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2 Wolfgang Steiner

1 Introduction
In the last years, the height of binary search trees generated by sequences which are uniformly distributed
modulo 1 has been studied. Devroye [3] has shown for the Weyl sequences{nα} that the height of the
tree with its firstN elements satisfies

H(N) ∼ 12
π2 logN log logN

for almost all α ∈ (0,1). The minimal height is attained for the golden meanα = (
√

5 + 1)/2,
H(N) ∼ logN/ logα, and the maximal height is almost as large as the theoreticalmaximum for binary
search trees. More precisely, for every sequence(cN)N≥1 which decreases monotonically from 1 to 0, we
have someα such thatH(N) ≥ cNN infinitely often (Devroye and Goudjil [5]).

For general uniformly distributed sequences modulo 1, Dekking and van der Wal [1] have shown

H(N) = o(N)

and that, for everyc≥ 1/ log2, we have sequences withH(N) ∼ clogN.
Devroye and Neininger [6] studied random suffix search trees, which are binary search trees generated

by the suffixesSn = 0.BnBn+1Bn+2 . . . of independent identically distributed randomq-ary digitsB1,B2, . . .
for someq≥ 2. For these trees, the expected value of the depth ofSN is given by

Ed(SN) = 2logN+O
(

log2 logN
)

.

Note that the suffixes are uniformly distributed modulo 1 with probability 1.
For random binary search trees of sizeN, it was shown by several authors that the expected value of the

depth of a node is again 2 logN+O (1) and we know from Mahmoud and Pittel [9] and Devroye [2] that
the distribution of the depths is asymptotically normal with variance 2logN.

A natural generalization of binary search trees arem-ary search trees, which are constructed by placing
the firstm−1 keys in the root, sorted in increasing order from left to right, then guiding a subsequent key
to theℓth subtree of the root, 1≤ ℓ ≤ m, if that key is greater than exactlyℓ−1 of the root keys. In the
ℓth subtree, the newcomer is subjected recursively to the same procedure until a node with less thanm−1
keys is found.

Mahmoud and Pittel [10] showed that the distribution of the depths in randomm-ary search trees is

asymptotically normal with mean value 1
∑m

j=2 1/ j logN and variance
(∑m

j=2 1/ j)3

∑m
j=2 1/ j2

logN. This and other limit

laws for various kinds of trees can also be found in Devroye [4].
In this article, we considerm-ary search trees generated by particular uniformly distributed sequences

modulo 1, the van der Corput sequences(φq(n))n≥1, where we omitn = 0 for convenience. Let

n = ∑
j≥0

ε j(n)q j

be the (unique)q-ary digital expansion with digitsε j (n) ∈ {0,1, . . . ,q−1} for some integerq≥ 2. Then
the van der Corput sequence to the baseq is defined by the radical-inverse function

φq(n) = ∑
j≥0

ε j (n)q− j−1.
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Let d(n) denote the depth of the node containing thenth element of the sequence. Besides the height
H(N) = maxn≤N d(n), we will study the distribution ofd(n). To that end, we define a sequence of (dis-
crete) random variablesXN by

P{XN = k} =
aNk

N
with aNk = |{n≤ N : d(n) = k}|,

i.e.,XN is the depth of a key randomly chosen among the firstN keys inserted into the tree.

2 Results
Throughout the paper letM = ⌊logqm⌋ be the integer part of the logarithm to the baseq of m.

Theorem 1 The height of the tree is given by

H(N) =
1

M +hq,M( m
qM )

logqN+O (1) , (1)

where hq,M(x) is determined by the sequence

µj =

{

0 if x < q−η j

1 else
with η0 = 0, η j+1 =

{

η j +m−1 if M +µj = 0
⌊

xq
qµj (q−η j )

⌋

−1 else.

Let J, p be the lengths of the preperiod and the period of µj , i.e., µj+p = µj for all j > J. Then we have

hq,M(x) =
1
p

J+p

∑
j=J+1

µj , (2)

The functions hq,M : [1,q)→ [0,1) are monotonically increasing functions.

Note thathq,M = hq,M′ for all M,M′ > 0.

Theorem 2 Expected value and variance of XN are given by

EXN =
1
N ∑

n≤N
d(n) = µlogqN+O (1) (3)

VXN =
1
N ∑

n≤N

(d(n)−EXN)2 = σ2 logqN+O (1) (4)

with constants µ andσ given by (16) and (18). For m= qM, m= 2 (binary search trees) and q= 2 (the
binary van der Corput sequence), we have simple formulae forµ andσ:

m= qM : µ=
1
M

, σ = 0 (5)

m= 2 : µ= (q−1)

(

1
2

+
1
q

)

, σ2 =
(q−1)(q−2)(q2+3q−6)

12q2 (6)

q = 2 : µ=
1

M + m
2M −1

, σ2 =

(

m
2M −1

)(

2− m
2M

)

(

M + m
2M −1

)3 (7)

For m 6= qM, we have µ∈ ( 1
M+1, 1

M ) andσ2 > 0.
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The main result concerns the distribution properties ofXN. We prove asymptotic normality in the weak
sense and provide a local limit law.

Theorem 3 If m 6= qM, then we have, for everyδ > 0,

1
N
|{n≤ N : d(n) < EXN +xVXN}| =

1√
2π

∫ x

−∞
e−t2/2dt+O

(

(logN)−1/2+δ
)

(8)

uniformly for all real x as N→ ∞ and

|{n≤ N : d(n) = k}| = N√
2πVXN

(

exp

(

− (k−EXN)2

2VXN

)

+O
(

(logN)−1/2+δ
)

)

(9)

uniformly for all nonnegative integers k as N→ ∞.

The (easy) casem = qM is treated in Section 3. The crucial part for all other cases is contained in
Section 4, where the structure of the tree is analyzed and itsgenerating function is calculated. Section 5
is devoted to the height of the tree, i.e., Theorem 1. Formulae for mean value and variance are derived
in Section 6. The two parts of Theorem 3 are proved in Sections7 and 8. These proofs are adapted from
Drmota and Gajdosik [7]. Finally, the values ofµ andσ for binary search trees and the binary van der
Corput sequence are calculated in Section 9.

3 m= qM

For m = qM, the root contains the elements{1, . . . ,qM − 1} and its keys are just theqM − 1 possibili-
ties for ∑M−1

j=0 c jq− j−1, c j ∈ {0, . . . ,q−1} with (c0, . . . ,cM−1) 6= (0, . . . ,0). Let us call prefix of thenth
key a prefix of the corresponding digit wordε0(n)ε1(n) . . . . Then theℓth subtree contains all keys with
prefix ε0(ℓ) . . .εM−1(ℓ) and in the root of theℓth subtree we have theqM − 1 keys∑M−1

j=0 ε j(ℓ)q− j−1 +

∑2M−1
j=M c jq− j−1 with c j ∈ {0, . . . ,q−1} and(cM, . . . ,c2M−1) 6= (0, . . . ,0). Thus, the depth of thenth ele-

ment isk, i.e.,d(n) = k, if and only if qkM ≤ n < q(k+1)M. With L = ⌊logqM N⌋ = ⌊(logqN)/M⌋, expected
value and variance are given by

1
N ∑

n<N

d(n) =
1
N

(

L−1

∑
k=0

(qM −1)qkMk+(N−qLM)L

)

= L− qM

qM −1
qLM −1

N
=

1
M

logqN+O (1) ,

1
N ∑

n<N

(

d(n)− 1
N ∑

n<N
d(n)

)2

=
1
N

(

L−1

∑
k=0

(qM −1)qkM
(

k−L+
qM(qLM −1)

(qM −1)N

)2

+(N−qLM)

(

qM(qLM −1)

(qM −1)N

)2
)

=
1
N

(

(qLM −1)qM(qM +1)

(qM −1)2 − (qLM −1)2q2M

(qM −1)2

(

1
N

+
1

N2

)

−L2− 2LqM

qM −1

(

1− qLM −1
N

))

= O (1) ,

and the results form= qM are proved.
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4 Generating function
Define the bivariate generating function of the tree by

B(z,u) = ∑
j≥0

b j(z)u
j

with
b j(z) = ∑

k≥0

b jkzk, b jk = aq j+1k−aq jk = |{n : q j ≤ n < q j+1,d(n) = k}|,

i.e.,zcounts the depth of the elements andu the time of their insertion in the tree.

Lemma 1 We have

B(z,u) =
Q(z,u)

1−P(z,u)

for some polynomials Q(z,u) and P(z,u) determined by (13) and

B(z,u) =
G(z,u)

1−F(z,u)

for some analytic functions (in the domain Dρ = {(z,u) : |z| < 1+ ρ, |u|< 1/q+ ρ} for someρ > 0)

F(z,u) =
∞

∑
j=M

∞

∑
k=1

f jkzku j , G(z,u) =
∞

∑
j=0

∞

∑
k=0

g jkzku j

with f jk ≥ 0, gjk ≥ 0 for all j ,k. Assume, w.l.o.g,gcd(1−P(z,u),Q(z,u)) = 1.

Proof. Form= qM, the considerations of the previous section give

B(z,u) =
M−1

∑
j=0

(q−1)q ju j +qMzuMB(z,u) =
∑M−1

j=0 (q−1)q ju j

1−qMzuM .

For m> qM, the minimal key in the root isφq(qM) = .0M1 = q−M−1. The leftmost subtree contains
therefore all keysφq(n) < .0M1, i.e., those with prefix 0M+1. As in the casem= qM, this subtree has the
same shape as the whole tree, and its generating function iszuM+1B(z,u).

If m−1 ≥ 2qM andq > 2, then the second smallest key in the root isφq(2qM) = .0M2. In this case,
the second subtree contains all keys with prefix 0M1 (except the key.0M1) and its generating function is
againzuM+1B(z,u).

The other possibility for the second smallest key (m > 2) is φq(qM−1) = .0M−11. Then the second
subtree contains all keys with prefix 0M satisfyingφq(n) > .0M1. Forq = 2, this is the same tree as in the
latter case and its generating function iszuM+1B(z,u). For q > 2, this means (if we omit the prefix 0M

since it does not change the structure) that we start withn = 2 and consider just thosen with ε0(n) ≥ 1.
Call this treeT1. In general, letTi , 0≤ i < q−1, be the tree generated by the van der Corput sequence
starting withn = i + 1 and omitting then’s with digit ε0(n) < i, i.e., just take the keysφq(n) > .i = i/q.
Denote its generating function byBi(z,u). Then the second subtree contributeszuMB1(u,z) to B(z,u).
Furthermore note thatT0 is the whole tree andB0(z,u) = B(z,u).
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The other subtrees have a similar structure. Ifn+qM ≤ m−1 orεM(n) = q−1, then the contribution to
the generating function iszuM+1B(z,u). In the other cases, the tree is of typeTεM(n) and the contribution
is zuMBεM(n)(z,u).

We have thus, form< (q−1)qM,

B(z,u) = B0(z,u) =
M−1

∑
j=0

(q−1)q ju j +(m−qM)uM +(m−qM)zuM+1B0(z,u)

+ (m− εM(m)qM)zuMBεM(m)(z,u)+ ((εM(m)+1)qM −m)zuMBεM(m)−1(z,u)

and, forεM(m) = q−1,

B0(z,u) =
M−1

∑
j=0

(q−1)q ju j +(m−qM)uM +(2m−qM+1)zuM+1B0(z,u)+ (qM+1−m)zuMBq−2(z,u)

The sequence constitutingTi is (i +1, i +2, . . . ,q−1,q+ i,q+ i +1, . . .,2q−1,2q+ i, . . .). Denote its
mth element bymi and setMi = ⌊logqmi⌋. Note that thec(q− i)qkth element of the sequence iscqk+1 + i
(c < q). Hence we haveMi = ⌊logq

mq
q−i ⌋ ∈ {M,M + 1} andεMi (mi) = ⌊ mi

qMi
⌋ = ⌊ mq

qMi (q−i)
⌋ for Mi > 0,

εMi (mi) = mi = m+ i for Mi = 0.
The generating function ofTi is, for Mi > 0 andεMi (mi) < q−1,

Bi(z,u) =
Mi−1

∑
j=0

(1− i/q)(q−1)q ju j − i/q+(m− (1− i/q)qMi)uMi +(m− (1− i/q)qMi)zuMi+1B0(z,u)

+ (m− εMi(mi)(1− i/q)qMi)zuMi BεMi (mi)(z,u)+ ((εMi (mi)+1)(1− i/q)qMi −m)zuMi BεMi (mi)−1(z,u),

(10)

for εMi (mi) = q−1,

Bi(z,u) =
Mi−1

∑
j=0

(1− i/q)(q−1)q ju j − i/q+(m− (1− i/q)qMi)uMi (11)

+(2m− (1− i/q)qMi+1)zuMi+1B0(z,u)+ ((1− i/q)qMi+1−m)zuMi Bq−2(z,u)

and finally forMi = 0,

Bi(z,u) = m−1+(m−1)zuB0(z,u)+zBi+m−1(z,u). (12)

HenceBi(z,u) = ∑q−2
j=0 zPi j (u)+Qi(u) for some polynomialsPi j (u) andQi(u), i.e.,







B0(z,u)
...

Bq−2(z,u)






= zA(u)







B0(z,u)
...

Bq−2(z,u)






+







Q0(u)
...

Qq−2(u)









The distribution of m-ary search trees generated by van der Corput sequences 7

with A(u) = (Pi j (u))0≤i, j≤q−2 andB(z,u) = B0(z,u) is given by

B(z,u) = (1,0, . . . ,0)(Iq−1−zA(u))−1







Q0(u)
...

Qq−2(u)






=

∞

∑
k=0

zk(1,0, . . . ,0)A(u)k







Q0(u)
...

Qq−2(u)






(13)

whereIq−1 denotes the(q−1)-dimensional identity matrix, and the first equation determinesP(z,u),Q(z,u).
The functionsF(z,u),G(z,u) are obtained by recurrently replacing theBi(z,u)’s, i > 0, in the equation

for B0(z,u) by their expressions given in (10)–(12),

B0(z,u) = Q0(u)+
q−2

∑
i=0

zP0i(u)Bi(z,u)

= Q0(u)+zP00(u)B0(z,u)+
q−2

∑
i=1

zP0i(u)

(

Qi(u)+Pi0(u)B0(z,u)+
q−2

∑
j=1

Pi j (u)B j(z,u)

)

= · · ·

For M > 0, we have∑q−2
i=1 Pi j (1/q) < 1 for all i > 0. Thus(1+ ρ)∑q−2

i=1 Pi j (1/q+ ρ)≤ 1 for all i > 0 and
someρ > 0. Then, for(z,u) ∈ Dρ, the coefficients ofBi(z,u) tend to 0 in the above expression ofB0(z,u)
and we obtain

B0(z,u) = G(z,u)+F(z,u)B0(z,u) =
G(z,u)

1−F(z,u)
.

For M = 0, we have∑q−2
i=1 Pi j (1/q) < 1 only for i ≥ q−m and∑q−2

i=1 Pi j (u) = Pi,i+m−1(u) = 1 else. This
means that we replaceBi(z,u) by Qi(u)+ zPi,i+m−1(u)Bi+m−1(z,u) at most⌈q−m−1

m−1 ⌉ consecutive times

before we have∑q−2
i=1 Pi j (1/q) < 1. Hence choosingρ such that(1+ ρ)⌈

q−m−1
m−1 ⌉∑q−2

j=1 Pi j (1/q+ ρ)≤ 1 for
all i ≥ q−mgives the same result as forM > 0.

For the same reasons,F(z,u) andG(z,u) are analytic inDρ. The f jk andg jk are nonnegative because
the coefficients ofQi(u) andPi j (u) are positive. 2

5 Height
For everyk ≥ 0, we look for the minimalj such thatb jk 6= 0. Since allQi(u) have a constant term, this
is, by (13), the minimal exponent ofu in the first row ofA(u)k. Theℓth element of this row is the sum of
P0s1(u)Ps1s2(u) . . .Psk−1sk(u) over all sequencess1, . . . ,sk with sk = ℓ.

Recall from the last section that theith row of A(u) consists of terms with exponentMi and (in the
majority of the cases)Mi + 1 with Mi ∈ {M,M + 1}. For i < i′, we have eitherMi < Mi′ or Mi = Mi′ ,
εMi (mi) ≤ εMi′ (mi′). Thus the minimal exponent ofu in the first row ofA(u)k can be found by recursively
choosing the minimals1 such thatP0s1(u) has a termuM0, the minimals2 such thatPs1s2(u) has a termuMs1

and so on. Hencesi+1 = εMsi
(msi )−1 for all i ≥ 0 if we sets0 = 0. Furthermore,ηi = si andµi = Msi −M.

The minimal j such thatb jk 6= 0 is therefore

Mη0 +Mη1 + · · ·+Mηk−1 = kM+
k−1

∑
i=0

µi = k

(

M +hq,M

(

m
qM

))

+O (1)
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and the height forN = q j+1−1 with this j is

H(q j+1−1) = max
n<q j+1

d(n) = k =
j

M +hq,M( m
qM )

+O (1) .

Clearly, H(N) is monotonically increasing and thus (1) is proved. It is easy to see that, for allk ≥ 0,
Mη0 + · · ·+Mηk−1 does not decrease ifm

qM increases and thus thehq,M ’s are monotonically increasing.

6 Expected value and variance
For m = qM, expected value and variance have been calculated in Section 3. Thus we can restrict to
m 6= qM. The first step is to obtain proper information aboutb j(z).

Proposition 1 For m 6= qM, we have someν > 0 such that, as j→ ∞,

b j(z) = C(z)q(z) j +O
(

q(1−ν) j
)

(14)

uniformly in |z| ≤ 1+ ρ̃ for someρ̃ > 0, where q(z) is the (algebraic) function satisfying q(1) = q,
P(z,1/q(z)) = 1 and C(z) is an analytic function in|z| ≤ 1+ ρ̃ with C(1) = q−1.

Proof. First we study the poles ofB(z,u) with |z| ≤ 1, |u| ≤ 1/q. One pole is(z,u) = (1,1/q) because of

B(1,u) = ∑
j≥0

(q−1)q ju j =
q−1
1−qu

.

HenceP(1,1/q) = 1 and there exists an algebraic functionq(z) with P(z,1/q(z)) = 1 andq(1) = q.
Clearly,q(z) is a solution ofF(z,1/q(z)) = 1 for |z| ≤ 1+ ρ too.

F(z,u) = 1 has no solutions with|z| < 1 or |u| < 1/q since all f jk are nonnegative. For a solution with
|z|= 1 and|u|= 1/q, we needzk(uq) j = 1 for all j,k with f jk > 0. We havefM+1,1 > 0 because ofm 6= qM

and thusz(uq)M+1 = 1. Now, letℓ ≥ 1 be minimal such thatµℓ = 0. Then we havefℓ(M+1)−1,ℓ > 0 and

thuszℓ(uq)ℓ(M+1)−1 = 1. Together withz(uq)M+1 = 1, this implies 1/(uq) = 1, henceu = 1/q andz= 1.
Hence(z,u) = (1,1/q) is the only pole ofB(z,u) with |z| ≤ 1, |u| ≤ 1/q.

Furthermore,(1,1/q) is a simple zero of 1−F(z,u) and 1−P(z,u). Hence we have somẽρ, ρ̂ > 0 such
that we have no zeros with|z| ≤ 1+ ρ̃, |u| < 1/q+ ρ̂ except(z,1/q(z)). Then

Q(z,u)

1−P(z,u)
=

Q(z,u)

(1−q(z)u)P̃(z,u)
=

1
1−q(z)u

(

Q(z,1/q(z))

P̃(z,1/q(z))
+ (1−q(z)u)R(z,u)

)

=
C(z)

1−q(z)u
+R(z,u)

for some algebraic functioñP(z,u) and analytic functionsC(z),R(z,u) in |z| ≤ 1+ ρ̃, |u| < 1/q+ ρ̂.
By Cauchy’s formula, we get

b j(z) =
1

2πi

∫

|u|= 1
q+

ρ̂
2

Q(z,u)

1−P(z,u)

du
u j+1 = C(z)q(z) j +

1
2πi

∫

|u|= 1
q+

ρ̂
2

R(z,u)
du

u j+1 = C(z)q(z) j +O
(

q(1−ν) j
)

with someν > 0. This completes the proof of the proposition. 2

Now, we build the generating function ofaNk for generalN with theb j(z).
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Lemma 2 If we set L= ⌊logqN⌋ and d(0) = 0, then

∑
k≥0

aNkz
k =

L−1

∑
j=0

b j(z)
L

∑
ℓ= j+1

εℓ(N)−1

∑
c=0

zd(∑L
s=ℓ+1 εs(N)qs− j−1+cqℓ− j−1)+O (1) +O

(

logN
(

1+zO (logN)
))

. (15)

Proof. We have

{0,1,2, . . . ,N−1}

= {0, . . . ,εL(N)qL −1}∪{εL(N)qL, . . . ,εL(N)qL + εL−1(N)qL−1−1}∪ · · ·∪{
L

∑
s=1

εs(N)qs, . . . ,
L

∑
s=0

εs(N)qs−1}

=
L
⋃

ℓ=0

εℓ(N)−1
⋃

c=0

(

L

∑
s=ℓ+1

εs(N)qs+cqℓ +{0, . . . ,qℓ−1}
)

=
L−1
⋃

j=0

L
⋃

ℓ= j+1

εℓ(N)−1
⋃

c=0

(

L

∑
s=ℓ+1

εs(N)qs+cqℓ +{q j , . . . ,q j+1−1}
)

∪
L
⋃

ℓ=0

εℓ(N)−1
⋃

c=0

{
L

∑
s=ℓ+1

εs(N)qs+cqℓ}

The element∑L
s=ℓ+1εs(N)qs + cqℓ + n with q j ≤ n < q j+1 and j < ℓ is located in a subtree under the

node containingn. Its depth is therefore that ofn plus some additional depth depending on the shape of
the subtree (see the proof of Lemma 1), which can be bounded byd(∑L

s=ℓ+1εs(N)qs− j +cqℓ− j)+2.
The depth of the remainingO (L) terms can be estimated by the height of the tree,O (L). 2

Now, we can calculate the mean value

EXN =
d
dz

(

1
N ∑

k≥0

aNkz
k

)∣

∣

∣

∣

∣

z=1

=
1
N

L−1

∑
j=0

b′j(1)
L

∑
ℓ= j+1

εℓ(N)+
1
N

L−1

∑
j=0

b j(1)
L

∑
ℓ= j+1

εℓ(N)O (L− ℓ)+O (1)

=
1
N

L

∑
ℓ=1

εℓ(N)
L−1

∑
j=ℓ−1

j(q−1)q j−1q′(1)+
1
N

L

∑
ℓ=1

εℓ(N)
L−1

∑
j=ℓ−1

(q−1)q j
O (L− ℓ)+O (1) = L

q′(1)

q
+O (1) .

Thus (3) is proved and we have, sinceF(z,u(z)) = 1 for u(z) = 1/q(z),

∂F
∂z

(z,u(z))+u′(z)
∂F
∂u

(z,u(z)) = 0, i.e., u′(z) = −
∂F
∂z (z,u(z))
∂F
∂u (z,u(z))

,

µ=
q′(1)

q
= −u′(1)

u(1)
=

∂F
∂z (1,1/q)

1
q

∂F
∂u (1,1/q)

=
∑∞

k=M ∑∞
j=1k f jk/q j

∑∞
k=M ∑∞

j=1 j f jk/q j , (16)

whereF can be replaced byP.
For the variance, we have to be more careful. First we distinguish the elements by their place inside the

node and the type of the node, in order to obtain

d(n+q j+1ñ) = d(n)+dθ(ñ)

for all n with j = ⌊logqn⌋ at a position of typeθ ∈ Θ = {1, . . . ,m−1}×{0, . . . ,q−2} and some functions
dθ with dθ(ñ) = O (logñ). With

bθ
jk = |{n∈ {q j , . . . ,q j+1−1} : d(n) = k, the position ofn is of typeθ}|,
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we have
bθ

j (z) = ∑
k≥0

bθ
jkzk = Cθ(z)q(z) j +O

(

q(1−ν) j
)

for some analytic functionsCθ(z) (in |z| ≤ 1+ ρ̃) because of

Bθ(z,u) = ∑
j≥0

bθ
j (z)u

j =
Gθ(z,u)

1−F(z,u)

for some analytic functionsGθ(z,u) (in Dρ). This allows to refine (15) to

∑
k≥0

aNkz
k =

L−1

∑
j=0

L

∑
ℓ= j+1

εℓ(N)−1

∑
c=0

∑
θ∈Θ

bθ
j (z)z

dθ(∑L
s=ℓ+1εs(N)qs− j−1+cqℓ− j−1) +O

(

logN
(

1+zO (logN)
))

(17)

and the variance is

VXN =
d2

dz2

(

1
N ∑

k≥0

aNkz
k

)∣

∣

∣

∣

∣

z=1

+EXN − (EXN)2

=
1
N

L−1

∑
j=0

L

∑
ℓ= j+1

εℓ(N)−1

∑
c=0

∑
θ∈Θ

(

Cθ(1) jq j−1q′′(1)+Cθ(1) j( j −1)q j−2(q′(1))2 +2C′
θ(1) jq j−1q′(1)

+2Cθ(1) jq j−1q′(1)dθ

( L

∑
s=ℓ+1

εs(N)qs− j−1 +cqℓ− j−1
)

)

+L
q′(1)

q
− 1

N ∑
j ,ℓ,c,θ

Cθ(1) jq j−1q′(1)

× 1
N ∑

j̃ ,ℓ̃,c̃,θ̃

(

Cθ̃(1) j̃q j̃−1q′(1)+2C′
θ̃(1)q j̃ +2Cθ̃(1)q j̃dθ̃

( L

∑
s=ℓ̃+1

εs(N)qs− j̃−1 +cqℓ̃− j̃−1
)

)

+O (1)

= L
q′′(1)

q
−L

(q′(1))2

q2 +L
q′(1)

q
+O (1) = L

(

q′′(1)

q
+µ−µ2

)

+O (1)

Thus (4) is proved with

σ2 =
q′′(1)

q
+µ−µ2 =

d
dz

(

−u′(z)
u(z)

)∣

∣

∣

∣

z=1
+µ=

d
dz

(

∂F
∂z (z,u(z))

u(z) ∂F
∂u (z,u(z))

)∣

∣

∣

∣

∣

z=1

+µ

=
( ∂2F

∂z2 +u′ ∂2F
∂z∂u)u∂F

∂u − (u′ ∂F
∂u +u ∂2F

∂z∂u +u′u∂2F
∂u2 ) ∂F

∂z +u∂F
∂z

∂F
∂u

(u∂F
∂u )2

∣

∣

∣

∣

∣

∣

z=1

=
µ

u∂F
∂u

(

1
µ

∂2F
∂z2 −2u

∂2F
∂z∂u

+
∂F
∂z

+u2µ
∂2F
∂u2 +u

∂F
∂u

)∣

∣

∣

∣

z=1
(18)

=
qµ

∂F
∂u (1,1/q)

∞

∑
j=M

∞

∑
k=1

f jk

q j

(

k(k−1)

µ
−2 jk + j( j −1)µ+ j

)

=
qµ

∂F
∂u (1,1/q)

∞

∑
j=M

∞

∑
k=1

f jk

q j

(

1
µ
(k−µ j)2 +

(

1− 1
µ

)

(k−µ j)

)

=
q

∂F
∂u (1,1/q)

∞

∑
j=M

∞

∑
k=1

f jk

q j (k−µ j)2.
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The last equation holds because of

∞

∑
j=M

∞

∑
k=1

f jk(k−µ j) =
∂F
∂z

(1,1/q)−µq
∂F
∂u

(1,1/q) = 0.

(16) showsµ∈ ( 1
M+1, 1

M ) for m 6= qM since we havekM ≤ j ≤ k(M + 1) for all j,k with f jk > 0 and
we have somej,k such thatkM < j and somej,k such thatj < k(M +1) (see the proof of Proposition 1).
Furthermore, form 6= qM, j/k is not equal for allj,k with f jk > 0 which impliesσ2 > 0.

7 Global limit law
Now, we prove the asymptotic normality ofXN. Observe that its characteristic function is

1
N ∑

k≥0

aNke
ikt = EeitXN .

Proposition 2 Suppose m6= qM and set µN = EXN, σ2
N = VXN. Then for everyδ > 0, we have uniformly

for |t| ≤ (logN)1/2−δ

e−itµN/σN
1
N ∑

k≥0

aNke
ikt/σN = e−t2/2 +O

(

(logN)−1/2+δ
)

. (19)

Proof. We have

q(eit ) = qeiµt−σ2t2/2+O (t3) (20)

and, by using Proposition 1,

b j(e
it ) = (q−1)q jej(iµt−σ2t2/2)eO (t+ jt3) +O

(

q(1−ν) j
)

in an open (real) neighbourhood oft = 0. By Lemma 2, we obtain

∑
k≥0

aNke
ikt =

L−1

∑
j=0

b j(e
it )

L

∑
ℓ= j+1

εℓ(N)−1

∑
c=0

eitO (L− j) +O (logN)

=
L−1

∑
j=L−⌊Lδ⌋

(q−1)q jei jµt− jσ2t2/2eO (t+ jt3)
L

∑
ℓ= j+1

εℓ(N)eO (Lδt) +O
(

qL−Lδ
)

for (small)δ > 0. Now observe thatµN = µL+O (1) and 1/σN = 1/(σ
√

L)(1+O
(

L−1
)

). Hence

Eeit (XN−µN)/σN = e−itµN/σN
1
N ∑

k≥0

aNke
ikt/σN

= e−t2/2
L

∑
ℓ=L−⌊L2δ/3⌋+1

εℓ(N)(qℓ−qL−⌊L2δ/3⌋)
N

eit (µ/σ
√

L)O (L−ℓ)+t2O (L−ℓ)/LeO (tL−1/2+t3L−1/2) +O
(

q−L2δ/3
)

= e−t2/2eO (tL2δ/3−1/2+t2L2δ/3−1+t3L−1/2) +O
(

q−L2δ/3
)

,



12 Wolfgang Steiner

which implies (19) directly for|t| ≤ (logN)δ/3. For |t| > (logN)δ/3, we have

e−t2/2eO (t3L−1/2) = e−t2(1/2+O (tL−1/2)) ≤ e−cL2δ/3
= O

(

(logN)−1/2+δ
)

for somec > 0, which again implies (19). 2

We can now prove the first part of Theorem 3. Set

∆N(t) = e−t2/2−Eeit (XN−µN)/σN .

Then, by Esseen’s inequality [8, p. 32], we have

1
N
|{n≤ N : d(n) < EXN +xVXN}| =

1√
2π

∫ x

−∞
e−t2/2dt+O

(

1
T

+

∫ T

−T

∣

∣

∣

∣

∆N(t)
t

∣

∣

∣

∣

dt

)

.

ChoosingT = (logN)1/2−δ, we directly obtain from Proposition 2 and by applying the estimate

e−itµN/σN
1
N ∑

k≥0

aNke
ikt/σN = 1+O

(

t2)

for |t| ≤ (logN)−1 that
∫ T

−T

∣

∣

∣

∣

∆N(t)
t

∣

∣

∣

∣

dt = O
(

(logN)−1/2+δ(loglogN)
)

for everyδ > 0. Hence (8) follows.

8 Local limit law
For the local limit law, we have to study thebθ

jk, which have the same asymptotic behavior as theb jk. We
use Proposition 1 and saddle point approximations.

Proposition 3 We have

b jk =
(q−1)q j
√

2π jσ2

(

exp

(

− (k− jµ)2

2 jσ2

)

+O
(

j−1/2
)

)

uniformly for all j,k≥ 0.

Proof. We use Cauchy’s formula

b jk =
1
2π

∫ π

−π
b j(e

it )e−ikt dt.

Sinceq(z) is an algebraic function withq(eit ) < q for 0 < t < 2π andC(eit ) is bounded, we have, by
Propostion 1, someν > 0 and someτ > 0 such that

b j(e
it ) = O

(

q(1−ν) j
)

for τ ≤ |t| ≤ π, which implies
∫

τ≤|t|≤π
|b j(e

it )|dt = O
(

q(1−ν) j
)

= O
(

q j/ j
)

.
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It remains to evaluate

I =
1
2π

∫

|t|≤ j−δ
b j(e

it )e−ikt dt+
1
2π

∫

j−δ≤|t|≤τ
b j(e

it )e−ikt dt = I1 + I2

with 0< δ < 1
6. From (20), it follows that there exists a constantc> 0 such that|q(eit )| ≤ e−ct2 for |t| ≤ τ.

Hence

I2 ≤
1
π

∫ ∞

j−δ
e−c jt2 dt+O

(

q(1−ν) j
)

= O
(

e−c j1−2δ
)

+O
(

q(1−ν) j
)

= O
(

q j/ j
)

Finally,

I1 =
1
2π

∫

|t|≤ j−δ
(q−1)q jeit ( jµ−k)− jσ2t2/2(1+O

(

t + jt 3)) dt+O
(

q(1−ν) j
)

=
1
2π

∫ ∞

−∞
(q−1)q jeit ( jµ−k)− jσ2t2/2dt+O

(

∫

|t|> j−δ
(q−1)q je− jσ2t2/2dt

)

+O

(

∫

|t|≤ j−δ
(q−1)q je− jσ2t2/2(|t|+ j|t|3)dt

)

+O
(

q(1−ν) j
)

=
(q−1)q j
√

2π jσ2
exp

(

− (k− jµ)2

2 jσ2

)

+O
(

q j/ j
)

and Proposition 3 is proved. 2

Proposition 3 and (17) are used to prove (9). We have

aNk =
L−1

∑
j=0

L

∑
ℓ= j+1

εℓ(N)−1

∑
c=0

∑
θ∈T

bθ
j ,k−dθ(∑L

s=ℓ+1εs(N)qs− j +cqℓ− j )
+O (L)

=
L−1

∑
j=0

L

∑
ℓ= j+1

εℓ(N)−1

∑
c=0

(q−1)q j
√

2π jσ2
exp

(

− (k−O (L− ℓ)− jµ)2

2 jσ2

)

+O
(

q j/ j
)

since thebθ
jk have the same as asymptotics as theb jk, with constants which sum up toq−1.

If L−⌊Lδ⌋ < j ≤ L andk−µN = O
(√

L logL
)

, thenO (L− ℓ) = O
(

Lδ),

(k−µN)2

2σ2
N

− (k−O (L− ℓ)− jµ)2

2 jσ2 =
(k−µN)2−

(

k−µN +O
(

Lδ))2

2 jσ2 +
(k−µN)2

2

(

1
jσ2 − 1

σ2
N

)

= O
(

Lδ−1/2 logL
)

+O
(

Lδ−1(logL)2
)

and

aNk =
N

√

2πσ2
N

exp

(

− (k−µN)2

2σ2
N

)

(

1+O
(

Lδ−1/2 logL
))

+O

(

N
L

)

.

If |k−µN| ≥
√

L logL, then we have, forL−⌊Lδ⌋ < j ≤ L,

b jk = O

(

q jL−1/2exp

(

− (logL)2

4σ2

))

= O
(

q jL−1)

and thusaNk = O (N/L). This completes the proof of Theorem 3.
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9 Binary search trees and the binary van der Corput sequence
For binary search trees (m= 2), we have

B0(z,u) = 1+zuB0(z,u)+zB1(z,u)

B1(z,u) = 1+zuB0(z,u)+zB2(z,u)

...

Bq−3(z,u) = 1+zuB0(z,u)+zBq−2(z,u)

Bq−2(z,u) = 1+2zuB0(z,u)

and thus

B0(z,u) = 1+z+z2+ · · ·+zq−1+u(z+z2+ · · ·+zq−2 +2zq−1)B0(z,u),

P(z,u) = F(z,u) = (z+z2 + · · ·+zq−2+2zq−1)u.

Hence
q(z) = z+z2 + · · ·+zq−2+2zq−1

and

µ=
q′(1)

q
=

1
q
(1+2+ · · ·+(q−2)+2(q−1))= (q−1)

(

1
2

+
1
q

)

.

With
q′′(1) = 2+6+ · · ·+(q−3)(q−2)+2(q−2)(q−1)= (q−1)(q−2)

(q
3

+1
)

,

we get

σ2 =
q′′(1)

q
+µ−µ2 =

(q−1)(q−2)(q2+3q−6)

12q2 .

For the binary van der Corput sequence (q = 2), we have

B0(z,u) =
M−1

∑
j=0

2 ju j +(m−2M)uM +(2m−2M+1)zuM+1B0(z,u)+ (2M+1−m)zuMB0(z,u),

thus
P(z,u) = F(z,u) = (2m−2M+1)zuM+1 +(2M+1−m)zuM.

Using (16) and (18), we get

µ=
2m−2M+1

2M+1 + 2M+1−m
2M

(M+1)(2m−2M+1)

2M+1 + M(2M+1−m)
2M

=
1

M + m
2M −1

,

σ2 = µ

(

2m−2M+1

2M+1 (1− (M +1)µ)2+
2M+1−m

2M (1−Mµ)2
)

= µ3
( m

2M −1
)(

2− m
2M

)(

2− m
2M +

m
2M −1

)

=

(

m
2M −1

)(

2− m
2M

)

(

M + m
2M −1

)3 .
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