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Let Sn denote the symmetric group. For any σ ∈ Sn, we let des(σ) denote the number of descents of σ, inv(σ) denote
the number of inversions of σ, and LRmin(σ) denote the number of left-to-right minima of σ. For any sequence of
statistics stat1, . . . , statk on permutations, we say two permutations α and β in Sj are (stat1, . . . statk)-c-Wilf
equivalent if the generating function of

∏k
i=1 x

stati
i over all permutations which have no consecutive occurrences

of α equals the generating function of
∏k

i=1 x
stati
i over all permutations which have no consecutive occurrences of

β. We give many examples of pairs of permutations α and β in Sj which are des-c-Wilf equivalent, (des, inv)-c-
Wilf equivalent, and (des, inv,LRmin)-c-Wilf equivalent. For example, we will show that if α and β are minimally
overlapping permutations in Sj which start with 1 and end with the same element and des(α) = des(β) and inv(α) =

inv(β), then α and β are (des, inv)-c-Wilf equivalent.

Keywords: pattern avoidance, consecutive pattern, permutation, pattern match, descent, left to right minimum, sym-
metric polynomial, exponential generating function

1 Introduction
Let Sn denote the group all permutations of n. That is, Sn is the set of all one-to-one maps σ :
{1, . . . , n} → {1, . . . , n} under composition. If σ = σ1 . . . σn ∈ Sn, then we let Des(σ) = {i :
σi > σi+1} and des(σ) = |Des(σ)|. We say that σj is a left-to-right minima of σ if σi > σj for all i < j.
For example the left-to-right minima of σ = 938471625 are 9, 3 and 1.

Given a sequence τ = τ1 · · · τn of distinct positive integers, we define the reduction of τ , red(τ), to be
the permutation of Sn that results by replacing the i-th smallest element of τ by i for each i. For example
red(53962) = 32541. Let τ = τ1 . . . τj ∈ Sj and σ = σ1 . . . σn ∈ Sn. Then we say that

1. τ occurs in σ if there exists 1 ≤ i1 < · · · < ij ≤ n such that red(σi1σi2 . . . σij ) = τ ,

2. there is a τ -match starting in position i in σ if red(σiσi+1 . . . σi+j−1) = τ , and

3. σ avoids τ is there is no occurrence of τ in σ.

We let Sn(τ) denote the set of permutations of Sn which avoid τ and NMn(τ) denote the set of permu-
tations of Sn which have no τ -matches. We let Sn(τ) = |Sn(τ)| and NMn(τ) = |NMn(τ)|. If α and β
are elements of Sj , then we say that α is Wilf equivalent to β if Sn(α) = Sn(β) for all n ≥ 1 and we say
that α is c-Wilf equivalent to β if NMn(α) = NMn(β) for all n. For any permutations τ and σ, we let
τ -mch(σ) denote the number of τ -matches of σ.

These definitions are easily extended to sets of permutations. That is, if Γ ⊆ Sj , then we say that
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1. Γ occurs in σ if there exists 1 ≤ i1 < · · · < ij ≤ n such that red(σi1σi2 . . . σij ) ∈ Γ,

2. there is a Γ-match starting in position i in σ if red(σiσi+1 . . . σi+j−1) ∈ Γ, and

3. σ avoids Γ is there is no occurrence of Γ in σ.

We let Sn(Γ) denote the set of permutations of Sn which avoid Γ and NMn(Γ) denote the set of per-
mutations of Sn which have no Γ-matches. We let Sn(Γ) = |Sn(Γ)| and NMn(Γ) = |NMn(Γ)|. If Γ
and ∆ are subsets of Sj , then we say that Γ is Wilf equivalent to ∆ if Sn(Γ) = Sn(∆) for all n and we
say that Γ is c-Wilf equivalent to ∆ if NMn(Γ) = NMn(∆) for all n. For any permutation σ and set of
permutations Γ, we let Γ-mch(σ) denote the number of Γ-matches of σ.

We let

[n]p,q = pn−1 + pn−2q + · · ·+ pqn−2 + qn−1 =
pn − qn

p− q
,

[n]p,q! = [1]p,q[2]p,q · · · [n]p,q, and[
n

k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!

denote the usual p, q-analogues of n, n!, and
(
n
k

)
. We shall use the standard conventions that [0]p,q = 0

and [0]p,q! = 1. Setting p = 1 in [n]p,q , [n]p,q!, and
[
n
k

]
p,q

yields [n]q , [n]q!, and
[
n
k

]
q
, respectively.

The main goal of this paper is to study refinements of the c-Wilf equivalence relation. For any per-
mutation statistic stat on permutations and any pair of permutations α and β in Sj , we say that α is
stat-c-Wilf equivalent to β if for all n ≥ 1∑

σ∈NMn(α)

xstat(σ) =
∑

σ∈NMn(β)

xstat(σ). (1)

More generally, if stat1, . . . , statk are permutations statistics, then we say that two permutations α and
β are (stat1, . . . , statk)-c-Wilf equivalent if for all n ≥ 1,

∑
σ∈NMn(α)

k∏
i=1

x
stati(σ)
i =

∑
σ∈NMn(β)

k∏
i=1

x
stati(σ)
i .

The first question is whether there are interesting examples of stat-c-Wilf equivalent permutations.
The answer is yes. There are a number of such examples in the case where stat(σ) is either inv(σ), the
number of inversions of σ, or coinv(σ), the number of co-inversions of σ. Here if σ = σ1 . . . σn ∈ Sn,
then

inv(σ) = |{(i, j) : 1 ≤ i < j ≤ n & σi > σj}| and
coinv(σ) = |{(i, j) : 1 ≤ i < j ≤ n & σi < σj}|.

Since for any permutation σ ∈ Sn, inv(σ) + coinv(σ) =
(
n
2

)
, it follows that∑

σ∈NMn(α)

xinv(σ) =
∑

σ∈NMn(β)

xinv(σ). (2)
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if and only if ∑
σ∈NMn(α)

xcoinv(σ) =
∑

σ∈NMn(β)

xcoinv(σ). (3)

Thus we will only consider inv-c-Wilf equivalence. It turns out that there are a large number of examples
of α and β which are inv-c-Wilf equivalent when α and β are minimal overlapping permutations.

We say that a permutation τ ∈ Sj where j ≥ 3 has the minimal overlapping property, or is minimal
overlapping, if the smallest i such that there is a permutation σ ∈ Si with τ -mch(σ) = 2 is 2j − 1. This
means that in any permutation σ = σ1 . . . σn, any two τ -matches in σ can share at most one letter which
must be at the end of the first τ -match and the start of the second τ -match. For example, τ = 123 does
not have the minimal overlapping property since τ -mch(1234) = 2 and the τ -match starting at position
1 and the τ -match starting at position 2 share two letters, namely, 2 and 3. However, it is easy to see
that the permutation τ = 132 does have the minimal overlapping property. That is, the fact that there
is an ascent starting at position 1 and descent starting at position 2 means that there cannot be two τ -
matches in a permutation σ ∈ Sn which share two or more letters. If τ ∈ Sj has the minimal overlapping
property, then the shortest permutations σ such that τ -mch(σ) = n will have length n(j − 1) + 1. Thus,
we let MPτ,n(j−1)+1 be the set of permutations σ ∈ Sn(j−1)+1 such that τ -mch(σ) = n. We shall
refer to the permutations in MPn,n(j−1)+1 as maximum packings for τ . Then we let mpτ,n(j−1)+1 =
|MPτ,n(j−1)+1| and

mpτ,n(j−1)+1(p, q) =
∑

σ∈MPτ,n(j−1)+1

qinv(σ)pcoinv(σ).

Duane and Remmel [9] proved the following theorem about minimal overlapping permutations.

Theorem 1. If τ ∈ Sj has the minimal overlapping property, then

∑
n≥0

tn

[n]p,q!

∑
σ∈Sn

xτ -mch(σ)pcoinv(σ)qinv(σ) =

1

1− (t+
∑
n≥1

tn(j−1)+1

[n(j−1)+1]p,q !
(x− 1)nmpτ,n(j−1)+1(p, q))

. (4)

They also proved the following theorem.

Theorem 2. Suppose that τ = τ1 . . . τj where τ1 = 1 and τj = s, then

mpτ,(n+1)(j−1)+1(p, q) =

pcoinv(τ)qinv(τ)p(s−1)n(j−1)

[
(n+ 1)(j − 1) + 1− s

j − s

]
p,q

mpτ,n(j−1)+1(p, q)

so that

mpτ,(n+1)(j−1)+1(p, q) =
(
pcoinv(τ)qinv(τ)

)n+1

p(s−1)(j−1)(n+1
2 )

n+1∏
i=1

[
i(j − 1) + 1− s

j − s

]
p,q

. (5)

An immediate consequence of Theorems 1 and 2 is the following theorem.



4 Quang T. Bach, Jeffrey B. Remmel

Corollary 3. Suppose that α = α1 . . . αj and β = β1 . . . βj are permutations in Sj such that α1 = β1 =
1, αj = βj = s, inv(α) = inv(β), and α and β have the minimal overlapping property. Then∑

n≥0

tn

[n]q!

∑
σ∈Sn

xα-mch(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈Sn

xβ-mch(σ)qinv(σ). (6)

We shall give several examples of a pair of permutations that α and β that satisfy the hypotheses of
Corollary 3 and thus are inv-c-Wilf equivalent. It is easy to see that there are no pairs α and β satisfying
the hypothesis of Corollary 3 in S4. That is, there are only three possible pairs α and β which start with 1
and end with the same numbers, namely,

1. α = 1342 and β = 1432,

2. α = 1243 and β = 1423, and

3. α = 1234 and β = 1324.

In each case, inv(α) 6= inv(β). However α = 14532 and β = 15342 do satisfy the hypothesis of
Corollary 3. Moreover it is easy to check that for any n > 5, any two permutations of the from α =
1453σ2 and β = 1534σ2, where σ is the increasing sequence 678 · · ·n, satisfy the hypothesis of Corollary
3. Thus, there are non-trivial examples of inv-c-Wilf equivalence for all n ≥ 1. In fact, Duane and
Remmel proved an even stronger result than Theorem 2. That is, they proved the following theorem.

Theorem 4. Suppose α = α1 . . . αj and β = β1 . . . βj are minimal overlapping permutations in Sj and
α1 = β1 and αj = βj , then for all n ≥ 1,

mpα,n(j−1)+1 = mpβ,n(j−1)+1. (7)

If in addition, pcoinv(α)qinv(α) = pcoinv(β)qinv(β), then

mpα,n(j−1)+1(p, q) = mpβ,n(j−1)+1(p, q). (8)

Combining Theorems 1 and 4, we have the following theorem.

Theorem 5. Suppose that α = α1 . . . αj and β = β1 . . . βj are permutations in Sj such that α1 = β1,
αj = βj , inv(α) = inv(β), and α and β have the minimal overlapping property. Then∑

n≥0

tn

[n]q!

∑
σ∈Sn

xα-mch(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈Sn

xβ-mch(σ)qinv(σ). (9)

Theorem 5 above relaxes the condition that α and β both have to start with 1 and thus, introduces a
stronger condition than just being inv-c-Wilf equivalent. In fact, we shall say that α and β are strongly
inv-c-Wilf equivalent if they satisfy the hypotheses of Theorem 5. As an example, one can check that
α = 241365 and β = 234165 both start and end with the same element and have the same number of
inversions. Therefore, they are strongly inv-c-Wilf equivalent.

Of course, one can make similar definitions in the case where we replace c-Wilf equivalence by Wilf
equivalence. For example, we say that α is stat-Wilf equivalent to β if for all n ≥ 1∑

σ∈Sn(α)

xstat(σ) =
∑

σ∈Sn(β)

xstat(σ). (10)
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Although this language has not been used, there are numerous examples in the literature where researchers
have given a bijection φn : Sn(α)→ Sn(β) to prove that α and β are Wilf equivalent where the bijection
φn preserves other statistics. One example of this phenomenon is the work of Claesson and Kitaev [7] who
gave a classification of various bijections between 321-avoiding and 132-avoiding permutations according
to what statistics they preserved.

The main goal of this paper is to give examples of α and β such that α and β are des-c-Wilf equivalent.
Our main result is the following.

Theorem 6. Suppose that α = α1 . . . αj and β = β1 . . . βj are permutations in Sj such that α1 = β1 =
1, αj = βj , des(α) = des(β), and α and β have the minimal overlapping property. Then∑

n≥0

tn

n!

∑
σ∈NMn(α)

xdes(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

xdes(σ). (11)

Thus α and β are des-c-Wilf equivalent.
If in addition, inv(α) = inv(β), then∑

n≥0

tn

[n]q!

∑
σ∈NMn(α)

xdes(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈NMn(β)

xdes(σ)qinv(σ). (12)

Thus α and β are (des, inv)-c-Wilf equivalent.

To prove Theorem 6, we will modify the reciprocity method of Jones and Remmel [15–17]. The
reciprocity method was designed to study generating functions of the form

NMΓ(t, x, y) =
∑
n≥0

tn

n!
NMΓ,n(x, y) (13)

where NMΓ,n(x, y) =
∑

σ∈NMn(Γ)

xLRmin(σ)y1+des(σ). In the special case where Γ = {τ} is a set with a

single permutation τ , we shall write NMτ (t, x, y) for NMΓ(t, x, y) and NMτ,n(x, y) for NMΓ,n(x, y).
The basic idea of their approach to study the generating functions NMτ (t, x, y) is as follows. First,

assume that τ starts with 1 and des(τ) = 1. It follows from results in [16] that if τ starts with 1, then we
can write NMτ (t, x, y) in the form

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x
(14)

where Uτ (t, y) =
∑
n≥0

Uτ,n(y)
tn

n!
.

Next one writes
Uτ (t, y) =

1

1 +
∑
n≥1 NMτ,n(1, y) t

n

n!

. (15)

One can then use the homomorphism method to give a combinatorial interpretation of the right-hand side
of (15) which can be used to find simple recursions for the coefficients Uτ,n(y). The homomorphism
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method derives generating functions for various permutation statistics by applying a ring homomorphism
defined on the ring of symmetric functions Λ in infinitely many variables x1, x2, . . . to simple symmetric
function identities such as

H(t) = 1/E(−t), (16)

where H(t) and E(t) are the generating functions for the homogeneous and elementary symmetric func-
tions, respectively:

H(t) =
∑
n≥0

hnt
n =

∏
i≥1

1

1− xit
and E(t) =

∑
n≥0

ent
n =

∏
i≥1

(1 + xit). (17)

In their case, Jones and Remmel defined a homomorphism θτ on Λ by setting

θτ (en) =
(−1)n

n!
NMτ,n(1, y).

Then
θτ (E(−t)) =

∑
n≥0

NMτ,n(1, y)
tn

n!
=

1

Uτ (t, y)
.

Hence
Uτ (t, y) =

1

θτ (E(−t))
= θτ (H(t)),

which implies that
n!θτ (hn) = Uτ,n(y). (18)

Thus, if we can compute n!θτ (hn) for all n ≥ 1, then we can compute the polynomials Uτ,n(y) and the
generating function Uτ (t, y), which in turn allows us to compute the generating function NMτ (t, x, y).
Jones and Remmel [17,18] showed that one can interpret n!θτ (hn) as a certain signed sum of the weights
of filled, labeled brick tabloids when τ starts with 1 and des(τ) = 1. They then defined a weight-
preserving, sign-reversing involution I on the set of such filled, labeled brick tabloids which allowed
them to give a relatively simple combinatorial interpretation for n!θτ (nn). Then they showed how such
a combinatorial interpretation allowed them to prove that for certain families of such permutations τ , the
polynomials Uτ,n(y) satisfy simple recursions.

For example, in [17], Jones and Remmel studied the generating functions NMτ (t, x, y) for permutations
τ of the form τ = 1324 · · · p where p ≥ 4. Using the reciprocity method, they proved that U1324,1(y) =
−y and for n ≥ 2,

U1324,n(y) = (1− y)U1324,n−1(y) +

bn/2c∑
k=2

(−y)k−1Ck−1U1324,n−2k+1(y), (19)

whereCk = 1
k+1

(
2k
k

)
is the kth Catalan number. They also proved that for any p ≥ 5,U1324···p,n(y) = −y

and for n ≥ 2,

U1324···p,n(y) = (1− y)U1324···p,n−1(y) +

bn−2
p−2 c+1∑
k=2

(−y)k−1U1324···p,n−((k−1)(p−2)+1)(y). (20)
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In [2], the authors extended the reciprocity method of Jones and Remmel to study the polynomials
UΓ,n(y) where

UΓ(t, y) = 1 +
∑
n≥1

UΓ,n(y)
tn

n!
=

1

1 +
∑
n≥1 NMΓ,n(1, y) t

n

n!

in the case where Γ is a set of permutations such that for all τ ∈ Γ, τ starts with 1 and des(τ) ≤ 1. For
example, suppose that k1, k2 ≥ 2, p = k1 + k2, and

Γk1,k2
= {σ ∈ Sp : σ1 = 1, σk1+1 = 2, σ1 < σ2 < · · · < σk1

& σk1+1 < σk1+2 < · · · < σp}.

That is, Γk1,k2
consists of all permutations σ of length p where 1 is in position 1, 2 is in position k1 + 1,

and σ consists of two increasing sequences, one starting at 1 and the other starting at 2. In [2], we proved
that for Γ = Γk1,k2

, UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) = (1− y)UΓ,n−1(y)− y
(
n− 2

k1 − 1

)(
UΓ,n−M (y) + y

m−1∑
i=1

UΓ,n−M−i(y)

)
,

where m = min{k1, k2}, and M = max{k1, k2}.
Furthermore, in [2], we investigated a new phenomenon that arises when we add the identity permuta-

tion 12 . . . k to the family Γ. For example, if Γ = {1324, 123}, then we proved that UΓ,1(y) = −y, and
for n ≥ 2,

UΓ,n(y) = −yUΓ,n−1(y)− yUΓ,n−2(y) +

bn/2c∑
k=2

(−y)kCk−1UΓ,n−2k(y), (21)

and when Γ = {1324 . . . p, 123 . . . p− 1} where p ≥ 5, then UΓ,1(y) = −y, and for n ≥ 2,

UΓ,n(y) =

p−2∑
k=1

(−y)UΓ,n−k(y) +

p−2∑
k=1

bn−k
p−2 c∑
m=2

(−y)mUΓ,n−k−(m−1)(p−2)(y). (22)

While on the surface, the recursions (21) and (22) do not seem to be simpler than the corresponding
recursions (19) and (20), they are easier to analyze because adding an identity permutation 12 . . . k to Γ
ensures that all the bricks in the filled brick tabloids used to interpret n!θτ (hn) have length less than k. For
example, in [2], we were able to prove the following explicit formula for the polynomialsU{1324,123},n(y).

Theorem 7. Let Γ = {1324, 123}. Then for all n ≥ 0,

UΓ,2n(y) =

n∑
k=0

(2k + 1)
(

2n
n−k
)

n+ k + 1
(−y)n+k+1 (23)

and

UΓ,2n+1(y) =

n∑
k=0

2(k + 1)
(

2n+1
n−k

)
n+ k + 2

(−y)n+k. (24)
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Another example in [2] where we could find an explicit formula is the following. Let Γk1,k2,s =
Γk1,k2

∪ {1 · · · s(s + 1)} for some s ≥ max(k1, k2). In [2], we showed that UΓ2,2,s,1(y) = −y, and for
n ≥ 2,

UΓ2,2,s,n(y) = −yUΓ2,2,s,n−1(y)−
s−2∑
k=0

(
(n− k − 1)yUΓ2,2,s,n−k−2(y) + (n− k − 2)y2UΓ2,2,s,n−k−3(y)

)
. (25)

Using these recursions, we then proved that

UΓ2,2,2,2n(y) =

n∑
i=0

(2n− 1) ↓↓n−i (−y)n+i and

UΓ2,2,2,2n+1(y) =

n∑
i=0

(2n) ↓↓n−i (−y)n+1+i,

where for any x, (x) ↓↓0= 1 and (x) ↓↓k= x(x− 2)(x− 4) · · · (x− 2k − 2) for k ≥ 1.
In a subsequent paper [3], the authors further extended the reciprocity method to study the generating

functions NMΓ(t, x, y) where all the permutations Γ start with 1 but where we do not put any condition on
the number of descents in a permutations in Γ. It is this extension that we shall modify to prove Theorem
6. In particular, we shall be interested in computing generating functions of the form

INMΓ(t, q, z) = 1 +
∑
n≥0

tn

[n]q!
INMΓ,n(q, z),

where INMΓ,n(q, z) =
∑

σ∈NMn(Γ)

zdes(σ)+1qinv(σ), which is a q-analogue of NMΓ(t, 1, y). We shall

write
INMΓ(t, q, z) =

1

1 +
∑
n≥1 IUΓ,n(q, z) tn

[n]q !

so that
IU(t, q, z) = 1 +

∑
n≥1

IUΓ,n(q, z)
tn

[n]q!
=

1

INMΓ(t, q, z)
. (26)

Again if Γ = {τ}, we shall write INMτ (t, q, z) for INMΓ(t, q, z), INMτ,n(q, z) for INMΓ,n(q, z),
IUτ (t, q, z) for IUΓ(t, q, z), and IUτ,n(q, z) for IUΓ,n(q, z). As before, we shall use the homomorphism
method to give us a combinatorial interpretation of the right-hand side of (26) which can be used to develop
recursions for IUΓ,n(q, z). In the case where α and β satisfy all the hypothesis of Theorem 6, then we will
show that IUα,n(q, z) and IUβ,n(q, z) satisfy the same recursions so that INMα(t, q, z) = INMβ(t, q, z).

Finally, there are stronger conditions on permutations α and β in Sj which will guarantee that α and
β are des-c-Wilf equivalent, (des, inv)-c-Wilf equivalent, or (des, inv,LRmin)-c-Wilf equivalent. That
is, we say that α and β are mutually minimal overlapping if α and β are minimal overlapping and the
smallest n such that there exist a permutation σ ∈ Sn with α-mch(σ) ≥ 1 and β-mch(σ) ≥ 1 is 2j − 1.
This ensures that in any permutation σ, any pair of α-matches, any pair of β matches, and any pair of
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matches where one match is an α-match and one match is a β-match can share at most one letter. There
are lots of examples of minimal overlapping permutations α and β in Sj such that α and β are mutually
minimal overlapping. For example, we shall prove that any minimal overlapping pair of permutations α
and β in Sj which start with 1 and end with 2 are automatically mutually minimal overlapping. We will
also give examples of minimal overlapping permutations α = α1 . . . αj and β = β1 . . . βj in Sj such that
α1 = β1 = 1 and αj = βj which are not mutually minimal overlapping. Then we shall give a bijective
proof the following theorem.

Theorem 8. Suppose α = α1 . . . αj and β = β1 . . . βj are permutations in Sj which are mutually
minimal overlapping and there is an 1 ≤ a < j such that αi = βi for all i ≤ a, αa = βa = 1, αj = βj ,
and des(α) = des(β). Then∑

n≥0

tn

n!

∑
σ∈NMn(α)

zdes(σ)uLRmin(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

zdes(σ)uLRmin(σ). (27)

Thus α and β are (des,LRmin)-c-Wilf equivalent.
If in addition, inv(α) = inv(β), then∑
n≥0

tn

[n]q!

∑
σ∈NMn(α)

xdes(σ)qinv(σ)uLRmin(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

xdes(σ)qinv(σ)uLRmin(σ). (28)

Thus α and β are (des, inv,LRmin)-c-Wilf equivalent.

The outline of this paper is the following. In section 2, we shall give the background in symmetric
functions needed for our proofs. In Section 3, we shall modify the involution defined in [3] to give a
combinatorial interpretation to give IUΓ,n(q, z). In section 4, we shall use the results of Section 3 to
prove Theorem 6 and give several examples of families of pairs of permutations satisfying the hypothesis
of Theorem 6. Finally in section 5, we shall prove a stronger result than Theorem 8 which will immediately
imply Theorem 8 and give several examples of families of pairs of permutations satisfying the hypothesis
of Theorem 8.

2 Symmetric Functions
In this section, we give the necessary background on symmetric functions that will be used in our proofs.

A partition of n is a sequence of positive integers λ = (λ1, . . . , λs) such that 0 < λ1 ≤ · · · ≤ λs and
n = λ1 + · · · + λs. We shall write λ ` n to denote that λ is partition of n and we let `(λ) denote the
number of parts of λ. When a partition of n involves repeated parts, we shall often use exponents in the
partition notation to indicate these repeated parts. For example, we will write (12, 45) for the partition
(1, 1, 4, 4, 4, 4, 4).

Let Λ denote the ring of symmetric functions in infinitely many variables x1, x2, . . .. The nth el-
ementary symmetric function en = en(x1, x2, . . .) and nth homogeneous symmetric function hn =
hn(x1, x2, . . .) are defined by the generating functions given in (17). For any partition λ = (λ1, . . . , λ`),
let eλ = eλ1 · · · eλ` and hλ = hλ1 · · ·hλ` . It is well known that e0, e1, . . . is an algebraically independent
set of generators for Λ, and hence, a ring homomorphism θ on Λ can be defined by simply specifying
θ(en) for all n.
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If λ = (λ1, . . . , λk) is a partition of n, then a λ-brick tabloid of shape (n) is a filling of a rectangle
consisting of n cells with bricks of sizes λ1, . . . , λk in such a way that no two bricks overlap. For example,
Figure 1 shows the six (12, 22)-brick tabloids of shape (6).

Fig. 1: The six (12, 22)-brick tabloids of shape (6).

Let Bλ,n denote the set of λ-brick tabloids of shape (n) and let Bλ,n be the number of λ-brick tabloids
of shape (n). If B ∈ Bλ,n, we will write B = (b1, . . . , b`(λ)) if the lengths of the bricks in B, reading
from left to right, are b1, . . . , b`(λ). For example, the brick tabloid in the top right position in Figure 1 is
denoted as (1, 2, 2, 1). Eğecioğlu and the second author [10] proved that

hn =
∑
λ`n

(−1)n−`(λ)Bλ,n eλ. (29)

This interpretation of hn in terms of en will aid us in describing the coefficients of θΓ(H(t)) = IUΓ(t, q, z)
coming in the next section, which will in turn allow us to compute the coefficients INMΓ,n(q, z).

3 A q-analogue of the reciprocity method
In the section, we shall modify the results of [3] to give a combinatorial interpretation of IUΓ,n(q, z) in
the case where all the permutations in Γ start with 1.

Let

INMΓ,n(q, z) =
∑

σ∈NMn(Γ)

zdes(σ)+1qinv(σ). (30)

We define a ring homomorphism θΓ on the ring of symmetric functions Λ by setting θΓ(e0) = 1 and

θΓ(en) =
(−1)n

[n]q!
INMΓ,n(q, z) (31)

for n ≥ 1. It then follows that

θΓ(H(t)) =
∑
n≥0

θΓ(hn)tn =
1

θτ (E(−t))
=

1

1 +
∑
n≥1(−t)nθΓ(en)

=
1

1 +
∑
n≥1

tn

[n]q !
INMΓ,n(q, z)

= IUΓ(t, q, z). (32)
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Using (29), we can compute

[n]q!θΓ(hn) = [n]q!
∑
λ`n

(−1)n−`(λ)Bλ,n θΓ(eλ)

= [n]q!
∑
λ`n

(−1)n−`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

(−1)bi

[bi]q!
INMΓ,bi(q, z)

=
∑
λ`n

(−1)`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

[
n

b1, . . . , b`(λ)

]
q

`(λ)∏
i=1

INMΓ,bi(q, z). (33)

To give combinatorial interpretation to the right hand side of (33), we select a brick tabloid B =
(b1, b2, . . . , b`(λ)) of shape (n) filled with bricks whose sizes induce the partition λ. Given an ordered set
partition S = (S1, S2, . . . , S`(λ)) of {1, 2, . . . , n} such that |Si| = bi, for i = 1, . . . , `(λ), let S1 ↑ S2 ↑
. . . S`(λ) ↑ denote the permutation of Sn which results by taking the elements of Si in increasing order
and concatenating them from left to right. For example,

{1, 5, 6} ↑ {7, 9} ↑ {2, 3, 4, 8} ↑= 156792348.

It follows from results in [6] that we can interpret the q-multinomial coefficient
[

n
b1,...,b`(λ)

]
q

as the sum

of qinv(S1↑S2↑...S`(λ)↑) over all ordered set partitions S = (S1, S2, . . . , S`(λ)) of {1, 2, . . . , n} such that
|Si| = bi, for i = 1, . . . , `(λ). For each brick bi, we then fill the cells of bi with numbers from Si such
that the entries in the brick reduce to a permutation σ(i) = σ1 · · ·σbi in NMbi(Γ). It follows that if we
sum qinv(σ) over all possible choices of (S1, S2, . . . , S`(λ)), we will obtain

[
n

b1, . . . , b`(λ)

]
q

`(µ)∏
i=1

qinv(σ(i)).

We label each descent of σ that occurs within each brick as well as the last cell of each brick by z. This
accounts for the factor zdes(σ(i))+1 within each brick. Finally, we use the factor (−1)`(λ) to change the
label of the last cell of each brick from z to−z. We will denote the filled labeled brick tabloid constructed
in this way as 〈B,S, (σ(1), . . . , σ(`(λ)))〉.

For example, when n = 17,Γ = {1324, 1423, 12345}, and B = (9, 3, 5, 2), consider the ordered
set partition S = (S1, S2, S3, S4) of {1, 2, . . . , 19} where S1 = {2, 5, 6, 9, 11, 15, 16, 17, 19}, S2 =
{7, 8, 14}, S3 = {1, 3, 10, 13, 18}, S4 = {4, 12} and the permutations σ(1) = 1 2 4 6 5 3 7 9 8 ∈
NM9(Γ), σ(2) = 1 3 2 ∈ NM3(Γ), σ(3) = 5 1 2 4 3 ∈ NM5(Γ), and σ(4) = 2 1 ∈ NM2(Γ). Then
the construction of 〈B,S, (σ(1), . . . , σ(4))〉 is pictured in Figure 2.

It is easy to see that we can recover the triple 〈B, (S1, . . . , S`(λ)), (σ
(1), . . . , σ(`(λ)))〉 from B and the

permutation σ which is obtained by reading the entries in the cells from right to left. We let OΓ,n denote
the set of all filled labeled brick tabloids created this way. That is, OΓ,n consists of all pairs O = (B, σ)
where

1. B = (b1, b2, . . . , b`(λ)) is a brick tabloid of shape n,
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= 2 1σ(4)= 1 3 2(2)σ = 5 1 2 4 3(3)σ

{2,5,6,9,11,15,16,17,19} {7,8,14} {1,3,10,13,18} {4,12} 

σ(1)

2 7 814 18 1 3 1013 12 4

= 1 2 4 6 5 3 7 9 8 

65 9 1115 1916 17

z z z −z z −z z z −z z −z

Fig. 2: The construction of a filled, labeled brick tabloid.

2. σ = σ1 · · ·σn is a permutation in Sn such that there is no Γ-match of σ which lies entirely in a
single brick of B, and

3. if there is a cell c such that a brick bi contains both cells c and c + 1 and σc > σc+1, then cell c is
labeled with a z and the last cell of any brick is labeled with −z.

We define the sign of eachO to be sgn(O) = (−1)`(λ). The weightW (O) ofO is defined to be qinv(σ)

times the product of all the labels z used in the brick. Thus, the weight of the filled, labeled brick tabloid
from Figure 2 above is W (O) = z11q84.

It follows that
[n]q!θΓ(hn) =

∑
O∈OΓ,n

sgn(O)W (O). (34)

Next we define a sign-reversing, weight-preserving mapping JΓ : OΓ,n → OΓ,n as follows. Let
(B, σ) ∈ OΓ,n where B = (b1, . . . , bk) and σ = σ1 . . . σn. Then for any i, we let first(bi) be the element
in the left-most cell of bi and last(bi) be the element in the right-most cell of bi. Then we read the cells
of (B, σ) from left to right, looking for the first cell c that belongs to either one of the following two cases.

Case I. Either cell c is in the first brick b1 and is labeled with a z, or it is in some brick bj , for j > 1, with
either

i. last(bj−1) < first(bj) or

ii. last(bj−1) > first(bj) and there is a τ -match contained in the cells of bj−1 and the cells bj that end
weakly to the left of cell c for some τ ∈ Γ.

Case II. Cell c is at the end of brick bi where σc > σc+1 and there is no Γ-match of σ that lies entirely in
the cells of the bricks bi and bi+1.

In Case I, we define JΓ((B, σ)) to be the filled, labeled brick tabloid obtained from (B, σ) by breaking
the brick bj that contains cell c into two bricks b′j and b′′j where b′j contains the cells of bj up to and
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including the cell c while b′′j contains the remaining cells of bj . In addition, we change the labeling
of cell c from z to −z. In Case II, JΓ((B, σ)) is obtained by combining the two bricks bi and bi+1

into a single brick b and changing the label of cell c from −z to z. If neither case occurs, then we let
JΓ((B, σ)) = (B, σ).

ΓJ

2 5 9 15 11 16 13 17 7 14 8 18 1 3 6 19 12 410

2 5 9 15 11 16 13 17 10 7 14 8 18 1 3 6 19 12 4

−z z z −z z −z z −z z −z

−z z −z z −z z −zz −z −z

Fig. 3: An example of the involution JΓ.

For example, suppose Γ = {τ} where τ = 14253 and (B, σ) ∈ OΓ,19 pictured at the top of Fig-
ure 3. We cannot use cell c = 4 to define JΓ(B, σ), because if we combined bricks b1 and b2, then
red(9 15 11 16 13) = τ would be a τ -match contained in the resulting brick. Similarly, we cannot use
cell c = 6 to apply the involution because it fails to meet condition (b.2). In fact the first c for which either
Case I or Case II applies is cell c = 8 so that JΓ(B, σ) is equal to the (B′, σ) pictured on the bottom of
Figure 3.

We now prove that JΓ is an involution by showing J2
Γ is the identity mapping. Let (B, σ) ∈ OΓ,n

where B = (b1, . . . , bk) and σ = σ1 . . . σn. The key observation here is that applying the mapping JΓ to
a brick in Case I will produce one in Case II, and vice versa.

Suppose the filled, labeled brick tabloid (B, σ) is in Case I and its image JΓ((B, σ)) is obtained by
splitting some brick bj after cell c into two bricks b′j and b′′j . There are now two possibilities.

(a.) c is in the first brick b1. In this case, c must be the first cell which is labeled with z so that
the elements in b′1 will be increasing. Furthermore, since we are assuming there is no Γ-match
in the cells of brick b1 in (B, σ), there cannot be any Γ-match that involves the cells of bricks
b′1 and b′′1 in JΓ((B, σ)). Hence, when we consider JΓ((B, σ)), the first possible cell where we
can apply JΓ will be cell c because we can now combine the b′1 and b′′1 . Thus, applying JΓ to
JΓ((B, σ)), we will recombine bricks b′1 and b′′1 into b1 and replace the label of −z on cell c by z.
So JΓ(JΓ((B, σ))) = (B, σ) in this case.

(b.) c is in brick bj , where j > 1. Note that our definition of when a cell labeled z can be used in
Case I to define JΓ depends only on the cells and the brick structure to the left of that cell. Hence,
we can not use any of the cells labeled z to the left of c to define JΓ(JΓ((B, σ))). Similarly, if
we have two bricks bs and bs+1 which lie entirely to the left of cell c such that last(bs) = σd >
first(bs+1) = σd+1, the criteria to use cell d in the definition of JΓ on JΓ((B, σ)) depends only on
the elements in bricks bs and bs+1. Thus, the only cell d which we could possibly use to define JΓ

on JΓ((B, σ)) that lies to the left of c is the last cell of bj−1. However, our conditions that either
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last(bj−1) < first(bj) = first(b′j) or last(bj−1) > first(bj) = first(b′j) with a Γ-match contained in
the cells of bj−1 and b′j force the first cell that can be used to define JΓ on JΓ((B, σ)) to be cell c.
Thus, applying JΓ to JΓ((B, σ)), we will recombine bricks b′j and b′′j into bj and replace the label
of −z on cell c by z. So JΓ(JΓ((B, σ))) = (B, σ) in this case.

Suppose (B, σ) is in Case II and we define JΓ((B, σ)) at cell c, where c is last cell of bj and σc > σc+1.
Then by the same arguments that we used in Case I, there can be no cell labeled z to the left of this cell
c in (B, σ) nor J(B, σ). This follows from the fact that the brick structure before cell c is unchanged
between (B, σ) and J(B, σ). In addition, there can be no two bricks that lie entirely to the left of cell c in
JΓ((B, σ)) that can be combined under JΓ. Thus, the first cell that we can use to define JΓ to JΓ((B, σ))
is cell c and it is easy to check that it satisfies the conditions of Case I. Thus, in going from (B, σ) to
JΓ((B, σ)) we combine bricks bj and bj+1 into a single brick b and replaced the label on cell c by z. Then
it is easy to see that when applying JΓ to JΓ((B, σ)), we will split b back into bricks bj and bj+1 and
change the label on cell c back to −z. Thus JΓ(JΓ((B, σ))) = (B, σ) in this case.

Hence JΓ is an involution. It is clear that if JΓ(B, σ) 6= (B, σ), then

sgn(B, σ)W (B, σ) = −sgn(JΓ(B, σ))W (JΓ(B, σ)).

Thus, it follows from (34) that

n!θΓ(hn) =
∑

O∈OΓ,n

sgn(O)W (O) =
∑

O∈OΓ,n,JΓ(O)=O

sgn(O)W (O). (35)

Hence if all permutations in Γ start with 1, then

UΓ,n(y) =
∑

O∈OΓ,n,IΓ(O)=O

sgn(O)W (O). (36)

Thus, to compute UΓ,n(y), we must analyze the fixed points of JΓ.
Let Γ be a finite set of permutations which all start with 1 and there is a k ≥ 2 such that there exists

a τ ∈ Γ with des(τ) = k and for all α ∈ Γ, des(α) ≤ k. Let Q[y] be the set of rational functions in
the variable y over the rationals Q and let θΓ : Λ → Q[y] be the ring homomorphism defined by setting
θΓ(e0) = 1, and θΓ(en) = (−1)n

n! NMΓ,n(1, y) for n ≥ 1. Then

n!θΓ(hn) =
∑

O∈OΓ,n,JΓ(O)=O

sgn(O)W (O), (37)

where OΓ,n is the set of objects and JΓ is the involution defined above. Suppose that (B, σ) ∈ OΓ,n

where B = (b1, . . . , bk) and σ = σ1 · · ·σn. Then we have the following lemma describing the fixed
points of the involution JΓ.

Lemma 9. (B, σ) is a fixed point of JΓ if and only if it satisfies the following properties:

1. if i = 1 or i > 1 and last(bi−1) < first(bi), then bi can have no cell labeled z so that σ must be
increasing in bi,

2. if i > 1 and σe = last(bi−1) > first(bi) = σe+1, then there must be a Γ-match contained in the
cells of bi−1 and bi which must necessarily involve σe and σe+1 and there can be at most k−1 cells
labeled z in bi, and
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3. if Γ has the property that, for all τ ∈ Γ such that des(τ) = j ≥ 1, the bottom elements (i) of these
descents are 2, . . . , j + 1 when reading from left to right, then the first elements of each brick in
(B, σ) form an increasing sequence.

Proof. Suppose (B, σ) is a fixed point of JΓ. Then it must be the case that (B, σ) contains no cell c
that belongs to neither Case I nor Case II. That is, when applying the involution JΓ to (B, σ), we cannot
break nor combine the bricks after any cell in (B, σ).

For (1.), note that if there is a cell labeled z in bi and c is the left-most cell of bi labeled with z, then c
satisfied the conditions of Case I. Thus there can be no cell labeled z in bi.

For (2.), note that if there is no Γ-match contained in the cells of bi−1 and bi, then e satisfies the
conditions of Case II. Thus, there must be a Γ-match contained in the cells of bi−1 and bi. If there are k
or more cells labeled z in bi, then let c be the k-th cell, reading from left to right, which is labeled with z.
Then we know there is τ -match contained in the cells of bi−1 and bi which must necessarily involve σe
and σe+1 for some τ ∈ Γ. But this τ -match must end before cell c since otherwise τ would have at least
k + 1 descents. Thus c would satisfy the the conditions of Case I.

To prove (3.), suppose there exist two consecutive bricks bi and bi+1 with initial elements σe and σf ,
respectively, such that σe > σf . There are two cases.

Case A. σ is increasing in bi.
Then σf−1 is that last cell of bi. If σf−1 < σf , then we know that σe ≤ σf−1 < σf which contra-
dicts our choice of σe and σf . Thus it must be the case that σf−1 > σf . But then there is τ ∈ Γ such
that des(τ) = j ≥ 1 and there is a τ -match in the cells of bi and bi+1 involving the σf−1 and σf . By
our assumptions, σf can only play the role of 2 in such a τ -match. Hence there must be some σg with
e ≤ g ≤ f − 2 which plays the role of 1 in this τ -match. But then we would have σe ≤ σg < σf which
contradicts our choice of σe and σf . Thus σ cannot be increasing in bi.

Case B. σ is not increasing in bi.
In this case, by part (1), we know that it must be the case that σe−1 = last(bi−1) > σe = first(bi) and, by
(2), there is τ ∈ Γ such that des(τ) = j ≥ 1 and there is a τ -match in the cells of bi−1 and bi involving
the cells σe−1 and σe. Call this τ -match α and suppose that cell h is the bottom element of the last descent
in α. It cannot be that σe = σh. That is, there can be no cell labeled z that occurs after cell h in bi since
otherwise the left-most such cell c would satisfy the conditions of Case I of the definition of JΓ. But this
would mean that σ is increasing in bi starting at σh so that if σe = σh, then σ would be increasing in bi
which contradicts our assumption in this case. Thus there is some 2 ≤ i ≤ j such that σe plays the role of
i in the τ -match α and σh plays the role of j + 1 in the τ -match α. But this means that σe is the smallest
element in brick bi. That is, let σc be the smallest element in bi. If σe 6= σc, then σc must be the bottom
of some descent in bi which implies that c ≤ h. But then σc is part of the τ -match α which means that
σc must be playing the role of one of i + 1, . . . , j + 1 in the τ -match α and σe is playing the role of i
in the τ -match α which is impossible if σe 6= σc. It follows that σe ≤ σf−1. Hence, it can not be that
case that σf−1 < σf since otherwise σe < σf . Thus it must be the case that σf−1 > σf . But this means
that there exists some δ ∈ Γ such that des(δ) = p ≥ 1 and there is a δ-match in the cells of bi and bi+1

involving the σf−1 and σf . Call this δ-match β. By assumption, the bottom elements of the descents in δ

(i) If σ is a permutation with σi > σi+1, i.e. there is a descent in σ at position i, then we shall refer to σi+1 as the bottom element
of this descent.
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are 2, 3, . . . , p + 1 so that σf must be playing the role of 2, 3, . . . , p + 1 in the δ-match β. Let σg be the
element that plays the role of 1 in the δ-match β. σg must be in bi since δ must start with 1. But then we
would have that σe ≤ σg < σf since σe is the smallest element in bi.

Thus, both Case A and Case B are impossible and, hence the minimal elements in the bricks of (B, σ)
must be increasing reading from left to right.

We note that if condition (3) of the Lemma fails, it may be that the first elements of the bricks do
not form an increasing sequence. For example, it is easy to check that if Γ = {15342}, then the (B, σ)
pictured in Figure 4 is such a fixed point of JΓ.

161921 3 18415 5 6 7 8 17 9 10 11 1213 14

−z z −z −z −z z −z −z

Fig. 4: A fixed point of J{15342}.

4 The proof of Theorem 6
In this section, we shall prove Theorem 6. To remind the readers of the result, we shall restate the theorem
below.

Theorem. Suppose that α = α1 . . . αj and β = β1 . . . βj are permutations in Sj such that α1 = β1 = 1,
αj = βj , des(α) = des(β), and α and β have the minimal overlapping property. Then∑

n≥0

tn

n!

∑
σ∈NMn(α)

xdes(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

xdes(σ). (38)

Thus α and β are des-c-Wilf equivalent.
If in addition, inv(α) = inv(β), then∑

n≥0

tn

[n]q!

∑
σ∈NMn(α)

xdes(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈NMn(β)

xdes(σ)qinv(σ). (39)

Thus α and β are (des, inv)-c-Wilf equivalent.

This theorem is an immediate consequence of our next result.

Theorem 10. Let τ = τ1τ2 · · · τp ∈ Sp be such that τ1 = 1, τp = s where 2 ≤ s < p, and τ has the
minimal overlapping property. Then

INMτ (t, q, z) =
1

IUτ (t, q, z)
where IUτ (t, q, z) = 1 +

∑
n≥1

IUτ,n(q, z)
tn

[n]q!
,

with IUτ,1(q, z) = −z, and for n ≥ 2,

IUτ,n(q, z) = (1− z)IUτ,n−1(q, z)− zdes(τ)qinv(τ)

[
n− s
p− s

]
q

Uτ,n−p+1(q, z).
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Proof. When n = 1, the only fixed point comes from the configuration that consists of a single cell
filled with 1 and labeled −z. Therefore, it must be the case that IUτ,1(q, z) = −z.

For n ≥ 2, let (B, σ) be a fixed point of Jτ where B = (b1, . . . , bk) and σ = σ1 · · ·σn. We claim that
1 is in the first cell of (B, σ). To see this, suppose 1 is in cell c where c > 1. Hence σc−1 > σc. We claim
that whenever σc−1 > σc, σc−1 and σc must be elements of some τ -match in σ. That is, c cannot be in
brick b1 because the elements in the first brick of any fixed point must be increasing. So we assume that
c is in brick bi where 2 ≤ i ≤ k. If c is the first cell of bi, then last(bi−1) > first(bi) and there must be a
τ -match in the cells of bi−1 and bi which involves cells c− 1 and c. If c is not the first cell of bi, then we
can not have that last(bi−1) < first(bi) since this would force σ to be increasing in the cells of bi. Thus,
we must have that last(bi−1) > first(bi) and there must be a τ -match in the cells of bi−1 and bi. This
τ -match cannot end before cell c since then c would satisfy the conditions of Case I of our definition of
Jτ which would contradict the fact that (B, σ) is a fixed point of Jτ . Hence, cell c must be part of this
τ -match. Thus if σc = 1 where c > 1, then σc−1 and σc are elements of a τ -match in σ. But since τ starts
with 1, the only role σc = 1 can play is a τ -match is 1 and hence σc−1 and σc cannot be elements of a
τ -match in σ. Hence, σ1 = 1. We now have two cases.

Case 1. There is no τ -match in (B, σ) that starts from the first cell.

In this case, we claim that 2 must be in cell 2 of (B, σ). By contradiction, suppose 2 is in cell c where
c 6= 2. For any c > 2, it is easy to see that σc−1 > 2 = σc so there is a decrease between the two cells
c − 1 and c in (B, σ). By our argument above, there must exist a τ -match α that involves the two cells
c − 1 and c. In this case, α must include 1 which is in cell 1 because it must be the case that 1 and 2
play the role of 1 and 2 in the τ -match α, respectively. This contradicts our assumption that there is no
τ -match starting from the first cell. Hence, σ2 = 2.

In this case there are two possibilities, namely, either (i) 1 and 2 are both in the first brick b1 of (B, σ)
or (ii) brick b1 is a single cell filled with 1 and 2 is in the first cell of the second brick b2 of (B, σ). In
either case, we know that 1 is not part of a τ -match in (B, σ). So if we remove cell 1 from (B, σ) and
subtract 1 from the elements in the remaining cells, we will obtain a fixed point (B′σ′) of JΓ in OΓ,n−1.

Moreover, we can create a fixed point O = (B, σ) ∈ On satisfying the three conditions of Lemma
9 where σ2 = 2 by starting with a fixed point (B′, σ′) ∈ OΓ,n−1 of JΓ, where B′ = (b′1, . . . , b

′
r) and

σ′ = σ′1 · · ·σ′n−1, and then letting σ = 1(σ′1 + 1) · · · (σ′n−1 + 1), and setting B = (1, b′1, . . . , b
′
r) or

setting B = (1 + b′1, . . . , b
′
r).

It follows that fixed points in Case 1 will contribute (1− z)IUΓ,n−1(q, z) to IUΓ,n(q, z).

Case 2. There is a τ -match in (B, σ) that starts from the first cell.

In this case, the τ -match that starts from the first cell of (B, σ) must involve the cells of the first two
bricks b1 and b2 in (B, σ). Since there is no decrease within the first brick b1 of (B, σ), it must be the
case that the first brick b1 has exactly d cells, where 1 < d < p is the position of the first descent in τ,
and the brick b2 has at least p − d cells. Furthermore, we can see that the brick b2 consists of exactly
des(τ)−1 decreases, positioned according to their corresponding descents in τ . We first claim that all the
integers in {1, . . . , s−1, s}must belong to the first p cells of (B, σ). To see this, suppose otherwise and let
m = min{i : 1 ≤ i ≤ s, σk = i for some k > p}. That is,m is the smallest integer from {1, . . . , s−1, s}
that occupies a cell k strictly to the right of cell p in (B, σ). It follows that m is the smallest number that
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occupies a cell strictly to the right of cell p in O and thus, it is the case that σk−1 ≥ s > m = σk. Then
there are three possibilities:

(i) brick b2 has more than p− d cells and m is in brick b2,

(ii) m starts some brick bj for j > 2, or

(iii) m is in the middle of some brick bj for j > 2.

We will show that each of these cases contradicts our assumption (B, σ) is a fixed point of JΓ.
In case (i), since σk−1 > σk, there is a decrease in brick b2 that occurs strictly to the right of cell p.

However, due to the τ -match starting from cell 1 of O, brick b2 already has des(τ) − 1 descents, the
maximum number of allowed descents in a brick. Thus, by the second property of Lemma 9, this is a
contradiction.

In case (ii), since last(bj−1) = σk−1 > σk = first(bj), by Lemma 9, there must be a τ -match that is
contained in the cells of bj−1 and bj and ends weakly to the left of cell k which contains m. Since τ is
a minimal overlapping permutation, the only possible τ -match beside from the first one that starts from
cell 1 in (B, σ) must occur weakly to the right of cell p in O. However, since m is the smallest number in
the cells to the right of cell p and τ starts with 1, any match that involves m must also start from this cell.
Thus, we can never have a τ -match in (B, σ) that involves both cells k − 1 and k in (B, σ).

In case (iii), suppose that m occupies cell k that is in the middle of brick bj . There are now two
possibilities between the last cell of bj−1 and the first cell of brick bj : either last(bj−1) < first(bj) or
last(bj−1) > first(bj). If last(bj−1) < first(bj) then we can simply break the brick bj after cell k − 1,
contradicting the fact that (B, σ) is a fixed point. On the other hand, if last(bj−1) > first(bj) then by
Lemma 9, there must be a τ -match that ends weakly to the left of cell k, and involves the two cells k − 1
and k. However, by previous argument, this cannot hold.

Hence, it must be the case that all the integers {1, 2, . . . , s − 1, s} belong to the first p cells of (B, σ).
Furthermore, we only have one way to arrange these entries, according to their respective position within
the τ -match. This also implies that σp = s. We will then choose p − s numbers and fill these numbers
in the empty cells within the first p cells of (B, σ) such that red(σ1σ2 · · ·σp) = τ . There are

(
n−s
p−s
)

ways
to do this and keeping track of the inversions between our choice of p − s numbers and the elements of
(B, σ) which occurs after cell p, we obtain a factor of

[
n−s
p−s
]
q

from our possible choices. Then we have

to count the inversions among the first p elements of (B, σ), which contributes a factor of qinv(τ). We
notice that since τ has the minimal overlapping property, the next possible τ -match in (B, σ) must start
from cell p that contains s. In addition, according to Lemma 9, any brick in a fixed point of the involution
can have at most des(τ) − 1 descents within the brick so there cannot be any descents in b2 after cell p.
By construction, σp = s is less than the elements which occur to the right of cell p. Therefore, we can
remove the first p− 1 cells of (B, σ) and obtain a fixed point (B, σ′) of length n− p+ 1.

This process is also reversible. Suppose τ ∈ Sp is a minimal overlapping permutation with τ1 = 1, τp =
s, and the first descent in τ occurs at position d. Given a fixed point (B′, σ′) of length n − p + 1 where
B′ = (b′1, . . . , b

′
r) and a choice T of p− s elements from {s+ 1, . . . , n}, we let σ∗ be the permutation of

{1, . . . , s} ∪ T such that red(σ∗) = τ and σ∗∗ be the permutation of {1, . . . , n} − ({1, . . . , s} ∪ T ) such
that red(σ∗) = σ′. Then if we let σ = σ∗σ∗∗ and B = (d, p − d − 1 + b′1, b

′
2, . . . , b

′
r), then (B, σ) will

be a fixed point of JΓ of length n that has τ -match starting in cell 1.
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It follows that the contribution of the fixed points in Case 2 to IUτ,n(q, z) is

−zdes(τ)qinv(τ)

[
n− s
p− s

]
q

IUτ,n−p+1(q, z).

Combining Cases 1 and 2, we see that for n ≥ 2,

IUτ,n(q, z) = (1− z)IUτ,n−1(q, z)− zdes(τ)qinv(τ)

[
n− s
p− s

]
q

IUτ,n−p+1(q, z) (40)

which is what we wanted to prove.
It is easy to see that Theorem 6 follows immediately from Theorem 10. That is, Theorem 10 shows that

for a minimal overlapping permutation τ ∈ Sj that starts with 1, the generating function

INMτ (t, 1, z) = 1 +
∑
n≥1

tn

n!

∑
σ∈NMn(τ)

zdes(σ)+1

depends only on s = τj and des(τ). Thus if α and β are minimal overlapping permutations which start
with 1 and end with s and des(α) = des(β), then INMα(t, 1, z) = INMβ(t, 1, z) so that α and β are
des-c-Wilf equivalent. Similarly, Theorem 10 shows that for a minimal overlapping permutation τ ∈ Sj
that starts with 1, the generating function

INMτ (t, q, z) = 1 +
∑
n≥1

tn

[n]q!

∑
σ∈NMn(τ)

zdes(σ)+1qinv(σ)

depends only on s = τj , des(τ), and inv(τ). Thus if α and β are minimal overlapping permutations
which start with 1 and end with s and des(α) = des(β) and inv(α) = inv(β), then INMα(t, q, z) =
INMβ(t, q, z) so that α and β are (des, inv)-c-Wilf equivalent.

There are lots of examples of minimal overlapping permutations α and β for which the hypothesis of
Theorem 6 apply. For example, consider n = 5. Since we are only interested in permutations that start
with 1, we know that such a permutation α starts with a rise. Then α cannot end in a rise since otherwise α
is not minimal overlapping. Thus αmust start with 1 and end in a descent. There are no such permutations
that end in 5 and there are only two such permutations that end in 4, namely, 12354 and 13254 and these
two permutations do not have the same number of descents. This leaves us 10 possible permutations to
consider which we have listed in the following table. For each such σ, we have list des(σ), inv(σ), and
indicated whether is minimal overlapping.

σ des(σ) inv(σ) Is minimal overlapping?
12453 1 1 yes
12543 2 3 yes
14253 2 3 no
15243 2 4 no
13452 1 3 yes
13542 2 4 yes
14352 2 4 yes
14532 2 5 yes
15342 2 5 yes
15432 3 6 yes
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Thus, Theorem 6 tells us that all the elements in the set {13542, 14352, 14532, 15342} are des-c-Wilf
equivalent. It also tells that the same set breaks up into 2 (des, inv)-c-Wilf equivalence classes, namely,
{13542, 14352} and {14532, 15342}.

Another natural question to ask is whether the size of (des, inv)-c-Wilf equivalence classes can get
arbitrarily large as n goes to infinity. The answer to this question is yes. First, it is easy to see that if σ
is a permutation that starts with 1 and ends with 2, it is automatically minimal overlapping. That is, if
σ = σ1 . . . σn where σ1 = 1 and σn = 2, then there can be no 2 ≤ i ≤ n− 1 such that the first i elements
of σ has the same relative order as the last i elements of σ because in the first i elements of σ the smallest
element is at the start while in the last i elements of σ, the smallest element is at the end.

Now consider three consecutive elements x, x+ 1, x+ 2. Then the sequences t1(x) = (x+ 1)(x+ 2)x
and t2(x) = (x + 2)x(x + 1) each have one descent and two inversions. It follows that if we start with
the permutation σ = 1 t1(3) t1(6) t1(9) · · · t1(3n) 2, then we can replace any of the sequence t1(3k) by
its corresponding sequence t2(3k) and it will keep the inversion number and the descent number of the
permutation the same. Thus, the size of the (des, inv)-c-Wilf equivalence class of σ is at least 2n.

There are lots of other examples of this type. For example, consider four consecutive elements x, x +
1, x + 2, x + 3. Then the sequences s1(x) = (x + 1)(x + 2)x(x + 3) and s2(x) = x(x + 3)(x +
1)(x + 2) each have one descent and two inversions. It follows that if we start with the permutation
τ = 1 s1(3) s1(7) s1(11) . . . s1(4n − 1) 2, then we can replace any of the sequence s1(4k − 1) by its
corresponding sequence s2(4k − 1) and it will keep the inversion number and the descent number of the
permutation the same. This same argument can also be extended to permutations σ ∈ Sn that start with
123 · · · k and end with k + 1, for any k > 0. Hence, the size of the (des, inv)-c-Wilf equivalence class of
τ is at least 2n.

5 The proof of Theorem 8
In Theorem 8, we study the (des,LRmin)-c-Wilf equivalent relation and its q-analog which arise as
another consequence of Theorem 10. First, we observe that for any permutation τ , NMτ (t, 1, y) =
INMτ (t, z, 1) and hence, Uτ (t, y) = IUτ (t, z, 1). Thus, if α and β are minimal overlapping permutations
which start with 1 and end with s with des(α) = des(β), then Uα(t, y) = Uβ(t, y). This leads to

NMα(t, x, y) =

(
1

Uα(t, y)

)x
=

(
1

Uβ(t, y)

)x
= NMα(t, x, y).

Hence, if α and β are minimal overlapping permutations which start with 1 and end with s and des(α) =
des(β), then α and β are (des,LRmin)-c-Wilf equivalent. In fact, by relaxing the condition that α and
β start with 1, we can generalize this result for pairs of permutations α and β that satisfy the condition
which we refer to as mutually minimal overlapping.

Before proceeding with the proof of Theorem 8, we first recall the definition of mutually minimal
overlapping permutations. Here, we say that α and β are mutually minimal overlapping if α and β are
minimal overlapping and the smallest n such that there exist a permutation σ ∈ Sn such that α-mch(σ) ≥
1 and β-mch(σ) ≥ 1 is 2j − 1. This ensures that in any permutation σ, any pair of α-matches, any pair
of β matches, and any pair of matches where one match is an α-match and one match is a β-match can
share at most one letter.

Note that if α = α1 . . . αj and β = β1 . . . βj are minimal overlapping permutations in Sj that start
with 1 and end with 2, then α and β are mutually minimal overlapping. That is, it cannot be that there is



Descent c-Wilf Equivalence 21

1 < i < j such that the last i elements of α have the same relative order as the first i elements of β since
the first i elements of α has its smallest element at the start while the last i elements of β has it smallest
element at the end. Similarly, it can not be that there is 1 < i < j such that that last the last i elements of
β have the same relative order as the first i elements of α. On the other hand, if

α = 1 9 3 8 2 7 6 5 4 and
β = 1 3 9 8 7 5 2 6 4,

then one can check that α and β are minimal overlapping, des(α) = des(β) = 4, and inv(α) = inv(β) =
19. However α and β are not mutually minimal overlapping since the first 3 elements of α have the same
relative order as that last three elements of β.

We shall give a bijective proof for a slightly stronger version of Theorem 6. In fact, Theorem 6 is the
special case of the following result when a = 1.

Theorem. Suppose α = α1 . . . αj and β = β1 . . . βj are permutations in Sj which are mutually minimal
overlapping and there is an 1 ≤ a < j such that αi = βi for i ≤ a, αa = βa = 1, αj = βj , and
des(α) = des(β).

Then ∑
n≥0

tn

n!

∑
σ∈NMn(α)

xdes(σ)yLRmin(σ) =
∑
n≥0

tn

n!

∑
σ∈NMn(β)

xdes(σ)yLRmin(σ). (41)

Thus α and β are (des,LRmin)-c-Wilf equivalent.
If in addition, inv(α) = inv(β), then∑
n≥0

tn

[n]q!

∑
σ∈NMn(α)

xdes(σ)yLRmin(σ)qinv(σ) =
∑
n≥0

tn

[n]q!

∑
σ∈NMn(β)

xdes(σ)yLRmin(σ)qinv(σ). (42)

Thus α and β are (des,LRmin, inv)-c-Wilf equivalent.

Proof: For any n ≥ 0, we can partition the elements of Sn into four sets:

1. An equals the set of σ ∈ Sn such that α-mch(σ) > 0 and β-mch(σ) = 0,

2. Bn equals the set of σ ∈ Sn such that β-mch(σ) > 0 and α-mch(σ) = 0,

3. Cn equals the set of σ ∈ Sn such that β-mch(σ) > 0 and α-mch(σ) > 0,

4. Dn equals the set of σ ∈ Sn such that β-mch(σ) = 0 and α-mch(σ) = 0.

Clearly NMn(α) = Dn ∪Bn and NMn(β) = Dn ∪An. Thus, to prove that∑
σ∈NMn(α)

zdes(σ)uLRmin(σ) =
∑

σ∈NMn(β)

zdes(σ)uLRmin(σ),

we need only prove that ∑
σ∈An

zdes(σ)uLRmin(σ) =
∑
σ∈Bn

zdes(σ)uLRmin(σ).
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Thus, we need to define a bijection φ : An → Bn such that for all σ ∈ An, des(σ) = des(φ(σ))
and LRmin(σ) = LRmin(φ(σ)). One simply replaces each α-match σi . . . σi+j−1 in σ by the β-match
where we rearrange σi+1 . . . σi+j−2 so that it matches β. Given our conditions on α and β, this mean that
we will simply rearrange σi+a . . . σi+j−2 to match the order of the elements βa+1 . . . βj−1. Since α is
minimal overlapping, the elements that we rearrange in any two α matches of σ are disjoint. Hence φ is
well defined.

The fact that αa = βa = 1 ensures that σi+a−1 is less than each of the elements σi+a . . . σi+j−2 so
that rearranging these can not effect the number of left-to-right minima. So LRmin(σ) = LRmin(φ(σ)).
The fact that des(α) = des(β) ensures that our rearrangement σi+1 . . . σi+j−1 does not effect the num-
ber of descents so that des(σ) = des(φ(σ)). Moreover, if inv(α) = inv(β), then our rearrangement
σi+a . . . σi+j−2 does not effect the number of inversions so that inv(σ) = inv(φ(σ)).

Next we claim the fact that α and β are mutually minimal overlapping ensures that φ(σ) is in Bn. That
is, if φ(σ) has an α match, then if must have been the case that there was α-match σi . . . σi+j−1 in σ such
that the rearrangement of σi+a . . . σi+j−2 or possibly two consecutive α-matches in σ σi . . . σi+2j−2 such
that the rearrangement of σi+a . . . σi+j−2 and the rearrangement of σi+j−1+a . . . σi+2j−3 caused an α-
match to appear. In either case, this would mean that that there is an α-match in φ(σ) which shares more
than 2 letters with a β-match in φ(σ). This is impossible since α and β are mutually minimal overlapping.

Finally, it is clear how to define φ−1(σ). One simply replaces each β-match σi . . . σi+j−1 in σ by the
α-match where we rearrange σi+a . . . σi+j−2 so that it matches α. The same arguments will ensure that
φ−1 is well defined and maps Bn into An. Thus φ proves theorem.

Finally, we observe that our proof of Theorem 10 can also be modified to prove the following theorem
which allows us to study the c-Wilf equivalent relations between families of permutations.

Theorem 11. Suppose Γ = {α(1), . . . , α(k)} is a set of minimal overlapping permutations in Sp which
all start with 1 and α(i) and α(j) are mutually minimal overlapping for all 1 ≤ i < j ≤ k. For each
1 ≤ i ≤ k, let si be the last element of α(i). Then

INMΓ(t, q, z) =
1

IUΓ(t, q, z)
where IUΓ(t, y) = 1 +

∑
n≥1

IUΓ,n(q, z)
tn

[n]q!
,

with IUΓ,1(q, z) = −z, and for n ≥ 2,

IUΓ,n(q, z) = (1− z)IUΓ,n−1(q, z)−
k∑
i=1

zdes(α(i))qinv(α(i))

[
n− si
p− si

]
q

Uτ,n−p+1(q, z).
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