighbor of w in T_{i} belongs to a $\gamma_{2}\left(T_{i}-w\right)$-set.
We are now in a position to state the result due to Chellali and Meddah [3].
Theorem 2 ([3]). A tree T is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree if and only if $T \cong K_{1}$ or $T \in \mathcal{O}$.

2 Main Result

The Chellali and Meddah [3] characterization of $\left(\gamma_{2}, \alpha_{2}\right)$-trees presented in Theorem 2 is a pleasing and important result. However, the characterization is not fully satisfactory in the sense that it is dependant on global properties of the tree at each stage of the construction. For example, in Operation \mathcal{R}_{2} one needs to check that the tree T_{i} and the vertex w satisfy the condition that if $\gamma_{2}\left(T_{i}-w\right)=\gamma_{2}\left(T_{i}\right)-1$, then no neighbor of w in T_{i} belongs to a $\gamma_{2}\left(T_{i}-w\right)$-set. Operations \mathcal{R}_{3} and \mathcal{R}_{4} also require to check global properties involving minimum 2 -dominating and maximum 2 -independent sets in the tree. Motivated by the Chellali-Meddah construction of (γ_{2}, α_{2})-trees, our aim is to obtain a constructive characterization that relies only on local properties of the tree at each stage of the construction. We describe such a family \mathcal{T} of $\left(\gamma_{2}, \alpha_{2}\right)$-trees in Section 3. Our main result is the following constructive characterization of $\left(\gamma_{2}, \alpha_{2}\right)$-trees. A proof of Theorem 3 is presented in Section 4.
Theorem 3. A tree is T a $\left(\gamma_{2}, \alpha_{2}\right)$-tree if and only if $T \in \mathcal{T}$.

3 The Family \mathcal{T}

In this section, we define a family \mathcal{T} of $\left(\gamma_{2}, \alpha_{2}\right)$-trees. For this purpose, we first define two sets of trees $A=\left\{T_{1}, \ldots, T_{15}\right\}$ and $B=\left\{B_{1}, \ldots, B_{10}\right\}$ shown in Figure 1 and Figure 2, respectively. We call each tree that belongs to $A \cup B$ a special tree.
For each special tree, we 2 -color the vertices with the colors white and black as illustrated in Figures 1 and 2 to indicate the roles they play in the tree. We note that exactly one vertex in each special tree is white. Given a special tree T, we denote the set of black vertices by $V_{B}(T)$. We also specify certain vertices of each special tree T, which we name $v(T), v_{1}(T), v_{2}(T)$ and $w(T)$. If a special tree T is clear from context, then we simply refer to these specified vertices as v, v_{1}, v_{2}, and w. We remark that some special trees occur more than once in Figures 1 and 2. However, for simplicity in the proofs that follow, we assign different names to these special trees.

Let $T_{\mathrm{pdi}} \in A \cup B$ be a special tree and let T be a tree. If T contains a subset U of vertices such that $T[U] \cong T_{\text {pdi }}$ and the degree of every black vertex in $V_{B}\left(T_{\text {pdi }}\right)$ equals its degree in T, then we say that the tree T contains T_{pdi} as a prescribed-degree-induced subtree, abbreviated PDI-subtree. In particular, we note that if T_{pdi} is a PDI-subtree of a tree T, then the degree sequence of the vertices of $V_{B}\left(T_{\mathrm{pdi}}\right)$ in T equals the degree sequence of the vertices of $V_{B}\left(T_{\mathrm{pdi}}\right)$ in T_{pdi}.

We are now in position to define our family \mathcal{T}.

T_{10}

T_{7}

T_{8}

T_{12}

T_{9}

T_{14}

T_{15}

Fig. 1: The set $A=\left\{T_{1}, \ldots, T_{15}\right\}$ of special trees
Definition 4. Let \mathcal{T} be the family of trees that:
(i) contains all trees of order at most 4,
(ii) is closed under the four Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$, and \mathcal{O}_{4} that are listed below, which extend the tree T^{\prime} to a tree T by attaching a tree to the vertex $v \in V\left(T^{\prime}\right)$, called the attacher of T^{\prime}, and
(iii) is closed under the Operations \mathcal{O}_{5}, and \mathcal{O}_{6} listed below, which extend the tree T^{\prime} to a tree T by attaching trees to the vertices v_{1} and v_{2} of T^{\prime}, called the attachers of T^{\prime}.

- Operation \mathcal{O}_{1} : Let $T_{\mathrm{pdi}} \in\left\{T_{1}, T_{2}, T_{8}\right\}$ be a PDI-subtree of T^{\prime} and let $v=v\left(T_{\mathrm{pdi}}\right)$. Add a new vertex u and the edge vu.
- Operation \mathcal{O}_{2} : Let $T_{\mathrm{pdi}} \in\left\{T_{4}, T_{11}, T_{12}, T_{13}, T_{15}\right\}$ be a PDI-subtree of T^{\prime} and let $v=v\left(T_{\mathrm{pdi}}\right)$. Add a path $u_{1} u_{2}$ to T^{\prime} and the edge vu .
- Operation \mathcal{O}_{3} : Let v be an arbitrary vertex of T^{\prime}. Add a path $u_{1} u_{2} u_{3}$ to T^{\prime} and the edge vuu_{2}.
- Operation \mathcal{O}_{4} : Let $T_{\text {pdi }} \in\left\{T_{1}, T_{2}, T_{3}, T_{5}, T_{6}, T_{7}, T_{9}, T_{10}\right\}$ be a PDI-subtree of T^{\prime} and let $v=$ $v\left(T_{\mathrm{pdi}}\right)$. Add a path $u_{1} u_{2} u_{3}$ to T^{\prime} and the edge $v u_{1}$.
- Operation \mathcal{O}_{5} : Let $T_{\mathrm{pdi}} \cong T_{6}$ be a PDI-subtree of T^{\prime} and let $v_{1}=v_{1}\left(T_{\mathrm{pdi}}\right), v_{2}=v_{2}\left(T_{\mathrm{pdi}}\right)$. Add a path $u_{1} u_{3}$ to T^{\prime} and the edge $v_{1} u_{1}$, and add a new vertex u_{2} and the edge $v_{2} u_{2}$.
- Operation \mathcal{O}_{6} : Let $T_{\text {pdi }} \cong T_{14}$ be a PDI-subtree of T^{\prime} and let $v_{1}=v_{1}\left(T_{\mathrm{pdi}}\right), v_{2}=v_{2}\left(T_{\mathrm{pdi}}\right)$. Remove the edge $v_{1} v_{2}$, and add a path $u_{1} u_{2} u_{3}$ and the edges $v_{1} u_{1}$ and $v_{2} u_{2}$.

For $i \in\{1,2,4,5,6\}$, if T is obtained from T^{\prime} by applying Operation \mathcal{O}_{i} to a PDI-subtree $T_{\text {pdi }}$ of T^{\prime}, then we let $X=V(T) \backslash V\left(T^{\prime}\right)$ and $T_{\mathrm{pdi}}^{\mathcal{O}_{i}}=T\left[V\left(T_{\mathrm{pdi}}\right) \cup X\right]$. Further, we color all vertices of X in $T_{\mathrm{pdi}}^{\mathcal{O}_{i}}$ black, while the colors of all vertices in the set $V\left(T_{\mathrm{pdi}}\right)$ remain unchanged.

Fig. 2: The set $B=\left\{B_{1}, \ldots, B_{10}\right\}$ of special trees
We shall need the following properties of special trees.
Observation 5. If T is a special tree, then the vertices of T covered by a square in Figures 3 and 4 form a $\gamma_{2}(T)$-set, and the vertices covered by a diamond form an $\alpha_{2}(T)$-set.

The following observation follows readily from the facts that in a rooted tree one can construct a minimum 2-dominating set by "pushing" vertices in the direction of the root, in the sense that if we can replace a vertex in a 2 -dominating set by its parent, then we do so; further, we can construct a maximum 2 -independent set by "pushing" vertices away from the root as far as possible, in the sense that if we can replace a vertex in a 2 -independent set by its children, then we do so.
Observation 6. Let T^{\prime} be a tree that contains a PDI-subtree T_{pdi}, and let D^{\prime} be a $\gamma_{2}\left(T^{\prime}\right)$-set and S^{\prime} an $\alpha_{2}\left(T^{\prime}\right)$-set. Let $D_{\mathrm{pdi}}=D^{\prime} \cap V\left(T_{\mathrm{pdi}}\right)$ and $D_{\mathrm{pdi}}^{B}=D^{\prime} \cap V_{B}\left(T_{\mathrm{pdi}}\right)$, and let $S_{\mathrm{pdi}}=S^{\prime} \cap V\left(T_{\mathrm{pdi}}\right)$ and $S_{\mathrm{pdi}}^{B}=S^{\prime} \cap V_{B}\left(T_{\mathrm{pdi}}\right)$. Then the sets D^{\prime} and S^{\prime} can be chosen so that the following hold.
(a) If $T_{\mathrm{pdi}} \in\left\{T_{1}, T_{2}, T_{4}, T_{8}, T_{11}, T_{15}, B_{3}, B_{7}\right\}$, then the sets D_{pdi} and S_{pdi} consist of the square and diamond vertices, respectively, of $T_{\text {pdi }}$ illustrated in Figures 3 and 4.
(b) If $T_{\mathrm{pdi}} \in\left\{T_{5}, T_{6}, T_{9}, T_{14}, B_{1}\right\}$, then the sets D_{pdi} and S_{pdi}^{B} consist of the square and diamond vertices, respectively, of T_{pdi} illustrated in Figures 3 and 4.
(c) If $T_{\mathrm{pdi}} \in\left\{T_{12}, T_{13}, B_{8}, B_{9}, B_{10}\right\}$, then the sets D_{pdi}^{B} and S_{pdi} consist of the square and diamond vertices, respectively, of $T_{\text {pdi }}$ illustrated in Figures 3 and 4.
(d) If $T_{\text {pdi }} \in\left\{T_{10}, B_{2}, B_{4}, B_{5}, B_{6}\right\}$, then the sets D_{pdi}^{B} and S_{pdi}^{B} consist of the square and diamond vertices, respectively, of $T_{\text {pdi }}$ illustrated in Figures 3 and 4.
(e) If $T_{\mathrm{pdi}} \in\left\{T_{3}, T_{4}, T_{7}, T_{11}, T_{12}, T_{13}, T_{15}\right\}$ and $v=v\left(T_{\mathrm{pdi}}\right)$, then $\alpha_{2}\left(T_{\mathrm{pdi}}-v\right)=\alpha_{2}\left(T_{\mathrm{pdi}}\right)-1$.

4 Proof of Theorem 3

In this section, we will prove our main result, namely Theorem 3. We first will present some preliminary results that we will need for our proof.
Observation 7. Every leaf of a graph G is in every $\gamma_{2}(G)$-set and there is an $\alpha_{2}(G)$-set containing all leafs of G.

We now prove that performing Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{6}$ maintains the difference between the 2 -domination and the 2 -independence numbers.

Fig. 3: The set $A=\left\{T_{1}, \ldots, T_{15}\right\}$ of special trees
Lemma 8. If T is obtained from an arbitrary tree T^{\prime} by applying one of the Operations \mathcal{O}_{i} for some $i \in[6]$, then $\alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)$.

Proof: Let $c=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)$. By Theorem 1, we have $c \geq 0$. We prove that $\alpha_{2}(T)-\gamma_{2}(T)=c$. Let D^{\prime} be a $\gamma_{2}\left(T^{\prime}\right)$-set and let S^{\prime} be an $\alpha_{2}\left(T^{\prime}\right)$-set. Let v be the attacher in T^{\prime} if T is obtained from T^{\prime} using Operation $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$, or \mathcal{O}_{4}, and let v_{1} and v_{2} be the attachers in T^{\prime} if T is obtained from T^{\prime} using Operation \mathcal{O}_{5} or \mathcal{O}_{6}. If T is obtained from T^{\prime} by Operation $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{4}, \mathcal{O}_{5}$, or \mathcal{O}_{6}, then let $T_{\text {pdi }}$ be the PDIsubtree of T^{\prime} used to construct the tree T, where $v=v\left(T_{\mathrm{pdi}}\right), v_{1}=v_{1}\left(T_{\mathrm{pdi}}\right)$ and $v_{2}=v_{2}\left(T_{\mathrm{pdi}}\right)$. Further, let $D_{\mathrm{pdi}}=D^{\prime} \cap V\left(T_{\mathrm{pdi}}\right)$ and $D_{\mathrm{pdi}}^{B}=D^{\prime} \cap V_{B}\left(T_{\mathrm{pdi}}\right)$, and let $S_{\mathrm{pdi}}=S^{\prime} \cap V\left(T_{\mathrm{pdi}}\right)$ and $S_{\mathrm{pdi}}^{B}=S^{\prime} \cap V_{B}\left(T_{\mathrm{pdi}}\right)$. By Observation 6, the sets D^{\prime} and S^{\prime} can be chosen so that properties (a)-(e) in the statement of the observation hold. Let D be a $\gamma_{2}(T)$-set and let S be an $\alpha_{2}(T)$-set. We consider six cases, depending on the operation applied to T^{\prime} in order to obtain the tree T. In all cases, we show that $\alpha_{2}(T)-\gamma_{2}(T)=c$.

Case 1. T is obtained from T^{\prime} by Operation \mathcal{O}_{1}. In this case, $T_{\text {pdi }} \in\left\{T_{1}, T_{2}, T_{8}\right\}$. Let u be the vertex added to T^{\prime} and $u v$ be the edge added to T^{\prime} to obtain T. By Observation 7, we have $u \in D$. By Observation 6(a), the sets D and S can be chosen so that $D \cap V\left(T_{\mathrm{pdi}}\right)$ and $S \cap V\left(T_{\mathrm{pdi}}\right)$ are the sets of square and diamond vertices, respectively, of T_{pdi} illustrated in Figure 3, noting that in this case the vertex $v=v\left(T_{\mathrm{pdi}}\right)$ is the white vertex of $T_{\text {pdi. }}$. This implies that either $v \in D$, or $v \notin D$ and v is dominated twice by the vertices of $D \backslash\{u\}$. In both cases, the set $D \backslash\{u\}$ is a 2-dominating set of T^{\prime}. Therefore, $\gamma_{2}\left(T^{\prime}\right) \leq \gamma_{2}(T)-1$. It is easy to observe that every 2 -dominating set of T^{\prime} can be extended to a 2-dominating set of T by adding to it the vertex u, implying that $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+1$. Consequently, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+1$. Further, we note that $v \notin S$. Therefore $u \in S$, and $S \backslash\{u\}$ is a 2-independent set of T^{\prime} implying that $\alpha_{2}\left(T^{\prime}\right) \geq \alpha_{2}(T)-1$. By

Fig. 4: The set $B=\left\{B_{1}, \ldots, B_{10}\right\}$ of special trees
Observation 6(a) we note that the vertex v does not belong to the $\alpha_{2}\left(T^{\prime}\right)$-set S^{\prime}. Thus, S^{\prime} can be extended to a 2 -independent set of T by adding to it the vertex u, implying that $\alpha_{2}(T) \geq \alpha_{2}\left(T^{\prime}\right)+1$. Consequently, $\alpha_{2}(T)=\alpha_{2}\left(T^{\prime}\right)+1$. Thus, $\alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=c$.

Case 2. T is obtained from T^{\prime} by Operation \mathcal{O}_{2}. In this case, $T_{\text {pdi }} \in\left\{T_{4}, T_{11}, T_{12}, T_{13}, T_{15}\right\}$. Let $u_{1} u_{2}$ be the path added to T^{\prime} and $v u_{1}$ the edge added to T^{\prime} to obtain T. Since u_{3} is a leaf of T, we note that $u_{3} \in D$. By Observation 6(a) and 6(c), both sets D^{\prime} and S^{\prime} contain the vertex $v=v\left(T_{\text {pdi }}\right)$. The set $D^{\prime} \cup\left\{u_{2}\right\}$ and $S^{\prime} \cup\left\{u_{2}\right\}$ are therefore 2-dominating and 2-independent sets, respectively, of T, implying that $\gamma_{2}(T) \leq\left|D^{\prime}\right|+1=\gamma_{2}\left(T^{\prime}\right)+1$ and $\alpha_{2}(T) \geq\left|S^{\prime}\right|+1=\alpha_{2}\left(T^{\prime}\right)+1$. We now consider the sets D and S. Necessarily, $u_{2} \in D$. If $u_{1} \in D$, then we can replace it with the vertex v. If $u_{1} \notin D$, then $v \in D$ in order to dominate u_{1} twice. Hence, we may choose D so that $D \cap\left\{v, u_{1}, u_{2}\right\}=\left\{v, u_{2}\right\}$. Therefore, $D \backslash\left\{u_{2}\right\}$ is a 2-dominating set in T^{\prime}, and so $\gamma_{2}\left(T^{\prime}\right) \leq \gamma_{2}(T)-1$. Consequently, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+1$. We can always choose S so that $u_{2} \in S$. If $u_{1} \notin S$, then $S \backslash\left\{u_{1}\right\}$ is a 2-independent set in T^{\prime}, implying that $\alpha_{2}\left(T^{\prime}\right) \geq|S|-1=\alpha_{2}(T)-1$. Suppose that $u_{1} \in S$. Then, $v \notin S$, and so $S \backslash\left\{u_{1}, u_{2}\right\}$ is a 2 -independent set of $T^{\prime}-v$. By Observation 6(e), $\alpha_{2}\left(T^{\prime}\right)=\alpha_{2}\left(T^{\prime}-v\right)+1 \geq(|S|-2)+1=|S|-1=\alpha_{2}(T)-1$. In both cases, $\alpha_{2}\left(T^{\prime}\right) \geq \alpha_{2}(T)-1$. Consequently, $\alpha_{2}(T)=\alpha_{2}\left(T^{\prime}\right)+1$. Thus, $\alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=c$.

Case 3. T is obtained from T^{\prime} by Operation \mathcal{O}_{3}. In this case, the attacher v is an arbitrary vertex of T^{\prime}. Let $u_{1} u_{2} u_{3}$ be the path added to T^{\prime} and $v u_{2}$ the edge added to T^{\prime} to obtain T. Since u_{1} and u_{3} are leaves of T, we note that $\left\{u_{1}, u_{3}\right\} \subset D$. If $u_{2} \in D$, then we can simply replace u_{2} in D by the vertex v. Hence, we may assume that $u_{2} \notin D$. The set $D \backslash\left\{u_{1}, u_{3}\right\}$ is therefore a 2-dominating set of T^{\prime}, and so $\gamma_{2}\left(T^{\prime}\right) \leq \gamma_{2}(T)-2$. Every 2-dominating set of T^{\prime} can be extended to a 2-dominating set of T by adding to it the leaves u_{1} and u_{3}, implying that $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+2$. Consequently, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+2$. Every 2 -independent set of T^{\prime} can be extended to a 2 -independent set of T by adding to it the leaves u_{1} and u_{3}, implying that $\alpha_{2}(T) \geq \alpha_{2}\left(T^{\prime}\right)+2$. Suppose that $u_{2} \in S$. Then, at most one of u_{1} and u_{3} belong to S. Renaming u_{1} and u_{3} if necessary, we may assume that $u_{1} \notin S$. In this case, we can simply replace u_{2} in S with u_{1}. Hence, we may assume that $u_{2} \notin S$, and so $\left\{u_{1}, u_{3}\right\} \subset S$. The set $S \backslash\left\{u_{1}, u_{3}\right\}$ is therefore a 2 -independent set of T^{\prime}, and so $\alpha_{2}\left(T^{\prime}\right) \geq \alpha_{2}(T)-2$. Consequently, $\alpha_{2}(T)=\alpha_{2}\left(T^{\prime}\right)+2$. Thus, $\alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=c$.

Case 4. T is obtained from T^{\prime} by Operation \mathcal{O}_{4}. In this case, $T_{\text {pdi }} \in\left\{T_{1}, T_{2}, T_{3}, T_{5}, T_{6}, T_{7}, T_{9}, T_{10}, T_{14}\right\}$. Let $P: u_{1} u_{2} u_{3}$ be the path added to T^{\prime} and $v u_{1}$ the edge added to T^{\prime} to obtain T. Every 2 -dominating set of T^{\prime} can be extended to a 2 -dominating set of T by adding to it vertices u_{2} and u_{3}, implying that $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+2$. Since u_{3} is a leaf of T, we have $u_{3} \in D$. If $u_{2} \in D$, then we can simply replace u_{2} in D by u_{1}. If $u_{2} \notin D$, then $u_{1} \in D$ in order to dominate the vertex u_{2} twice. Thus, we may assume that $D \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\left\{u_{1}, u_{3}\right\}$. Suppose $T_{\text {pdi }} \in\left\{T_{1}, T_{2}, T_{5}, T_{6}, T_{9}, T_{10}, T_{14}\right\}$. By Observation 6(a), 6(b), and 6(d), the set D can be chosen so that $D \cap V\left(T_{\mathrm{pdi}}\right)$ are the square vertices of T_{pdi} illustrated in Figure

3, noting that in this case the vertex $v=v\left(T_{\text {pdi }}\right)$ is the white vertex of $T_{\text {pdi }}$. This implies that either $v \in D$ or $v \notin D$ and v is dominated twice by vertices of $D \backslash\left\{u_{1}, u_{3}\right\}$. In both cases, the set $D \backslash\left\{u_{1}, u_{3}\right\}$ is a 2 -dominating set of T^{\prime}. Therefore, $\gamma_{2}\left(T^{\prime}\right) \leq|D|-2=\gamma_{2}(T)-2$. Consequently, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+2$. Suppose $T_{\text {pdi }} \in\left\{T_{3}, T_{7}\right\}$. If $v \notin D$, then since the two neighbors of v in $T_{\text {pdi }}$ have degree at most 2 , the set D must contain both neighbors of v in $T_{\text {pdi }}$, for otherwise a neighbor of v not in D would not be dominated twice by vertices of D, a contradiction. Therefore, either $v \in D$ or $v \notin D$ and both neighbors of v belong to D. In both cases, the set $D \backslash\left\{u_{1}, u_{3}\right\}$ is a 2-dominating set of T^{\prime}. Therefore, $\gamma_{2}\left(T^{\prime}\right) \leq \gamma_{2}(T)-2$. Consequently, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+2$. If $u_{1} \in S$, then at most one of u_{2} and u_{3} belong to S, and in this case we can simply replace the two vertices of P that belong to S with the vertices u_{2} and u_{3}. If $u_{1} \notin S$, then $\left\{u_{2}, u_{3}\right\} \subset S$. Hence, we may assume that $S \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\left\{u_{2}, u_{3}\right\}$. The set $S \backslash\left\{u_{2}, u_{3}\right\}$ is therefore a 2 -independent set of T^{\prime}, and so $\alpha_{2}\left(T^{\prime}\right) \geq \alpha_{2}(T)-2$. Every 2 -independent set of T^{\prime} can be extended to a 2 -independent set of T by adding to it the vertices u_{2} and u_{3}, implying that $\alpha_{2}(T) \geq \alpha_{2}\left(T^{\prime}\right)+2$. Consequently, $\alpha_{2}(T)=\alpha_{2}\left(T^{\prime}\right)+2$. Thus, $\alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=c$.

Case 5. T is obtained from T^{\prime} by Operation \mathcal{O}_{5}. In this case, $T_{\text {pdi }} \cong T_{6}$. Let $u_{1} u_{3}$ be the path added to T^{\prime} and u_{2} the new vertex added to T^{\prime}, and let $v_{1} u_{1}$ and $v_{2} u_{2}$ be the two edges added to T^{\prime} to obtain T. Since u_{2} and u_{3} are leaves of T, we note that $\left\{u_{2}, u_{3}\right\} \subset D$. If $u_{1} \in D$, then we can simply replace u_{1} in D by v_{1}. If $u_{1} \notin D$, then $v_{1} \in D$ in order to dominate u_{1} twice. Therefore, we can choose D so that $D \cap\left\{u_{1}, u_{2}, u_{3}, v_{1}\right\}=\left\{u_{2}, u_{3}, v_{1}\right\}$. Let $v_{1} w_{1} w_{2} w_{3} v_{2}$ be the $\left(v_{1}, v_{2}\right)$-path. If $w_{1} \in D$, we can replace w_{1} in D by w_{2}. If $w_{1} \notin D$, then $w_{2} \in D$ in order to dominate w_{1} twice. Hence, we can choose D so that $D \cap\left\{w_{1}, w_{2}\right\}=\left\{w_{2}\right\}$. If $w_{3} \in D$, we can replace w_{3} in D by v_{2}. If $w_{3} \notin D$, then $v_{2} \in D$ in order to dominate w_{3} twice. Hence, we can choose D so that $D \cap\left\{w_{3}, v_{2}\right\}=\left\{v_{2}\right\}$. The set $D \backslash\left\{u_{2}, u_{3}\right\}$ is therefore a 2-dominating set of T^{\prime}, implying that $\gamma_{2}\left(T^{\prime}\right) \leq|D|-2=\gamma_{2}(T)-2$. By Observation 6(b), the set D^{\prime} contains the vertex v_{1}, and can therefore be extended to a 2 -dominating set of T by adding to it the leaves u_{2} and u_{3}, implying that $\gamma_{2}(T) \leq\left|D^{\prime}\right|+2=\gamma_{2}\left(T^{\prime}\right)+2$. Consequently, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+2$. If $v_{1} \in S$, then at most one of u_{1} and u_{3} belong to S, and in this case we can replace the vertices in the set $\left\{u_{1}, u_{3}, v_{1}\right\}$ that belong to S with the vertices u_{1} and u_{3}. If $v_{1} \notin S$, then $\left\{u_{1}, u_{3}\right\} \subset S$. Hence, we may assume that $S \cap\left\{u_{1}, u_{3}, v\right\}=\left\{u_{1}, u_{3}\right\}$. If $w_{1} \notin S$, then $w_{3} \in S$ and we can replace w_{3} in the set S with w_{1}. Hence, we may assume that $w_{1} \in S$. If $w_{2} \notin S$, then $w_{3} \in S$ and we can replace w_{3} in the set S with w_{2}. Hence, we may assume that $w_{2} \in S$ and $w_{3} \notin S$. If $u_{2} \notin S$, then $v_{2} \in S$ and we can replace v_{2} in the set S with u_{2}. Hence, we may assume that $u_{2} \in S$. With these assumptions, we note that both cases $v_{2} \in S$ and $v_{2} \notin S$ may possibly occur. However in both cases, the set $\left(S \backslash\left\{u_{1}, u_{2}, u_{3}, w_{2}\right\}\right) \cup\left\{v_{1}, w_{3}\right\}$ is a 2 -independent set of T^{\prime}, and so $\alpha_{2}\left(T^{\prime}\right) \geq|S|-2=\alpha_{2}(T)-2$. By Observation 6(b), we note that $S^{\prime} \cap\left\{v_{1}, w_{1}, w_{2}, w_{3}\right\}=\left\{v_{1}, w_{1}, w_{3}\right\}$. We note that both cases $v_{2} \in S^{\prime}$ and $v_{2} \notin S^{\prime}$ may possibly occur. However in both cases, the set $\left(S^{\prime} \backslash\left\{v_{1}, w_{3}\right\}\right) \cup\left\{u_{1}, u_{2}, u_{3}, w_{2}\right\}$ is a 2-independent set of T, implying that $\alpha_{2}(T) \geq\left|S^{\prime}\right|+2=\alpha_{2}\left(T^{\prime}\right)+2$. Consequently, $\alpha_{2}(T)=\alpha_{2}\left(T^{\prime}\right)+2$. Thus, $\alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=c$.

Case 6. T is obtained from T^{\prime} by Operation \mathcal{O}_{6}. In this case, $T_{\text {pdi }}=T_{14}$. Let $u_{1} u_{2} u_{3}$ be the path added to T^{\prime}, and let $v_{1} u_{1}$ and $v_{2} u_{2}$ be the two edges added to T^{\prime} to obtain T. Since u_{3} is a leaf of T, we note that $u_{3} \in D$. Further, since $\left(V\left(T_{\text {pdi }}\right) \backslash v_{1}\right) \cup\left\{u_{2}\right\}$ induces a PDI-subgraph $T_{14}, u_{2} \in D$ by Observation 6. In order to dominate some vertex $u_{1}, u_{1} \in D, v_{1} \in D$ twice. We can replace u_{1} in the set D by v_{1} if $u_{1} \in D$. Hence, we may assume that $v_{1} \in D$. But now, v_{1} dominates v_{2} in T^{\prime}. Therefore, $D \backslash\left\{u_{2}, u_{3}\right\}$ is a 2-dominating set of T^{\prime} and $\gamma_{2}\left(T^{\prime}\right) \leq|D|-2=\gamma_{2}(T)-2$. By Observation 6(b), $v_{1} \in D^{\prime}$. Now, $D^{\prime} \cup\left\{u_{2}, u_{3}\right\}$ is a 2-dominating set of T, implying $\gamma_{2}(T) \leq \gamma_{2}\left(T^{\prime}\right)+2$. Consequently, $\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+2$. We note that by definition, $\left|S \cap\left\{u_{1}, u_{2}, u_{3}\right\}\right| \leq 2$. Hence, $S \backslash\left\{u_{1}, u_{2}, u_{3}\right\}$ is a 2-independent set of T^{\prime}, and further $\alpha_{2}\left(T^{\prime}\right) \geq \alpha_{2}(T)-2$. By Observation 6(b), we note that $v_{2} \notin S^{\prime}$. Therefore, $S^{\prime} \cup\left\{u_{2}, u_{3}\right\}$ is a 2-independent set of T, implying $\alpha_{2}(T) \geq\left|S^{\prime}\right|+2=\alpha_{2}\left(T^{\prime}\right)+2$. Consequently, $\alpha_{2}(T)=\alpha_{2}\left(T^{\prime}\right)+2$.

Thus, $\alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=c$.
We are now in position to prove the following lemma.
Lemma 9. Every tree of the family \mathcal{T} is $a\left(\gamma_{2}, \alpha_{2}\right)$-tree.
Proof: We proceed by induction on the order $n \geq 1$ of a tree $T \in \mathcal{T}$. Every tree of order at most 4 is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree. This establishes the base. For the inductive hypothesis, let $n \geq 5$ and assume that every tree of order less than n that belongs to the family \mathcal{T} is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree. Let T be a tree of order n that belongs to the family \mathcal{T}. Then there exists a sequence $T_{0}, T_{1}, \ldots, T_{k}$ of trees such that T_{0} is a tree of order at most $4, T_{k}=T$, and for $i \in[k]$, the tree T_{i} can be obtained from the tree T_{i-1} by one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{6}$. Let $T^{\prime}=T_{k-1}$ and note that $T^{\prime} \in \mathcal{T}$ and T^{\prime} has order less than n. Applying the inductive hypothesis to the tree T^{\prime}, we have that T^{\prime} is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree. Thus, $\gamma_{2}\left(T^{\prime}\right)=\alpha_{2}\left(T^{\prime}\right)$. The tree T can be obtained from T^{\prime} by applying one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}, \mathcal{O}_{5}$, or \mathcal{O}_{6}. Therefore, by Lemma $8, \alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=0$; or, equivalently, $\gamma_{2}(T)=\alpha_{2}(T)$. Therefore, T is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree.

Lemma 10. Every $\left(\gamma_{2}, \alpha_{2}\right)$-tree belongs to the family \mathcal{T}.
Proof: We show that if T is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree, then $T \in \mathcal{T}$. We proceed by induction on the order $n \geq 1$ of a $\left(\gamma_{2}, \alpha_{2}\right)$-tree T. If $n \leq 4$, then $T \in \mathcal{T}$. This establishes the base case. For the inductive hypothesis, let $n \geq 5$ and assume that every $\left(\gamma_{2}, \alpha_{2}\right)$-tree of order less than n belongs to the family \mathcal{T}. Let T be a $\left(\gamma_{2}, \alpha_{2}\right)$-tree of order n. We show that $T \in \mathcal{T}$. If T is a star, then this is immediate since T can be obtained from a path P_{3} by repeated applications of Operation \mathcal{O}_{1}. Hence, we may assume that $\operatorname{diam}(T) \geq 3$.

We will frequently use the following three facts throughout the remaining proof.
Fact 10.1. If T contains a set U of vertices such that T can be obtained from the tree $T-U$ by applying Operation \mathcal{O}_{i} for some $i \in[5]$, then $T \in \mathcal{T}$.
Proof: Let U be a set of vertices of T, and let $T^{\prime}=T-U$. If T can be obtained from the tree T^{\prime} by applying Operation \mathcal{O}_{i} for some $i \in[5]$, then, by Lemma $8, \alpha_{2}(T)-\gamma_{2}(T)=\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)$. By supposition, T is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree, and so $\alpha_{2}(T)-\gamma_{2}(T)=0$. Therefore, $\alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=0$, and so T^{\prime} is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree. Applying the inductive hypothesis to T^{\prime}, the tree $T^{\prime} \in \mathcal{T}$. Since T can be restored by applying Operation \mathcal{O}_{i} to the tree $T^{\prime} \in \mathcal{T}$, the tree $T \in \mathcal{T}$.

As a consequence of Fact 10.1, we have the following result.
Fact 10.2. If T contains a PDI-subtree $T_{\mathrm{pdi}}^{\mathcal{O}_{i}}$ for some $i \in\{1,2,4,5,6\}$, then $T \in \mathcal{T}$.
Proof: Clearly, the result is true for $i \in\{1,2,4,5\}$ by Fact 10.1 . Hence, we may assume that T contains a PDI-subtree $T_{14}^{\mathcal{O}_{6}}$. Therefore, by definition, there is a tree T^{\prime} such that T is obtained by applying Operation \mathcal{O}_{6} to T^{\prime}. Moreover, by Lemma $8, \alpha_{2}\left(T^{\prime}\right)-\gamma_{2}\left(T^{\prime}\right)=\alpha_{2}(T)-\gamma_{2}(T)$, and so we conclude that T^{\prime} is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree. By induction, $T^{\prime} \in \mathcal{T}$, implying $T \in \mathcal{T}$.

Fact 10.3. Let U be a set of vertices in T, and let $T^{\prime}=T[U]$. Let D^{\prime} be a 2 -dominating set in T^{\prime} and let S^{\prime} be a 2-independent set in T^{\prime}. If $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial(U) \cap S^{\prime}=\emptyset$, then we have a contradiction to the choice of T.
Proof: Suppose that $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial(U) \cap S^{\prime}=\emptyset$. Every 2-dominating set of $T-U$ can be extended to a 2dominating set of T by adding to it the set D^{\prime}, implying that $\gamma_{2}(T) \leq \gamma_{2}(T-U)+\left|D^{\prime}\right|$. Since no vertex in S^{\prime} is adjacent to a vertex in $V(T) \backslash U$, every 2 -independent set in $T-U$ can be extended to a 2 -independent set in T by adding to it the set S^{\prime}. Thus, $\alpha_{2}(T) \geq \alpha_{2}(T-U)+\left|S^{\prime}\right|$. By Theorem 1, $\gamma_{2}(T-U) \leq \alpha_{2}(T-U)$.

Thus, $\alpha_{2}(T)=\gamma_{2}(T) \leq \gamma_{2}(T-U)+\left|D^{\prime}\right| \leq \alpha_{2}(T-U)+\left|D^{\prime}\right|<\alpha_{2}(T-U)+\left|S^{\prime}\right| \leq \alpha_{2}(T)$, a contradiction.

We proceed further with the following series of claims.
Claim 10.4. If T has a support vertex adjacent to at least three leaves, then $T \in \mathcal{T}$.
Proof: Let v be a support vertex adjacent to at least three leaves. Let u be an arbitrary leaf adjacent to v and let $U=\{u\}$. Since T can be obtained from the tree $T-U$ by applying Operation \mathcal{O}_{1} with the vertex v as the attacher in $T-U$, Fact 10.1 implies that $T \in \mathcal{T}$.

By Claim 10.4, we may assume that every support vertex of T is adjacent to at most two leaves, for otherwise the desired result follows. By our earlier assumptions, $\operatorname{diam}(T) \geq 3$. Let P be a longest path in T and suppose that P is an $\left(r_{1}, r_{2}\right)$-path. Necessarily, r_{1} and r_{2} are leaves in T. Renaming r_{1} and r_{2} if necessary, we may assume that the degree of the support vertex adjacent to r_{1} is at most the degree of the support vertex adjacent to r_{2}. We now let $r=r_{1}$ and root the tree T at the vertex r.

We call a vertex of degree at least 2 in T a large vertex. Let \mathcal{L} be the set of large vertices in T. For each vertex $w \in \mathcal{L}$, let $\ell(w)$ be a leaf at maximum distance from w in T that belongs to the maximal subtree, T_{w}, at w. In particular, we note that w belongs to the $(r, \ell(w))$-path.
Claim 10.5. If $w \in \mathcal{L}$ and T_{w} is a PDI-subtree T_{1} in T, then $T \in \mathcal{T}$.
Proof: Suppose that $w \in \mathcal{L}$ and $D[w]$ induces the PDI-subtree T_{1}. Let $U=D[w]$. In this case, U consists of w and its two children. Since T can be obtained from the tree $T-U$ by applying Operation \mathcal{O}_{3} with the parent of w in T as the attacher in $T-U$, Fact 10.1 implies that $T \in \mathcal{T}$.

By Claim 10.5, we may assume that if $w \in \mathcal{L}$, then T_{w} is not a PDI-subtree T_{1} in T, for otherwise the desired result follows. We define $\mathcal{B}_{0}=\left\{B_{1}\right\}, \mathcal{B}_{1}=\left\{B_{2}\right\}, \mathcal{B}_{2}=\left\{B_{3}\right\}, \mathcal{B}_{3}=\left\{B_{4}, B_{5}, B_{6}\right\}, \mathcal{B}_{4}=$ $\left\{B_{7}, B_{8}\right\}, \mathcal{B}_{5}=\left\{B_{9}, B_{10}\right\}$, and $\mathcal{B}_{i}=\emptyset$ for $i \geq 6$. If $T_{\text {pdi }}$ is a PDI-subtree of T and $T_{\text {pdi }}$ is isomorphic to a tree in the family \mathcal{B}_{i} for some $i \geq 0$, then we say that $T_{\text {pdi }}$ is a PDI-subtree of \mathcal{B}_{i} in T.
Claim 10.6. For every vertex $w \in \mathcal{L}$, the subtree T_{w} is a PDI-subtree of $\mathcal{B}_{d(w, \ell(w))}$ in T or $T \in \mathcal{T}$.
Proof: We proceed by induction on the distance, $d(w, \ell(w))$, from w to the leaf $\ell(w)$. Suppose that $d(w, \ell(w))=1$. In this case, every child of w is a leaf. Since every support vertex in T is adjacent to at most two leaves, T_{w} is a PDI-subtree B_{2} or T_{1}. By Claim 10.5, we have $T_{w} \cong B_{2}$, implying that T_{w} is a PDI-subtree of \mathcal{B}_{1} in T, where w is the white vertex of B_{2}.

Case 1. Assume that $d(w, \ell(w))=2$. For each child z of w, we note by induction that T_{z} is a PDI-subtree of $\mathcal{B}_{0} \cup \mathcal{B}_{1}$ in T. Further, since $d(w, \ell(w))=2$, at least one child of w, say x_{1}, satisfies $T_{x_{1}} \cong B_{2}$. Let y_{1} be the leaf adjacent to x_{1}. If $d_{T}(w)=2$, then $T_{w} \cong B_{3}$, implying that T_{w} is a PDI-subtree of \mathcal{B}_{3} in T, where w is the white vertex of B_{3}. Hence, we may assume that $d_{T}(w) \geq 3$, for otherwise the desired result follows. Let x_{2} be a child of w different from x_{1}.

Now suppose that $T_{x_{2}} \cong B_{2}$. Let y_{2} be the leaf adjacent to x_{2}, and let $U=\left\{w, x_{1}, x_{2}, y_{1}, y_{2}\right\}$. Let $T^{\prime}=T[U]$. Then, $D^{\prime}=\left\{w, y_{1}, y_{2}\right\}$ is a 2 -dominating set in T^{\prime} and $S^{\prime}=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is a 2-independent set in T^{\prime}. Since $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial(U) \cap S^{\prime}=\emptyset$, we have a contradiction by Fact 10.3 . Hence, $T_{x_{2}} \cong B_{1}$. We now let $U=\left\{x_{2}\right\}$ and note that $T\left[\left\{w, x_{1}, y_{1}\right\}\right] \cong T_{2}$ is a PDI-subtree of $T-U$. Thus, T contains a PDI-subtree $T_{2}^{\mathcal{O}_{1}}$ with the vertex w as the attacher in this subtree, and so, by Fact $10.2, T \in \mathcal{T}$.

Case 2. Assume that $d(w, \ell(w))=3$. For each child z of w, we note by induction that T_{z} is a PDIsubgraph of $\mathcal{B}_{0} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2}$ in T. Further, since $d(w, \ell(w))=3$, at least one child of w, say x_{1}, satisfies $T_{x_{1}} \cong B_{3}$. If $d_{T}(w)=2$, then T_{w} is a PDI-subtree $B_{4} \in \mathcal{B}_{3}$ in T where w is the white vertex of B_{4}. Hence, we may assume that $d_{T}(w) \geq 3$, for otherwise the desired result follows. If w has a child x_{2} such that $T_{x_{2}}$ is a PDI-subtree B_{2} in T where x_{2} is the white vertex of B_{2}, then let $U=D\left[x_{1}\right]$. Now $T\left[D\left(x_{2}\right) \cup\{w\}\right] \cong T_{2}$
is a PDI-subtree of $T-U$. Therefore, T contains a PDI-subtree $T_{2}^{\mathcal{O}_{3}}$ with the vertex w as the attacher in this subtree, and so, by Fact $10.2, T \in \mathcal{T}$. Thus for each child x of w we have that T_{z} is a PDI-subtree B_{1} or B_{3}.

Now assume that w has at least three children, say x_{1}, x_{2} and x_{3}. If $T_{x_{2}}$ and $T_{x_{3}}$ are two PDI-subtrees B_{1}, then let $U=D\left[x_{1}\right]$. Now $T\left[D\left(x_{2}\right) \cup D\left(x_{3}\right) \cup\{w\}\right] \cong T_{1}$ is a PDI-subtree of $T-U$. Thus, T contains a PDI-subtree $T_{1}^{\mathcal{O}_{4}}$ with the vertex w as the attacher in this subtree, and so, by Fact $10.2, T \in \mathcal{T}$. If $T_{x_{2}}$ and $T_{x_{3}}$ are two PDI-subtrees such that $T_{x_{2}} \cong B_{1}$ and $T_{x_{3}} \cong B_{3}$, or $T_{x_{2}}, T_{x_{3}} \cong B_{3}$, then, by defining $U=D\left[x_{1}\right], T\left[D\left[x_{2}\right] \cup D\left[x_{3}\right] \cup\{w\}\right]$ is a PDI-subtree T_{5} or T_{10}, respectively. Now T contains a PDI-subtree $T_{5}^{\mathcal{O}_{4}}$ or $T_{10}^{\mathcal{O}_{4}}$ with the vertex w as the attacher in this subtree, and so, by Fact $10.2, T \in \mathcal{T}$. Therefore, w has degree 3 in T and there are at most two children x_{1} and x_{2} such that $T_{x_{1}}$ and $T_{x_{2}}$ are PDI-subtrees satisfying $T_{x_{1}} \cong B_{3}$, and $T_{x_{2}} \cong B_{1}$ or $T_{x_{2}} \cong B_{3}$. Hence, $T_{w} \cong B_{5} \in \mathcal{B}_{3}$ or $T_{w} \cong B_{6} \in \mathcal{B}_{3}$, where w is the white vertex in both cases. Hence, T_{w} is a PDI-subtree of \mathcal{B}_{3} in T.

Case 3. Assume that $d(w, \ell(w))=4$. For each child z of w, we note by induction that T_{z} is a PDI-subtree of $\mathcal{B}_{0} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3}$ in T. Further, since $d(w, \ell(w))=4$, at least one child of w, say x_{1}, satisfy that $T_{x_{1}}$ is isomorphic to B_{4}, B_{5}, or B_{6}.

Assume that $d_{T}(w)=2$. If $T_{x_{1}} \cong B_{4}$, then $T_{w} \cong B_{7}$, implying that T_{w} is a PDI-subtree of \mathcal{B}_{4} in T, where w is the white vertex of B_{7}. Therefore, $T_{w} \in\left\{B_{5}, B_{6}\right\}$. Further, since $w \in \mathcal{L}$, we may assume that w is the child of y, and that z is a child of x_{1} of degree 2 . We note that z has distance 2 to a leaf in $T_{x_{1}}$. Now let $U=D[z]$. Depending on whether $T_{x_{1}} \cong B_{5}$ or $T_{x_{1}} \cong B_{6}, T_{y}-U$ is a PDI-subtree T_{3} or T_{7}, respectively. Thus, T contains a PDI-subtree $T_{3}^{\mathcal{O}_{4}}$ or $T_{7}^{\mathcal{O}_{4}}$ with the vertex x_{1} as the attacher in this subtree, and so, by Fact $10.2, T \in \mathcal{T}$. Hence, we may assume that $d_{T}(w) \geq 3$, for otherwise the desired result follows. Therefore, let x_{2} be a child of w different from x_{1}.

Recall, for any child z of w, T_{z} is a PDI-subtree of $\mathcal{B}_{0} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3}$ in T, and $T_{x_{1}}$ is a PDI-subtree of $\left\{B_{4}, B_{5}, B_{6}\right\}$.

If there is a child, renaming vertices if necessary, say x_{2}, of w such that $T_{x_{2}}$ is a PDI-subtree of $\left\{B_{2}, B_{4}, B_{5}, B_{6}\right\}$ in T, then let $U=\{w\} \cup D\left[x_{1}\right] \cup D\left[x_{2}\right]$. By a simple case analysis and Observation 6 , one can readily observe that there is a 2 -dominating set D^{\prime} and a 2-independent set S^{\prime} in $T[U]$ such that $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial(U) \cap S^{\prime}=\emptyset$. Therefore, we have a contradiction by Fact 10.3, implying that there is a child, say x_{2}, distinct from x_{1} such that $T_{x_{2}}$ is a PDI-subtree of $\left\{B_{1}, B_{3}\right\}$ in T.

Assume that $T_{x_{1}} \cong B_{4}$. If $T_{x_{2}} \cong B_{3}$, then let $U=D\left[x_{2}\right]$. Thus, $T\left[D\left[x_{1}\right] \cup\{w\}\right]$ is a PDI-subtree T_{6}, implying that T contains a PDI-subtree $T_{6}^{\mathcal{O}_{4}}$ with the vertex w as the attacher in this subtree, and so, by Fact $10.2, T \in \mathcal{T}$. Therefore, any child of w, distinct from x_{1}, is a leaf. If w has at least three children, say x_{1}, x_{2}, and x_{3}, then let $U=\left\{x_{3}\right\}$. Now $T\left[D\left[x_{1}\right] \cup\left\{x_{2}, w\right\}\right]$ is a PDI-subtree T_{8}. Hence, T contains a PDI-subtree $T_{8}^{\mathcal{O}_{1}}$ with the vertex w as the attacher in this subtree, and so, by Fact $10.2, T \in \mathcal{T}$. Therefore, w has two children, namely x_{1} and a leaf x_{2}. Further, let U be the set of those two vertices in $D\left(x_{1}\right)$ which have largest and second largest distance to x_{1} in T. Now $T\left[\left(D\left[x_{1}\right] \backslash U\right) \cup\left\{x_{2}, w\right\}\right]$ is a PDI-subtree T_{4} implying that T contains a PDI-subtree $T_{4}^{\mathcal{O}_{2}}$, and so, by Fact $10.2, T \in \mathcal{T}$.

Assume that $T_{x_{1}} \cong B_{5}$. If $T_{x_{2}} \cong B_{3}$, then let $U=D\left(x_{2}\right)$ implying that $T\left[D\left[x_{1}\right] \cup\left\{x_{2}, w\right\}\right]$ is a PDIsubtree T_{13} in T. Therefore, T contains a PDI-subtree $T_{13}^{\mathcal{O}_{2}}$ and so, by Fact $10.2, T \in \mathcal{T}$. Hence, any child of w, distinct from x_{1}, is a leaf. If w has at least three children, say x_{1}, x_{2}, and x_{3}, then let $U=V\left(T_{w}\right)$. By Observation 6, one can readily observe that there is a 2 -dominating set D^{\prime} and a 2 -independent set S^{\prime} in $T[U]$ such that $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial(U) \cap S^{\prime}=\emptyset$, implying a contradiction by Fact 10.3. Therefore, w has only two children, say x_{1} and x_{2}, for otherwise the desired result follows. Now $T_{w} \cong B_{8}$ and so T_{w} is a PDI-subtree of \mathcal{B}_{4} in T, where w is the white vertex of B_{8}.

Assume that $T_{x_{1}} \cong B_{6}$. If $T_{x_{2}} \cong B_{1}$, then let U be the set of vertices consisting of $\ell\left(x_{1}\right)$ and its support vertex. Now $T\left[\left(D\left[x_{1}\right] \backslash U\right) \cup\left\{x_{2}, w\right\}\right]$ is a PDI-subtree T_{12} in T. Therefore, T contains a PDI-subtree $T_{12}^{\mathcal{O}_{2}}$ and so, by Fact $10.2, T \in \mathcal{T}$. If $T_{x_{2}} \cong B_{3}$, then let $U=D\left(x_{1}\right) \cup D\left[x_{2}\right]$. Trivially, $T[U]$ is $3 P_{3}$. Therefore,
any $\gamma_{2}(T[U])$-set D^{\prime} contains all leaves of this forest. Furthermore, any $\gamma_{2}(T-U)$-set D^{*} contains x_{1} since it is a leaf in $T-U$. Moreover, there is an $\alpha_{2}(T[U])$-set S^{\prime} such that the leaves in $T[U]$, which are joined by bridges to x_{1} or x_{2}, are not in S^{\prime}. Therefore, $S^{\prime} \cup S^{*}$ is a 2 -independent set for any $\alpha_{2}(T-U)$-set S^{*}. Furthermore, $D^{\prime} \cup\left(D^{*} \backslash\left\{x_{1}\right\}\right)$ is a 2-dominating set, since x_{1} and w are dominated by two vertices of D^{\prime} and one vertex of D^{\prime} and D^{*}, respectively. Therefore, since $\gamma_{2}(T-U) \leq \alpha_{2}(T-U)$, by Theorem 1, $\gamma_{2}(T) \leq \gamma_{2}(T-U)+5<\alpha_{2}(T-U)+6 \leq \alpha_{2}(T)$, contradicting the choice of T.

Case 4. Assume that $d(w, \ell(w))=5$. For each child z of w, we note by induction that T_{z} is a PDIsubgraph of $\mathcal{B}_{0} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3} \cup \mathcal{B}_{4}$ in T. Further, since $d(w, \ell(w))=5$, at least one child of w, say x_{1}, satisfies that $T_{x_{1}}$ is isomorphic to B_{7} or B_{8}.

Firstly, assume that x_{1} has degree 2 . If $T_{x_{1}} \cong B_{7}$, then $T_{w} \cong B_{9} \in \mathcal{B}_{5}$, implying that T_{w} is a PDI-subtree of \mathcal{B}_{4} in T, where w is the white vertex of B_{9}. Therefore, $T_{x_{1}} \cong B_{8}$. Let $U=D\left[x_{1}\right]$. Now there is a 2-dominating set D^{\prime} and a 2-independent set S^{\prime} in $T[U]-x_{1}$ such that $\left|D^{\prime}\right|<\left|S^{\prime}\right|$. Further, we note that w is a leaf in $T-U$. Therefore, there is a $\gamma_{2}\left(T_{U}\right)$-set D^{*} and an $\alpha_{2}\left(T_{U}\right)$-set S^{*} containing w. Clearly, $S^{*} \cup S^{\prime}$ is a 2 -independent set in T and $D^{*} \cup D^{\prime}$ is a 2 -dominating set for $T-x_{1}$ by definition. Moreover, x_{1} is dominated by its leaf neighbor and the vertex w, implying that $D^{*} \cup D^{\prime}$ is a 2-dominating set in T. Since $\left|D^{*}\right| \leq\left|S^{*}\right|$, by Theorem $1, \gamma_{2}(T) \leq\left|D^{*} \cup D^{\prime}\right|=\left|D^{*}\right|+\left|D^{\prime}\right|<\left|S^{*}\right|+\left|S^{\prime}\right|=\left|S^{*} \cup S^{\prime}\right| \leq \alpha_{2}(T)$, a contradiction to the choice of T. Hence, we may assume that $d_{T}(w) \geq 3$, for otherwise the desired result follows. Therefore, let x_{2} be a child of w different from x_{1}.

Assume that $T_{x_{1}} \cong B_{7}$. Let $U=D\left[x_{1}\right] \cup D\left[x_{2}\right] \cup\{w\}$. By some simple case analysis and Observation 6, one can readily observe that there is a $\gamma_{2}(T[U])$-set D^{\prime} and an $\alpha_{2}(T)$-set S^{\prime} such that $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial(U) \cap S^{\prime}=\emptyset$ for $T_{x_{2}} \in \mathcal{B}_{5}$, a contradiction by Fact 10.3.

Assume $T_{x_{1}} \cong B_{8}$. If $T_{x_{2}}$ is a PDI-subtree of $\left\{B_{2}, B_{4}, B_{5}, B_{6}, B_{7}, B_{8}\right\}$ in T, then let $U=\{w\} \cup$ $D\left[x_{1}\right] \cup D\left[x_{2}\right]$. Again, by some simple case analysis and Observation 6 , one can readily observe that there is a $\gamma_{2}(T[U])$-set D^{\prime} and an $\alpha_{2}(T)$-set S^{\prime} such that $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial(U) \cap S^{\prime}=\emptyset$, a contradiction by Fact 10.3. If $T_{x_{2}} \cong B_{3}$, then let $U=D\left[x_{2}\right]$. Now $T\left[D\left[x_{1}\right] \cup\{w\}\right]$ is a PDI-subtree T_{14}. Hence, T contains a PDI-subtree $T_{14}^{\mathcal{O}_{4}}$ with the vertex w as the attacher in this subtree, and so, by Fact $10.2, T \in \mathcal{T}$. It remains to consider the case that all children of w different from x_{1} are leaves of T. Recall that any support vertex is adjacent to at most two leaves. Further, if w is adjacent to exactly one leaf, then $T_{w} \cong B_{10}$, implying that T_{w} is a PDI-subtree of \mathcal{B}_{5} in T, where w is the white vertex of B_{10}. On the other hand, if w is adjacent to two leaves, then let U be the set containing $\ell(w)$ and its support vertex. Now $T[D[w]-U]$ is a PDI-subtree T_{15} in T. Therefore, T contains a PDI-subtree $T_{15}^{\mathcal{O}_{2}}$, and so, by Fact $10.2, T \in \mathcal{T}$.

Case 5. Assume that $d(w, \ell(w))=6$. For each child z of w, we note by induction that T_{z} is a PDI-subtree of $\mathcal{B}_{0} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3} \cup \mathcal{B}_{4} \cup \mathcal{B}_{5}$ in T. Further, since $d(w, \ell(w))=6$, at least one child of w, say x_{1}, satisfies that $T_{x_{1}}$ is isomorphic to B_{9} or B_{10}.

Assume that $T_{x_{1}} \cong B_{9}$. If w has degree 2 , then let $U=D\left[x_{1}\right]$. Now there is a 2 -dominating set D^{\prime} and a 2-independent set S^{\prime} in $T\left[U-x_{1}\right]$ such that $\left|D^{\prime}\right| \leq\left|S^{\prime}\right|$. Moreover, since w is a leaf in $T-U$, there is a $\gamma_{2}(T-U)$-set D^{*} in $T-U$ and an $\alpha_{2}(T)$-set S^{*} containing w. Hence, x_{1} is dominated by a vertex of D^{\prime} and a vertex of D^{*}. Therefore, $D^{\prime} \cup D^{*}$ is 2 -dominating in T and $S^{\prime} \cup S^{*}$ is 2-independent in T. It follows, by Theorem 1, $\gamma_{2}(T) \leq\left|D^{\prime} \cup D^{*}\right|=\left|D^{\prime}\right|+\left|D^{*}\right|<\left|S^{\prime}\right|+\left|S^{*}\right|=\left|S^{\prime} \cup S^{*}\right| \leq \alpha_{2}(T)$, a contradiction. Hence, there is a child of w, say x_{2}, distinct from x_{1}. If $T_{x_{2}}$ is a PDI-subtree of $\left\{B_{2}, B_{4}, B_{5}, B_{6}, B_{6}, B_{7}, B_{8}, B_{9}\right\}$ in T, then let $U=D\left[x_{1}\right] \cup D\left[x_{2}\right] \cup\{w\}$. By Observation 6 , one can readily observe that in all cases there is a 2 -dominating set D^{\prime} and a 2-independent set S^{\prime} in $T[U]$ such that $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial\left(S^{\prime}\right) \cap U=\emptyset$, a contradiction by Fact 10.3. If $T_{x_{2}} \cong B_{1}$, then let U be the set of three vertices consisting of $\ell\left(x_{1}\right)$, its support vertex and x_{2}. Then $T\left[\left(D\left[x_{1}\right] \cup\{w\}\right) \backslash U\right]$ is a PDI-subtree T_{6} in T. Therefore, T contains a PDI-subtree $T_{6}^{\mathcal{O}_{5}}$, and so, by Fact $10.2, T \in \mathcal{T}$. If $T_{z} \cong B_{3}$, then let $U=D\left[x_{2}\right]$. Now $T\left[D\left[x_{1}\right] \cup\{w\}\right]$ is a PDI-subtree T_{9} in T. Again, $T \in \mathcal{T}$, by Fact 10.2 and since T contains a PDI-subtree $T_{9}^{\mathcal{O}_{4}}$.

Assume that $T_{x_{1}} \cong B_{10}$. If w has degree 2, then let y be the parent of w. Now $D[w] \cup\{y\}$ induces a PDI-subtree $T_{14}^{\mathcal{O}_{6}}$, and so $T \in \mathcal{T}$ by Fact 10.2. If w has degree at least 3 , then there is a child of w, say x_{2}, distinct from x_{1}. Further, $T_{x_{2}}$ is a PDI-subtree of $\left\{B_{1}, B_{2}, \ldots, B_{10}\right\}$ in T. Let $U=D\left[x_{1}\right] \cup D\left[x_{2}\right] \cup\{w\}$. By Observation 6, one can readily observe that there is a 2 -dominating set D^{\prime} and a 2 -independent set S^{\prime} in $T-U$ such that $\left|D^{\prime}\right|<\left|S^{\prime}\right|$ and $\partial\left(S^{\prime}\right) \cap U=\emptyset$, a contradiction by Fact 10.3.

Note that the proof for $d(w, \ell(w))=6$ immediately implies that $\mathcal{B}_{i}=\emptyset$ for $i \geq 6$. This completes the proof of Claim 10.6

We now return to the proof of Lemma 10 for the last time. Recall that T is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree. Further, let w be the support vertex of r. By Claim 10.6, we deduce that T_{w} is a PDI-subtree of $\mathcal{B}_{d(w, \ell(w))}$ in T or $T \in \mathcal{T}$. Since the desired result follows in the latter case, we assume that T_{w} is a PDI-subtree of $\mathcal{B}_{d(w, \ell(w))}$. Moreover, $d(w, \ell(w)) \leq 5$ since $\mathcal{B}_{i}=\emptyset$ for $i \geq 6$. Further, r is an end-vertex of a diametrical path which implies that $\operatorname{diam}(T) \leq 6$. Now let $T_{w} \cong B_{i}$. Then, all vertices in $V(T) \backslash V\left(T_{w}\right)$ are leaves adjacent to w. Note that there is at least one leaf, namely the vertex r, and, by Claim 10.4, there are at most two leaves. If $T_{w} \cong B_{1}$ or $T_{w} \cong B_{2}$, then T is a star, which can be obtained by applying Operation \mathcal{O}_{1} to a path P_{3}. If T_{w} is a PDI-subtree of $\left\{B_{3}, B_{4}, B_{7}, B_{9}\right\}$ in T, then, by the choice of r, we have exactly one leaf outside $V\left(T_{w}\right)$ being adjacent to w. Thus, T is a path. Depending on the length of the path, we have $T \in \mathcal{T}$ or $\gamma_{2}(T)<\alpha_{2}(T)$ which gives the result or contradicts the choice of T, respectively. If T_{w} is a PDI-subtree of $\left\{B_{5}, B_{8}, B_{10}\right\}$ in T, then the degree of w is at least 3 , but the support vertex of $\ell(w)$ has degree 2 , a contradiction to the choice of r_{1}. If $T_{w} \cong B_{6}$, then we have a contradiction since r does not lie on a diametrical path.

As an immediate consequence of Lemmas 9 and 10, we obtain the following characterization of trees with equal 2 -domination and 2 -independence numbers.
Theorem 3. \boldsymbol{A} tree is $\boldsymbol{a}\left(\gamma_{2}, \alpha_{2}\right)$-tree if and only if $T \in \mathcal{T}$.
Proof: Let T be a tree. If $T \in \mathcal{T}$, then by Lemma $9, T$ is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree. This establishes the sufficiency. If T is a $\left(\gamma_{2}, \alpha_{2}\right)$-tree, then, by Lemma 10 , we have $T \in \mathcal{T}$. This proves the necessity.

References

[1] Y. Caro and Y. Roditty. A note on the k-domination number of a graph. Int. J. Math. Math. Sci., 13:205-206, 1990.
[2] M. Chellali, O. Favaron, A. Hansberg, and L. Volkmann. k-domination and k-independence in graphs: A survey. Graphs Combin., 28:1-55, 2012.
[3] M. Chellali and N. Meddah. Trees with equal 2-domination and 2-independence numbers. Discuss. Math. Graph Theory, 32:263-270, 2012.
[4] E. DeLaViña, C. E. Larson, R. Pepper, and B. Waller. Graffiti.pc on the 2-domination number of a graph. Proceedings of the Forty First Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congress. Numerantium, 203:15-32, 2010.
[5] W. J. Desormeaux, M. A. Henning, D. Rall, and A. Yeo. Relating the annihilation number and the 2-domination number of a tree. Discrete Math., 319:15-23, 2014.
[6] O. Favaron. On a conjecture of Fink and Jacobson concerning k-domination and k-dependence. J. Combin. Theory Series B, 39:101-102, 1985.
[7] O. Favaron. k-domination and k-independence in graphs. Ars Combin., 25:159-167, 1988.
[8] O. Favaron, A. Hansberg, and L. Volkmann. On k-domination and minimum degree in graphs. J. Graph Theory, 57:33-40, 2008.
[9] J. F. Fink and M. S. Jacobson. n-domination in graphs. In Y. Alavi and A. J. Schwenk, editors, Graph Theory with Applications to Algorithms and Computer Science, pages 283-300. Wiley, New York, 1985.
[10] J. Fujisawa, A. Hansberg, T. Kubo, A. Saito, M. Sugita, and L. Volkmann. Independence and 2domination in bipartite graphs. Australas. J. Combin., 40:265-268, 2008.
[11] A. Hansberg and L. Volkmann. On graphs with equal domination and 2-domination numbers. Discrete Math., 308:2277-2281, 2008.
[12] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, Inc. New York, 1998.
[13] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, editors. Domination in Graphs: Advanced Topics. Marcel Dekker, Inc. New York, 1998.
[14] M. A. Henning and A. Yeo. Total domination in graphs. Springer Monographs in Mathematics, 2013. ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online).

[^0]: *Research supported in part by the South African National Research Foundation and the University of Johannesburg
 ${ }^{\dagger}$ Research fellow of the Claude Leon Foundation at the University of Johannesburg. Research partially supported by the Polish National Science Centre grant 2011/02/A/ST6/00201.

