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1 Introduction

In the last years, the height of binary search trees gentlogteequences which are uniformly distributed
modulo 1 has been studied. Devroye [3] has shown for the Weydlencegna } that the height of the
tree with its firstN elements satisfies

H(N) ~ i—glogNloglogN

for almost alla € (0,1). The minimal height is attained for the golden mean= (v/5+ 1)/2,
H(N) ~ logN/loga, and the maximal height is almost as large as the theoretiaalmum for binary
search trees. More precisely, for every sequéngéy>1 which decreases monotonically from 1 to 0, we
have some such thatH (N) > cyN infinitely often (Devroye and Goudjil [5]).

For general uniformly distributed sequences modulo 1, rekknd van der Wal [1] have shown

H(N) = o(N)

and that, for everg > 1/log 2, we have sequences wht{N) ~ clogN.

Devroye and Neininger [6] studied random suffix search trelgch are binary search trees generated
by the suffixess, = 0.B;,Bn1Bn2. . . of independentidentically distributed randggary digitsB1, By, . ..
for someq > 2. For these trees, the expected value of the dept @ given by

Ed(Sv) = 2logN + 0 (log?logN) .

Note that the suffixes are uniformly distributed modulo lIhwitobability 1.

For random binary search trees of sitgit was shown by several authors that the expected valueof th
depth of a node is again 21044 o0 (1) and we know from Mahmoud and Pittel [9] and Devroye [2] that
the distribution of the depths is asymptotically normakhwiairiance 21ody.

A natural generalization of binary search treesrarary search trees, which are constructed by placing
the firstm— 1 keys in the root, sorted in increasing order from left tditjghen guiding a subsequent key
to the/th subtree of the root, £ ¢ < m, if that key is greater than exactly— 1 of the root keys. In the
(th subtree, the newcomer is subjected recursively to the gaotedure until a node with less than- 1
keys is found.

Mahmoud and Pittel [10] showed that the distribution of tleptths in randonm-ary search trees is

. : . m,1/j)3 . -
asymptotically normal with mean valw logN and vanance%};z% logN. This and other limit
1= j=2

laws for various kinds of trees can also be found in Devroye [4
In this article, we considen-ary search trees generated by particular uniformly disted sequences
modulo 1, the van der Corput sequent@gn))n>1, where we omin = 0 for convenience. Let

n=Y &(n)g
27

be the (uniquej-ary digital expansion with digits; (n) € {0,1,...,q— 1} for some integeq > 2. Then
the van der Corput sequence to the baiedefined by the radical-inverse function

(=Y g(ng ™
@ go j
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Let d(n) denote the depth of the node containing titie element of the sequence. Besides the height
H(N) = max<nd(n), we will study the distribution ofi(n). To that end, we define a sequence of (dis-
crete) random variablegy by

P{Xy =k} = % with ank=|{n<N: d(n) =k},
i.e., Xy is the depth of a key randomly chosen among the ffirkeys inserted into the tree.
2 Results

Throughout the paper I&4 = [log, m| be the integer part of the logarithm to the bgsef m.
Theorem 1 The height of the tree is given by

H(N) = —————1logyN+ 0 (1), 1
(N) = Ry %N+ (1)
where v (x) is determined by the sequence
0 ifx<qg—n; . nj+m—1 ifM+4+p=0
j = with Nng =0, Njy 1=
Hi { 1 else flo =" Nj+1 L—p—qj(z‘im)J ~1 else.

Let J, p be the lengths of the preperiod and the period pfije., l+p = y; for all j > J. Then we have

J+p
hqu (X) = Hjs (2)
P =T
The functions hw : [1,q) — [0,1) are monotonically increasing functions.
Note thathgm = hqw for all M, M’ > 0.

Theorem 2 Expected value and variance of; ére given by
1
EXn=— ) d(n)=plog,N+o0 (1) (3)
N 2 4
VX = = 5 (d(n) - 5X)? = o2logyN + 0 (1) @)
N s

with constants p and given by (16) and (18). For m g™, m= 2 (binary search trees) and g 2 (the
binary van der Corput sequence), we have simple formulag &ordo:

1
med gy =0 ©)
2 p=(q-1 (il 2_ (a-1)(9—2)(9°+39-6)
Mo Hel 1)(2+Q)’ o= 120 ©
m_1)(2-m
q=2: U:;m, 02:(2"" )( 22:) Ko
Mg —1 M+ 4 1)

For m+# g™, we have |€ (57, ) anda? > 0.
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The main result concerns the distribution propertie¥afWe prove asymptotic normality in the weak
sense and provide a local limit law.

Theorem 3 If m+ g™, then we have, for evedy> 0,

%|{n <N :d(n) < EXN+XVXN}H = e /2t + 0 ((|ogN)71/2+6) ®)

7=l

uniformly for all real x as N— « and

{n<N:d(n)=k} = %XN <exp(%> +o ((|OgN)l/2+6)) ©)

uniformly for all nonnegative integers k as-N .

The (easy) casen= gV is treated in Section 3. The crucial part for all other casesontained in
Section 4, where the structure of the tree is analyzed angkiterating function is calculated. Section 5
is devoted to the height of the tree, i.e., Theorem 1. Forenfdamean value and variance are derived
in Section 6. The two parts of Theorem 3 are proved in Secffcensd 8. These proofs are adapted from
Drmota and Gajdosik [7]. Finally, the values pfando for binary search trees and the binary van der
Corput sequence are calculated in Section 9.

3 m=qgV

For m= g, the root contains the elements,...,q¥ — 1} and its keys are just thg" — 1 possibili-
ties fory 5t cjq 172, ¢j € {0,...,q— 1} with (co,...,cm-1) # (0,...,0). Let us call prefix of thenth
key a prefix of the corresponding digit woegd(n)e1(n).... Then thefth subtree contains all keys with
prefix gg(¢)...em—1(¢) and in the root of theth subtree we have thg" — 1 keysy " e;())g -+
zjz“:",\]lch*j*1 with ¢ € {0,...,q— 1} and(cw,...,Cam-1) # (0,...,0). Thus, the depth of theth ele-
ment sk, i.e.,d(n) =k, if and only if g™ < n < UM, with L = [logqu N| = | (logyN)/M |, expected
value and variance are given by

Lsam=2 (5 g g ) = 31 L noq
NnZN =N kzoq q q S e v VI ;

2
FACEP
L-1 M(gtM _ 1 2 M(gtM _ 1 2
<kzo(qM_l)qu (k_L+q(q(“f'11)N)) +(N_qLM)(q(q(“?1)N)) )

_ 1 ((qLM _ 1)qM(qM + 1) (qLM _ 1)2q2M ( 1 1 ) B L27 2LqM (1 qLM _ 1))

NN 1 N

(M —1)2 (gM —1)2

and the results fom= gV are proved.

=o0(1),

N
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4 Generating function

Define the bivariate generating function of the tree by
B(zu)= Y bj2u

with
bj(@)= 3 by, bjc =g agic={n: o <n<ahd(n) =k
K=

i.e.,zcounts the depth of the elements antthe time of their insertion in the tree.

Lemmal We have Qzu)
Zu
BzW=1"p7y

for some polynomials @, u) and Rz u) determined by (13) and

~ G(zu)
B(z,u) = 1-Fzu)

for some analytic functions (in the domaig B {(z u) : |7 < 1+ p, |u| < 1/q+ p} for somep > 0)

[ee] 00

F(zu) = fiZul, G,:mm-zki
(zu) j;wk; kZ'u (zu) ;Ok;gjk u

with fix > 0, gjk > Oforall j,k. Assume, w.l.o.gicd1—P(zu),Q(z u)) = 1.

Proof. Form = gV, the considerations of the previous section give

M—1 o M=1q_ Dgiul
Bz =3 (a- 1ol +a'alaiey) - 2L
j=

Form > gV, the minimal key in the root igy(q™) = .0M1 = g"M-1. The leftmost subtree contains
therefore all keysp(n) < .0M1, i.e., those with prefix®¥*1. As in the casen= g, this subtree has the
same shape as the whole tree, and its generating functiMs$B(z u).

If m—1>2gM andq > 2, then the second smallest key in the roopjg2gq™) = .0M2. In this case,
the second subtree contains all keys with prefd @except the keyoM1) and its generating function is
againzM1B(z u).

The other possibility for the second smallest key* 2) is @,(q¥~1) = .0M~11. Then the second
subtree contains all keys with prefiy'(satisfying(pq(n) > .0M1. Forq = 2, this is the same tree as in the
latter case and its generating functiorzi$'*B(z u). Forq > 2, this means (if we omit the prefix0
since it does not change the structure) that we start mith2 and consider just thogewith gy(n) > 1.
Call this treeT;. In general, lefli, 0 <i < g— 1, be the tree generated by the van der Corput sequence
starting withn = i 4 1 and omitting then's with digit €o(n) < i, i.e., just take the keygy(n) > .i =i/q.
Denote its generating function B (zu). Then the second subtree contribuze¥B;(u,z) to B(z u).
Furthermore note thdy is the whole tree anBg(z u) = B(z u).
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The other subtrees have a similar structure#fg™ < m—1 orgy (n) =q—1, then the contribution to
the generating function mM*+1B(z u). In the other cases, the tree is of tyRg (n) and the contribution
is zUMBg,, ) (z u).

We have thus, fom < (q— 1)g,

B(z,U) = Bo(zU) =“,A2:<q ~ DUl + (m—g")u 4 (- o)z Bo(z,u)

j=
+ (M (M)A )2 By ) (2, 1) + ((m (M) + 1)a — M)z By ) 1(2.0)

and, forey(m) = q—1,
M—1

Bo(zu) = Z) (q—2D)g'u + (m— "M+ 2m— M zdM 1By (z, u) 4 (G — m)zd'By_2(z, u)
=

The sequence constitutiigis (i+1,i+2,...,9—1,9+i,q+i+1,...,29—1,29+1,...). Denote its
mth element byn and seM; = [log,mi|. Note that thee(q— i)gkth element of the sequencedgt? + i
(c < g). Hence we havév = [logy 51| € {M,M +1} andey,(m) = LquiJ = Lin"("';i)J for Mj > 0,
em (M) =m = m+i for M; =0.

The generating function & is, for M; > 0 andey, (m) < g—1,

M;—1 o
Bi(zu) = ZO (1—i/a)(@—Dg'u' —i/g+ (m— (1—i/a)a")u™ + (m— (1—i/q)q")zd" " Bo(z,u)
j=

(M e, (M)(L—i/Q)aM )20 Byy, ) (2.) + (e, (M) + 1) (1— i /)g™ — )z By, (- 1(2.0),

(10)
forem (M) =q—1,
Mi—1 -
Bi(zu) = J_ZO (1-i/a)(@—1)g'v) —i/g+(m—(1—-i/q)g")u (11)
+(2m— (1-i/q)g" )z Bo(z u) + (1~ i/aq)g"** — m)zU"'Bg_2(z,u)
and finally forM; =0,
Bi(z.U) = m— 1+ (M- 1)2uB(zU) + 2B m_1(2,U). (12)

HenceBi(z u) = z‘j‘;ng.’j (u) + Qi(u) for some polynomial&; (u) andQ;(u), i.e.,

BO(Za U) BO(Za U) QO(U)
: =zAUu) : + :
Bg-2(zu) Bg-2(z ) Qq-2(u)
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with A(u) = (R (u))o<i,j<q—2 andB(z u) = Bp(z u) is given by

Qo(u) - Qo(u)
B(z,u) = (1,0,...,0)(Iq-1 — zAu))* ; =S #(1,0,...,0AW)" ; (13)
quz(U) k=0 quz(U)

wherelq_1 denotes théq— 1)-dimensional identity matrix, and the first equation deteesP(z u), Q(z u).
The functiong=(z u),G(z u) are obtained by recurrently replacing tBgz u)’s, i > 0, in the equation
for Bo(z u) by their expressions given in (10)—(12),

2
Bo(z u) = Qo(u) + qZ) zRi(u)Bi(z,u)
—2 —2
= Qo(u) + zRyo(u)Bo(z u) + qZ zZRj(u) (Qi (U) + Po(u)Bo(z u) + qz Rij(u)Bj(z, u)) =
i= =1

ForM > 0, we haves 2R (1/q) < 1 for alli > 0. Thus(1+p) S 2R (1/q+p) < 1 foralli > 0 and
somep > 0. Then, for(z,u) € Dy, the coefficients oB;j(z u) tend to 0 in the above expressiong{z, u)
and we obtain

G(zu)

Bo(zu) = G(zu) + F(zWBo(z ) = 37 -

ForM =0, we haves"2R; (1/q) < 1 only fori > q—mandy® 2P (u) = P m 1(u) = 1 else. This

means that we replad® (z u) by Qi(u) +zRj+m-1(u)Bi+m-1(z u) at most(q;]Tf} consecutive times
g-m-—

before we havg?;l?‘ Rj(1/q9) < 1. Hence choosing such thai(1+ p)f ] Z?;]Z_P”' (1/q9+p) < 1for
alli > q— mgives the same result as fior > 0.

For the same reasors(z u) andG(z u) are analytic inrDp. The fjx andgj are nonnegative because
the coefficients oQj(u) andP;j (u) are positive. O

5 Height

For everyk > 0, we look for the minimaj such thatoj # 0. Since allQ;(u) have a constant term, this
is, by (13), the minimal exponent afin the first row ofA(u)¥. The/th element of this row is the sum of
Pos, (U)Ps;s, (U) ... Ps ;5 (u) over all sequences, ..., s with 5¢ = £.

Recall from the last section that tlia row of A(u) consists of terms with exponeM; and (in the
majority of the casesM; + 1 with M; € {M,M + 1}. Fori < i’, we have eitheM; < My or M; = My,
em (M) < em, (My). Thus the minimal exponent afin the first row ofA(u)¥ can be found by recursively
choosing the minimad; such thatys, (u) has a termuMo, the minimals; such thaPs;s,(u) has a ternuMs:
and so on. Hencg,1 = EMs (mg)—1foralli >0 if we setsy = 0. Furthermoren); = 5 andp; = Mg — M.

The minimalj such thabj # 0 is therefore

k-1 m
My +Mp; + -+ My, =kM+ Z)M :k(M+hq,M (q—M))+O(1)
i=
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and the height foN = g1 — 1 with this is

H(g*t-1)= maxd(n)=k= J

————+40(1).
n<gl+l M-+ hgm (i) @

Clearly,H(N) is monotonically increasing and thus (1) is proved. It isyemssee that, for alk > 0,
Mp, + -+ My, , does not decrease;gi% increases and thus tig y's are monotonically increasing.

6 Expected value and variance

Form= g™, expected value and variance have been calculated in 8etidThus we can restrict to
m+# gM. The first step is to obtain proper information abby(z).

Proposition 1 For m+ gV, we have some > 0 such that, as j- «,
bj(2) = C(Z)a(2)! + 0 (g~ (14)

uniformly in |z < 1+ p for somep > 0, where z) is the (algebraic) function satisfying(f) = q,
P(z,1/q(2)) = 1 and 0(2) is an analytic function inz] < 1+ p with C(1) =q— 1.

Proof. First we study the poles @&{(z u) with |z <1, |u| < 1/q. One pole iSz,u) = (1,1/q) because of

_ _giul = 9=
B(1,u) J_;)(q 1)q'u I qu
HenceP(1,1/g) = 1 and there exists an algebraic functigfz) with P(z,1/q(z)) = 1 andq(1) = a.
Clearly,q(z) is a solution of~(z,1/q(z)) = 1 for |z < 1+ p too.

F(zu) = 1 has no solutions witfz| < 1 or |u| < 1/qsince allfjx are nonnegative. For a solution with
|zl = 1 and|u| = 1/q, we need®(uq)’ = 1 forall j,k with fjx > 0. We havefy11 > 0 because af# q¥
and thusz(ug)M** = 1. Now, let¢ > 1 be minimal such that, = 0. Then we havé1)-1, > 0 and
thusze(uq) (M+1)-1 — 1. Together wittz(ug)M+* = 1, this implies ¥(ug) = 1, henceu= 1/qandz= 1
Hence(z,u) = (1,1/q) is the only pole oB(z u) with |7 <1, |u] < 1/q.

Furthermore(1,1/q) is a simple zero of  F(z u) and 1— P(z,u). Hence we have sonfep > 0 such
that we have no zeros witla < 1+p, |u| < 1/q+ p except(z,1/q(z)). Then

Qlzu) Qzu) 1 <Q(z,1/Q(Z>> C(2)
1-P(zu)  (1-q@@uP(zu) 1-q@u\P(z1/q(2) 1-q(2)u

for some algebraic functioB(z u) and analytic function€(z),R(z,u) in |2 < 1+p, |u| < 1/q+p.
By Cauchy’s formula, we get

du . o

j @ 2T|1 1-P(zu) P Zu) uitl =C(2)a / J“ C(z)q(z)J +o (q(l V)J)
1,
q

+(1-qg(z2u)R(z, u)> +R(zu)

p

lul=3+5 ‘“‘: 2

with somev > 0. This completes the proof of the proposition. O
Now, we build the generating function af for generaN with theb; ().
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Lemma?2 If we set L= Llogq N| and d0) = 0, then
L-1 L &(N)-1 it 1)
Z)aNkzk: Zobj z A5 esNa T hed o) 4 (IogN (1+z0 logN) )) . (15)
k> = (=]+1 c=
Proof. We have
{0,1,2,....N—1}

-

L
{0,...,e.(N)g- — 1} U{e(N)GE,...,et (N)g- + & _1(N)g- "t —1}U---U{ > es(N)GP,..., ZOSS(N)qu 1}
s=1 =

S=|

L e(N-1/
-U U ( sS(N)q5+cqf+{0,...,qf—1}>

(=0 c=0 \s={+1
L-1 L &N-1/ _ L &(N

=U U ( es(N)o*+cd + {a’,...,g/"* - 1}>UU U { s(N)a® +ca'}
j=0/=j+1 c=0 s=(+1 (=0 c=0 &Jrl

The elemeng s, 1&s(N)g® +cd +nwith ) <n< gl andj < ¢ is located in a subtree under the
node containing. Its depth is therefore that af plus some additional depth depending on the shape of
the subtree (see the proof of Lemma 1), which can be bounde@y ., , &s(N)a®~/ +co /) +2

The depth of the remaining (L) terms can be estimated by the height of the teed,). O

Now, we can calculate the mean value

d 1 1L 1 L 1L 1 L
EXy=— [ = bj(1 s b ( g(N)o(L-0)+o0(1)
dz<Nk;) ) NZO NZOJ )4 J+1
& 5 (q—1)g' g (1 1 L S (g— 1)qjo(L—€)+O(1):Lq/(l)+o(1)
N,z «N Z TNR Z g '

Thus (3) is proved and we have, sirfeé, u(z)) = 1 foru(z) = 1/q(2),

oF . OF o % (zu(2)
E(z,u(z))Jru (z)%(z,u(z)) =0, i.e, U(z= 67

au (Z U( ))
(O RTC I SAYa)  ywyiikfi/d 16)
q u(1) % (L,1/9)  SeemYi1ifi/a’

whereF can be replaced by.
For the variance, we have to be more careful. First we disigiigthe elements by their place inside the
node and the type of the node, in order to obtain

d(n+ g/ ") = d(n) + dg()

forall nwith j = [log,n| at a position of typ® € © = {1,...,m—1} x {0,...,q— 2} and some functions
dg with dg(fi) = 0 (logfi). With

Jk =|{ne{d,...,q""1 =1} : d(n) =k, the position of is of typed}|,
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we have _ _
5@ = 3 bi = Calda@' +0 (q*1)
for some analytic functionSg(z) (in |z < 1+ p) because of
(zY)

. Go
Bez,u:Ebequzi’
(zu) £ 1(2) 1-F(zu)

for some analytic function8g(z u) (in Dp). This allows to refine (15) to

L-1 L &

Z)aNka Zozz 1 CZO Z;be 2)200(55r 2 8s(N)a I~ red 1 +0(IogN<1+z 'ogN))) (17)

and the variance is

(i)

k>0

+EXn — (EXn)?

z=1

1Ll L &(N

N2 CZ) %(C" )ia ' (1) + Co(1)j (J — el 2(f (1)) + 2Ch(1)ja) (1)

+ 2o (e S e o)) ) LT L N 3 Coluia )

s=(+1

2 ( Vol /(1) + 201 + 205()aley( 3 ss<N>qS“+cq“1))+o<1>

J,4.E s=(+1
Q@ @@ dO _ ( aw 2)
q —L 7 +L q +0(1)=L a +u—p | +0(1)
Thus (4) is proved with

(1 d d F(zu(2)
S E N “dz< uz> +“d_z< 52
q ( ) z=1 U(Z) ou (Z U(Z))
(%ZTEJF“gza Jugs; — (u /%E+“azau+““au2)az +ugE
(ug)?

_L<162F 0°F  OF 262F GF)

le—\

+H
z=1

z=1

naZ  Yamnt ez UM Ve (18)

z=1

qu ad fix (k(k=1) . .. .
" E(1,1/9) ,-Z/.kzlﬁ( M _ZJkH(J_l)“H)
f

o ar T (Lo 1 -
T ELy e J‘(u“‘ i) +(1 u) (k= “”) 11/q i

ng
HMS
_cz|_
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The last equation holds because of
oF oF
Zw Z fik(k=Hj) = 5 (1,1/0) — pag-(1,1/0) =

(16) showsu € (M+1’ M) for m= g since we havé&M < j < k(M + 1) for all j,k with fj > 0 and
we have somg, k such thakM < j and somg, k such thatj < k(M + 1) (see the proof of Proposition 1).
Furthermore, fom £ g™, j/k is not equal for allj,k with fj > 0 which implieso? > 0.

7 Global limit law

Now, we prove the asymptotic normality ¥f. Observe that its characteristic function is

1 ikt itX
— ¥ a€t =Ee'N,
N

Proposition 2 Suppose n g™ and set = E Xy, 04 = VXn. Then for evenp > 0, we have uniformly
for |t| < (logN)Y/2-3

e ithn/oN 1 anet/on = e7t2/2+ 0 ((|ogN)71/2+6) . (19)

N,
Proof. We have
q(et) = qéut702t2/2+o(t3) (20)
and, by using Proposition 1,
bj(€') = (q— 1)qiel(M-0"*/Deo (%) | (q(l’v”)

in an open (real) neighbourhoodtof 0. By Lemma 2, we obtain

¢(N)

L-1 L -1
eikt _ b: (€ |t |to L—j) logN
k;awk JZO (e [Z CZO + 0 (logN)

=T+

L-1 L
= 3 (a- 1l Ze) 5 g e () o (o)
j:L,U_5J (=]+1

for (small)d > 0. Now observe thaty = UL+ 0 (1) and J/on = 1/(ovL)(1+ 0 (L™1)). Hence

EetON—tn)/on — g tung/on L Z anekt/on
k>0

_1125/3
— e t?/2 S e(N)(g —g-I- J)en w/ovL)o(L—0)+t20(L— i)/Leo(tL*1/2+t3L*1/2)+O (quZ?i/s)

(=L—|L2/3]41 N

42 25/3-1/2_, 42| 28/3-1_ 3| —1/2 _125/3
_ e t/2g0(tL L3143 )+O(qL ),
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which implies (19) directly fort| < (logN)%3. For|t| > (logN)¥3, we have

e 12/2g0(PLY2) _ t2(1/2+0 (1L 12)) - g-cl®/3 _ ((logN)—l/2+6)

for somec > 0, which again implies (19). O
We can now prove the first part of Theorem 3. Set

An(t) = e /2 _ Bt O—i)/on,

Then, by Esseen’s inequality [8, p. 32], we have

Lin<n: d(n)<ExN+xva}|—i/X e /24t 1 0 1+/T
N =N = Vo) e T ).

ANt(t) ‘dt) .

ChoosingTl = (log N)1/2-3 we directly obtain from Proposition 2 and by applying thereate

e*itUN/GNE Z aNkeikt/UN —14+0 (t2)
k>0

for |t| < (logN)~! that
ANT(I)‘ dt=o0 ((IogN)*l/ZM(Iog IogN))

I

for everyd > 0. Hence (8) follows.

8 Local limit law

For the local limit law, we have to study tlh%, which have the same asymptotic behavior adtheWe
use Proposition 1 and saddle point approximations.

Proposition 3 We have

— j —iu)?
-8 () ()

uniformly for all j,k > 0.

Proof. We use Cauchy’s formula
it ikt
bjk = annbj (eh)e " dt.

Sinceq(z) is an algebraic function witlg(e') < q for 0 < t < 2rmrandC(¢e") is bounded, we have, by
Propostion 1, some > 0 and soma > 0 such that

bj(€") = 0 (™))

for T < |t| <, which implies

/rf\t\5n|bj(eit)|dt: © (q(li\))j) =o(d/j).
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It remains to evaluate
1

== [ bye)eat / by (€ )e K dt = I + 1
21'[./mgj— ie)e *on 21/ j-8<|t<t i) 1
with0 < d < %. From (20), it follows that there exists a constant 0 such thatq(e)| < e for [t] <T.

H
o lp < :[/io ~ci® gt 1 o <q(l—v>j) -0 (efcjlﬂ) 1o <q<1 v)ij ) o (d'/j)

Finally,

1 o . . .
=3[, a0 IR (o (14 7)) dio (41)

= i/m (q— 1)qietinK-io**/2gt 4 o (/ (Q—l)qjejcztz/zdt)
21/ —w It|>j%

o[ o= nale o+ )t +o (o)
ft<j-2

(9—-1)q’ ( (k—jw? ) i/
=———exp| ——— +o0
and Proposition 3 is proved. O
Proposition 3 and (17) are used to prove (9). We have

L-1 L &(N)-1 o
Nk = ;/:%1 c; Z bjak*de(ils_;éﬂsS(N)qS*j+Cq[7j) +0 (L)

fa-Dd (k=0 (L—0)— jw? -
720/ T+1 CZO \/21'[]02 ( 2jo? >+O(qj/1)

since theb?k have the same as asymptotics aslifigwith constants which sum up tp- 1.
If L—[L®] < j<Landk—pn = o0 (VLlogL), theno (L—¢) = o (L?),

(k—? (k=0(L—0)— P _ (k== (k=p+0 (L%)° (k= p) (L-2)
20%, 2j02 N 2j02 2

jo?2  of
—0 (LH/zlogL) +0 (LH(IOQ L)z)

and 5
(k—pn)

ank = %exp(w) (1+o (L5*1/2IogL)) +0 (%) .

If |k—pn| > v/LlogL, then we have, fok — |L®| < j <L,
. (logL)? -
bjk=o0 (qJL 1/Zexp(_ e =0 (qJL 1)

and thusayk = 0 (N/L). This completes the proof of Theorem 3.
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9 Binary search trees and the binary van der Corput sequence

For binary search treem(= 2), we have

Bo(zu) = 1+ zuB(zu)+2zBi(zu)
Bi(zu) = 1+4zuBy(zu)+zBy(z,u)
Bg—3(zu) = 14 2zuBy(zu)+zB_2(zu)
Bg—2(zu) = 142zuB(zu)
and thus
Bo(zU) =1+2z+ 2+ -+ 14 u(z+ 2+ -+ 2+ 28 HBy(z u),
P(zu) =F(zu) = (z+Z +---+ 72428 Y.
Hence
A2 =z+22+---+ 282424871
and (1) 1 11
q
= = (14244 (q-2)+2q-1))=(q-1) (Zz+=).
u=T = Sarze @2 +20- =@ (5+3)
With q
¢'(1) = 2+6++(a-3)(q-2)+20-2)([-1 = [4-1)(@-2) (3 +1),
we get
2_d'() 2_ (a-1)(a-2)(¢+39-6)
L o7 .

For the binary van der Corput sequenge=(2), we have
Bo(z u) = 20 2iul + (m—2"YM 4 (2m— 2V 20 1By (z u) + (2MF1 — m)zdBo(z u),
J:

thus
P(zu) = F(zu) = (2m— 2"+ HzM+1 4 oML _myzM,

Using (16) and (18), we get

om_oM+1  oM+1_p
oM+1 U 1

M= (i 27T | M@ T~ M- 1
2m72M+l 2M+17m
0= (g (- M+ D+ S )

3/ M m m m Eﬂ,%_l 2_%3[
L R R i
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