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This is the first of two papers in which we determine all 242 Wilf classes of triples of 4-letter permutation patterns by

showing that there are 32 non-singleton Wilf classes. There are 317 symmetry classes of triples of 4-letter patterns

and after computer calculation of initial terms, the problem reduces to showing that counting sequences that appear

to be the same (i.e., agree in the first 16 terms) are in fact identical. This amounts to counting avoiders for 107

representative triples. The insertion encoding algorithm (INSENC) applies to many of them and some others have

been previously counted. Thus there remain 36 triples. In this paper, we find the generating function for the first 18

of these triples and in a second paper, we treat the other 18. The generating function turns out to be algebraic in each

case. Our methods are both combinatorial and analytic, including decompositions by left-right maxima and by initial

letters. Sometimes this leads to an algebraic equation for the generating function, sometimes to a functional equation

or a multi-index recurrence that succumbs to the kernel method. A bijection is used in one of the cases (Case 50).

Keywords: pattern avoidance, Wilf equivalence, kernel method, insertion encoding algorithm

1 Introduction

In recent decades pattern avoidance has received a lot of attention. It has a prehistory in the work of

MacMahon [12] and Knuth [8], but the paper that really sparked the current interest is by Simion and

Schmidt [17]. They thoroughly analyzed 3-letter patterns in permutations, including a bijection between

123- and 132-avoiding permutations, thereby explaining the first (nontrivial) instance of what is, in mod-

ern terminology, a Wilf class. Since then the problem has been addressed on several other discrete struc-

tures, such as compositions, k-ary words, and set partitions; see, e.g., the texts [6, 13] and references

contained therein.
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Permutations avoiding a single 4-letter pattern have been well studied (see, e.g., [19,20,23,25]). There

are 56 symmetry classes of pairs of 4-letter patterns, for all but 8 of which the avoiders have been enu-

merated. Le [11] established that these 56 symmetry classes form 38 distinct Wilf classes. Vatter [22]

showed that of these 38, 12 can be enumerated with so-called regular insertion encodings (the INSENC

algorithm); INSENC, automatically, computes the (necessarily rational) generating function for any class

of permutations avoiding a set T of patterns that has a regular insertion encoding (see also [1]). Some of

these generating functions were computed by hand by Kremer and Shiu [9].

Some cases below depend on an enumeration of permutations avoiding a 3-letter and/or a 4-letter pat-

tern. See [26] for a survey of these results, and also the references [2, 14–16, 21, 24] for further related

results.

Much less is known about larger sets/longer patterns. Here, we consider the 317 symmetry classes of

triples of 4-letter patterns and determine their Wilf classes. First, we used the software of Kuszmaul [10]

to compute the initial terms {|Sn(T )|}16n=1 for a choice of T in each of the 317 symmetry classes. These

results are available for reference in Table 2 in the Appendix of the arXiv full-length version [5] of the

paper. There are 242 distinct 16-term sequences among the 317. This gives a lower bound of 242 on the

number of Wilf classes, but we will show that whenever two sequences in Table 2 [5] agree in the first 16

terms, they are in fact identical, and so there are exactly 242 Wilf classes. To do so, we find the generating

function for every triple whose 16-term counting sequence is repeated in Table 2 [5]. Thirty-eight of them

can be found by INSENC; some others have already been counted and are referenced in Table 1 of the

arXiv version [5].

There remain 36 triples to enumerate with 15 distinct counting sequences (cases). In this paper, we

treat the first 9 cases (numbered 50, 55, 166, 171, 174, 177, 191, 196, 201, where the numbering is taken

from the full table of 242 counting sequences [5]). These 9 cases cover 18 of the 36 triples. Table 1 is a

compendium of the results. The second paper will treat the remaining 18 triples.

To summarize, we say a Wilf class (of triples of 4-letter patterns) is small if it contains just one symme-

try class and large if it contains more than one symmetry class. There are then 242 Wilf classes of triples

of 4-letter patterns, of which 210 are small and 32 are large. Enumeration of the small Wilf classes will

be treated in forthcoming work; see [3, 4] for partial results.

Theorem 1 (Main Theorem). There are exactly 242 Wilf classes of triples of 4-letter permutation pat-

terns. Of these 242 Wilf classes, 210 consist of a single symmetry class and 32 consist of two or more

symmetry classes.

Tab. 1: Large Wilf classes of three 4-letter patterns up to Case 201, numbering taken from

Table 2 [5].

Start of Table

No. T
∑

n≥0 |Sn(T )|xn Reference

6 {1432,2134,3412}, {1234,1432,3412} 1−6x+16x2−22x3+21x4−8x5+2x6

(1−x)7
INSENC

50 {2143,3412,2341}, {2143,2341,4231}
{3412,1432,1243}

1−6x+13x2−11x3+5x4

(1−x)2(1−2x)(1−3x+x2)
Thm. 3, 4, 5

55 {1342,3124,4213}, {1234,2143,4123} INSENC

{1324,2143,2341}
1−6x+12x2−8x3+3x4−x

5

(1−x)(1−3x+x2)2 Thm. 8

56 {1342,2143,4123}, {1432,3412,4123} 1−5x+8x2−5x3+3x4

(1−x)2(1−4x+3x2−x3)
INSENC
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Continuation of Table 1

No. T
∑

n≥0 |Sn(T )|xn Reference

78 {1324,1342,4312}, {1234,2413,3412} 1−8x+26x2−42x3+36x4−14x5

(1−x)3(1−2x)3
INSENC

94 {1432,2134,4132}, {1234,1432,4132} 1−8x+25x2−37x3+27x4−9x5

(1−3x+x2)(1−x)2(1−2x)2
INSENC

108 {1432,3124,4123}, {1324,1432,4123} 1−7x+17x2−15x3+4x4−2x5

(1−2x)(1−3x+x2)2
INSENC

112 {1243,1432,2134}, {1432,3142,4123} 1−4x+4x2−3x3+x
4

(1−x+x2)(1−4x+2x2)
INSENC

126 {2431,4213,1324}, {3142,4123,1234} 1−7x+18x2−20x3+11x4−2x5

(1−x)2(1−3x+x2)2
INSENC

127 {1342,2413,4312}, {1243,2341,2413} 1−8x+24x2−33x3+22x4−7x5

(1−x)3(1−3x)(1−3x+x2)
INSENC

129 {1432,2413,3124}, {1432,2143,3124} (1−x)2(1−3x+x
2)

1−6x+12x2−11x3+3x4−x5 INSENC

157 {1324,1342,4213}, {1432,3124,4132} (1−x)(1−6x+11x2−4x3)
(1−2x)(1−3x+x2)2

INSENC

166 {3412,3142,1243}, {3412,3142,1324} 1−9x+30x2−44x3+27x4−7x5

(1−3x)(1−x)(1−3x+x2)2
Thm. 10, 12

170 {3142,4231,4321}, {1234,1243,2413}
(1−3x+x

2)2

(1−x)(1−2x)(1−4x+2x2)
INSENC

171 {3124,1342,4123}, {1342,1324,4123}
1−4x+5x2−x

3+(1−4x+3x2−x
3)

√
1−4x

(1−x)(1−3x+x2)(1−2x+
√

1−4x)
Thm. 13, 17

173 {1342,1423,4213}, {1423,2341,2431} 1−5x+8x2−7x3+2x4

1−6x+12x2−13x3+6x4−x5 INSENC

174 {1432,3412,3421}, {1342,3412,4312} INSENC

{2134,2341,2413}, {1342,3142,4312} 1−6x+10x2−3x3+x
4

(1−3x+x2)(1−4x+2x2)
Thm. 18, INSENC

{2143,2314,2341}, {2143,2314,2431} Thm. 20, 21

177 {2143,2341,2413}, {2143,2341,3241} 1−4x+3x2−x
3

1−5x+6x2−3x3 Thm. 22, 23

191 {1342,2134,2413}, {1324,1432,3124} Thm. 24, INSENC

{1423,2134,2413}, {3142,4132,4321}
(1−x)(1−2x)(1−3x)

1−7x+16x2−14x3+3x4 INSENC

196 {1342,3142,4213}, {1324,1432,2134} INSENC

{2143,2431,3241}, {1342,3142,4123}
1−5x+7x2−4x3

1−6x+11x2−9x3+2x4 Thm. 25, 27

201 {3142,1324,1243}, {1342,1423,2314} 1−3x+x
2

1−x
C(x)3 Thm. 28, 31

End of Table

2 Preliminaries and Notation

In the context of pattern avoidance, permutations are considered as words of distinct letters. We say a per-

mutation is standard if its support set is an initial segment of the positive integers, and for a permutation π
whose support is any set of positive integers, St(π) denotes the standard permutation obtained by replacing

the smallest entry of π by 1, the next smallest by 2, and so on. As usual, a standard permutation π avoids

a standard permutation τ if there is no subsequence ρ of π for which St(ρ) = τ . In this context, τ is called

a pattern, and for a list T of patterns, Sn(T ) denotes the set of permutations of [n] = {1, 2, . . . , n} that

avoid all the patterns in T .

A permutation has an obvious representation as a matrix diagram,

•

•

•

matrix diagram of the permutation 312

and it will often be convenient to use such diagrams where shaded areas always indicate regions that
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contain no entries (blank regions may generally contain entries but in a few cases, as noted and clear from

the context, they don’t).

The eight symmetries of a square, generated by rotation and reflection, partition patterns and sets of

patterns into symmetry classes on each of which the counting sequence for avoiders is obviously constant.

Thus if π avoids τ then, for example, π−1 avoids τ−1 since inversion corresponds to flipping the matrix

diagram across a diagonal. It sometimes happens (and remarkably often) that different symmetry classes

have the same counting sequence, and all symmetry classes with a given counting sequence form a Wilf

class. Thus Wilf classes correspond to counting sequences.

Throughout, C(x) = 1−
√
1−4x
2x denotes the generating function for the Catalan numbers Cn :=

1
n+1

(
2n
n

)
=

(
2n
n

)
−

(
2n
n−1

)
. As is well known [26], C(x) is the generating function for (|Sn(π)|)n≥0

where π is any one of the six 3-letter patterns.

A permutation π expressed as π = i1π
(1)i2π

(2) · · · imπ(m) where i1 < i2 < · · · < im and ij >
max(π(j)) for 1 ≤ j ≤ m is said to have m left-right maxima (at i1, i2, . . . , im). Given nonempty sets

of numbers S and T , we will write S < T to mean max(S) < min(T ) (with the inequality vacuously

holding if S or T is empty). In this context, we will often denote singleton sets simply by the element in

question. Also, for a number k, S − k means the set {s− k : s ∈ S}.

Our approach is ultimately recursive. In each case, we examine the structure of an avoider, usually

by splitting the class of avoiders under consideration into subclasses according to a judicious choice of

parameters which may involve, for example, left-right maxima, initial letters, positions of given letters,

and whether resulting subpermutations are empty or not. The choice is made so that each member of a

subclass can be decomposed into independent parts. The generating function for the subclass (a summand

of the full generating function) is then the product of the generating functions for the parts, and we speak

of the “contribution” of the various parts to the generating function for that subclass. From the structure,

we are able to find an equation for the generating function FT (x) :=
∑

n≥0 |Sn(T )|xn, where T is the

triple under consideration. This equation is often algebraic and, if linear or quadratic, as it is in all cases

treated here, easy to solve explicitly once found. It also frequently comes in the form of a functional

equation requiring the kernel method (see, e.g., [7] for an exposition). For one of the triples in Case 50,

an explicit bijection is found which establishes the result. In every case, the generating function turns out

to be algebraic.

Furthermore, in several cases, especially those where recurrences are made use of, we have in fact

counted members of the avoidance class in question according to the distribution of one or more statistics,

specific to the class, and have assumed particular values of the parameters to obtain the avoidance result.

In some of these cases, to aid in solving the recurrence, certain auxiliary arrays related to the statistic are

introduced. This leads to systems of linear functional equations to which we apply the kernel method,

adapted for a system. See, for example, the proof below of the second symmetry class in Case 171. Also,

in instances where the kernel method is used, it is usually possible (if desired) to solve the functional

equation in its full generality yielding a polynomial generalization of the avoidance result. In other cases,

one may extend the result by counting members of the class in question having a fixed number of left-right

maxima. We refer the reader to the discussion following the proof of the first triple in Case 50 below.

We now proceed to the proofs for the 9 cases listed in the Introduction.
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3 Proofs

3.1 Case 50

The three representative triples T are:

{2143, 2341, 3412} (Theorem 3)

{2143, 2341, 4231} (Theorem 4)

{2143, 2341, 3421} (Theorem 5)

In order to deal with this case, we define the following two generating functions for each triple T :

HT (x) is the generating function for T -avoiders with first letter n−1 and JT (x) is the generating function

for T -avoiders with second letter n.

Lemma 2. For each triple T in Case 50, HT = JT .

Proof: For each pattern in Case 50, its matrix diagram is invariant under the involution “flip in the diagonal

line y = −x”. Consequently, the set of T -avoiders is invariant under this flip. But the flip interchanges

the permutations whose first letter is n− 1 and the permutations whose second letter is n.

Theorem 3. Let T = {2143, 2341, 3412}. Then

FT (x) =
1− 6x+ 13x2 − 11x3 + 5x4

(1 − x)2(1− 2x)(1− 3x+ x2)
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). For Gm(x) with m ≥ 2, we first need an equation for JT (x). Consider a

permutation π = inπ′ ∈ Sn(T ) counted by JT . Clearly, the contribution for the case i = n− 1 is given

by x2

1−x . If i = 1 6= n− 1, the contribution is x2(FT (x) − 1). Otherwise, n ≥ 4 and 1 < i < n− 1 and

π can be written as inβ′(n − 1)β′′ with at least one of β′, β′′ nonempty. Consider three cases: (1) β′ is

empty, (2) β′′ is empty, (3) neither of β′, β′′ is empty. In each of cases 1 and 2, the map “delete n− 1 and

standardize” is a bijection to the one-size-smaller permutations counted by JT that do not start with a 1.

Hence, in each of these cases, the contribution is x
(
JT (x) − x2FT (x)

)
. In case 3, π\{n− 1} must have

the form n− 2 n n− 3 n− 4 . . . 2 1 with n− 4 positions available for n− 1, namely, immediately before

1, 2, . . . , n− 4. Hence the contribution in this case is x5/(1− x)2.

Adding all the contributions, and solving for JT (x), yields

JT (x) = x2FT (x) +
x3(1 − x+ x2)

(1− x)2(1 − 2x)
. (1)

Now let m ≥ 2 and let us write an equation for Gm(x). Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )
with exactly m left-right maxima. By considering the cases where π(1) is not empty or where π(1) is

empty and π(2) either has a letter smaller than i1 or it doesn’t (see the next figure), we obtain
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6= ∅

xm−2
(

HT (x)−
x
2

1−x

)

6= ∅

xm−2
(

JT (x)− x2F (x)
)

xGm−1(x)

Gm(x) = xm−2

(
HT (x)−

x2

1− x

)
+ xm−2

(
JT (x)− x2FT (x)

)
+ xGm−1(x) (2)

for m ≥ 2. By summing (2) over m ≥ 2 and using the expressions for G0(x) and G1(x), we obtain

FT (x) = 1 +
1

(1− x)2
(
HT (x)− x2/(1− x) + JT (x) + x(1− 2x)FT (x)

)
. (3)

Eliminating JT = HT from (1) and (3) gives the desired expression for FT .

It is possible to generalize the preceding result as follows. Define the generating function G(x, q) =
GT (x, q) =

∑
m≥0 Gm(x)qm, where T = {2143, 2341, 3412}. Multiplying both sides of (2) by qm, and

summing over m ≥ 2, implies

G(x, q) − 1− xqFT (x) =
q2

1− xq

(
2JT (x) − x2FT (x)−

x2

1− x

)
+ xq(G(x, q) − 1).

Solving for G(x, q) then yields

G(x, q) = 1 +
q

(1− xq)2

(
xFT (x) +

2x3q(1− x+ x2)

(1 − x)2(1− 2x)
− x2q

1− x

)

= 1 +
xq(1− 6x+ 13x2 − 11x3 + 5x4 − xq(1 − 8x+ 20x2 − 19x3 + 10x4 − 2x5))

(1− x)2(1 − xq)2(1− 2x)(1− 3x+ x2)
.

Taking q = 1 in the last formula, and simplifying, recovers Theorem 3:

GT (x, 1) = FT (x) =
1− 6x+ 13x2 − 11x3 + 5x4

(1− x)2(1− 2x)(1 − 3x+ x2)
.

Extracting the coefficient of qm from G(x, q) implies that the generating function Gm(x) for the number

of T -avoiders having exactly m left-right maxima is given by

Gm(x) =
xm(1− 8x+ 20x2 − 19x3 + 10x4 − 2x5) +mxm+1(2 − 7x+ 8x2 − 5x3 + 2x4)

(1− x)2(1− 2x)(1 − 3x+ x2)
,

for all m ≥ 1. Note that taking m = 1 in the last equation gives back the obvious formula G1(x) =
xFT (x).



Wilf classification of triples of 4-letter patterns I 7

Remark: A comparable formula for GT (x, q) may be obtained in a similar fashion for other T in

subsequent cases where we make use of left-right maxima in counting the avoiders in question.

We now turn our attention to the case when T = {2143, 2341, 4231}.

Theorem 4. Let T = {2143, 2341, 4231}. Then

FT (x) =
1− 6x+ 13x2 − 11x3 + 5x4

(1 − x)2(1− 2x)(1− 3x+ x2)
.

Proof: The proof follows along the lines of Theorem 3. Let Gm(x) be the generating function for T -

avoiders with m left-right maxima. Clearly, G0(x) = 1 and G1(x) = xK , where

K =
∑

n≥0

|Sn(231, 2143)|xn =
1− 2x

1− 3x+ x2

(see [18, Seq. A001519]).

To write an equation for HT (x), we consider π = (n − 1)π′nπ′′ ∈ Sn(T ). If π′π′′ is empty, then the

contribution is x2. Otherwise, we consider the following two cases:

• the letter n− 2 belongs to π′, which implies that π = (n− 1)β′(n− 2)β′′nπ′′. If β′′π′′ is empty,

we get a contribution of x3K by deleting the letters n− 1, n− 2, n from π. If β′′π′′ is nonempty,

then β′ < β′′π′′ and we get a contribution of x
1−x

(
HT (x)− x2

)
.

• the letter n − 2 belongs to π′′, which implies π = (n − 1)π′nβ′(n − 2)β′′. If β′′ is not empty,

then π′nβ′ = 12 · · · jn(j + 1)(j + 2) · · · i′ where β′′ is a permutation of i′ + 1, . . . , n − 3, so we

have a contribution of x3

(1−x)2 (K − 1). If β′′ is empty, then π′ is an increasing subsequence, say

π′ = j1j2 · · · jd with j1 < j2 < · · · < jd. If d = 0, then the contribution is x3K , otherwise

π can be written as π = (n − 1)j1j2 · · · jdnβ′(n − 2) with d ≥ 1. Since π avoids 2341 and

4231, we have π = (n − 1)12 · · · (d − 1)jdnβ
(1)β(2)(n − 2), where jdβ

(1)β(2) is a permutation

of d, d+ 1, . . . , n− 3 and β(1) < jd < β(2). By considering whether β(1) is empty or not, we get

xd+3K + xd+3

1−x (K − 1). By summing over d ≥ 1, it follows that the contribution in this case is

given by x4

1−xK + x4

(1−x)2 (K − 1).

Thus, HT (x) = x2 + x3K + x
1−x (HT (x) − x2) + x3

(1−x)2 (K − 1) + x3K + x4

1−xK + x4

(1−x)2 (K − 1),

which implies

HT (x) =
(1 − 3x+ 3x2 + x3)x2

(1 − 2x)(1− 3x+ x2)
.

Now, we are ready to write an equation for Gm(x), where m ≥ 2. Using the same decomposition as in

the proof of Theorem 3, we obtain

Gm(x) = xm−2(HT (x)− x2K) + xm−2(JT (x) − x2K) + xGm−1(x)

= 2xm−2(HT (x) − x2K) + xGm−1(x).

Summing overm ≥ 2, we find
∑

m≥2 Gm(x) = (2HT (x)−x2(1+x)K)/(1−x)2. Using the expressions

for G0(x) and G1(x), it is seen that FT (x) =
∑

m≥0 Gm(x) simplifies to the desired expression.
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Theorem 5. There is a bijection between the set of {2143, 2341, 3412}-avoiders and the set of {2143,
2341, 3421}-avoiders.

Proof: Let An andBn denote the subsets of Sn whose members avoid the patterns in the sets {2143, 2341,
3412} and {2143, 2341, 3421}, respectively. We will define a bijection f from An to Bn as follows. If

n ≤ 3, we may clearly take f to be the identity, so assume n ≥ 4. Given π = π1π2 · · ·πn ∈ An,

let a = π1 denote the first letter of π. If a = 1 so that π has the form 1π′, define f recursively by

f(π) = 1 ⊕ f(π′ − 1). (Here, ⊕ is the direct sum, thus for example 132⊕ 123 = 132456.) Henceforth,

assume a > 1. We consider cases according to descending values of the position j of n in π.

If j = n so that π has the form π′n, define f , again recursively, by f(π) = f(π′)n.

If 3 ≤ j ≤ n− 1, then π has the form aβ′nβ′′ with β′ and β′′ nonempty. We claim (i) a = n− 1, (ii)

β′ avoids 231, and (iii) β′′ is decreasing. To establish the claims, we need a preliminary result.

Lemma 6. If π ∈ An has ≥ 3 left-right maxima and 1 is not its first letter, then n is its last letter.

Proof: Suppose i1 = a, i2, . . . , im = n are the left-right maxima of π with m ≥ 3, so that all other

entries of π lie in the rectangles R2, R3, . . . , Rm and S1, S2 shown in the figure.

i1

i2

i3

im

S1 S2

R2

R3

Rm

. . .

An entry x ∈ S2 implies i1i2i3x is a forbidden 2341. Hence S2 = ∅ and so 1 ∈ S1. Now x ∈ Rm implies

i11imx is a forbidden 2143. Hence, Rm = ∅ and im = n is the last letter in π.

Corollary 7. If π ∈ An and 1 is not its first letter and n is not its last letter, then π has at most two

left-right maxima.

Now, if claim (i) fails, a ≤ n − 2. Since n is not the last letter of π, Corollary 7 implies that a and n
are the only two left-right maxima of π. Consequently, n − 1 occurs after n and, since j ≥ 3, there is a

letter x < a before n. But then axn(n− 1) is a forbidden 2143.

If (ii) fails and cdb is a 231 in β′, take any x ∈ β′′. If x > c, then cbnx is a forbidden 2143, while if

x < c, then cdnx is a forbidden 2341.

If (iii) fails, there are letters x < y in β′′. But then (n− 1)nxy is a forbidden 3412.

It follows from (ii) that the initial segment aβ′n of π avoids 3421, since 3421 contains the pattern 231.

Define f(π) = aβ′nr(β′′), where r(β) denotes the reverse of a permutation β. It is clear that f(π) also

avoids 3421 and so is in Bn.

If j = 2 so that π begins an · · · , we introduce the condition

a+ 1 6= πn and the successor and predecessor of a+ 1 in π are both < a, (4)

and consider two cases.
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• Condition (4) holds. Here, 2 ≤ a ≤ n − 2 and π must have the form aα′β′(a + 1)β′′α′′ with

β′ = (a−1)(a−2) · · · (b+1) and β′′ = b(b−1) · · · 1 for some b ∈ [a−2], whereα′ starts with n and

is decreasing, and α′′ is increasing, possibly empty. Conversely, one may verify that a permutation

with a decomposition of this form belongs to An. Define f(π) = aα′r(β′′)(a+ 1)r(β′)α′′.

• Condition (4) fails. Here, π must have the form aα′βα′′ with β = (a − 1)(a − 2) · · · 1 (hence,

nonempty), where α′ starts with n and is decreasing, and α′′ is increasing, possibly empty. Define

f(π) = aα′r(β)α′′ .

Finally, if j = 1 so that π = nπ′, define f recursively by f(π) = nf(π′).
The mapping f preserves left-right maxima and their positions. The reader may check that f is re-

versible and is a bijection from An to Bn.

3.2 Case 55

Theorem 8. Let T = {1324, 2143, 2341}. Then

FT (x) =
1− 6x+ 12x2 − 8x3 + 3x4 − x5

(1− x)(1 − 3x+ x2)2
.

Proof: Let aT (n; i1, i2, . . . , is) be the number of permutations i1i2 · · · isπ ∈ Sn(T ). The initial condi-

tions aT (n;n) = aT (n;n − 1) = aT (n − 1) and aT (n; 1) = |Sn−1(213, 2341)| easily follow from the

definitions. It is well known that |Sn−1(213, 2341)| = F2n−3, where Fn is the n-th Fibonacci number

defined by Fn = Fn−1 + Fn−2 if n ≥ 2, with F0 = 0 and F1 = 1.

Now let 2 ≤ i ≤ n−2 and let us focus on the second letter of π. Clearly, aT (n; i, n) = aT (n−1; i), and

also aT (n; i, j) = 0 for all j = i+2, i+3, . . . , n−1. Note that any permutation π = i(i+1)π′ ∈ Sn(T )
can be written as π = i(i + 1)π′′(i + 2)(i + 3) · · ·n, so aT (n; i, i + 1) = |Si−1(132, 2341)| and it is

also known that |Si−1(132, 2341)| = F2i−3. A permutation π = ijπ′ ∈ Sn(T ) with n− 2 ≥ i > j ≥ 1
satisfies π = ijπ′(j+2) · · · (i− 1)(i+1)(i+2) · · ·n, where π′ is a permutation of 1, 2, . . . , j− 1, j+1
that avoids 132 and 2341, and so aT (n; i, j) = |Sj(132, 2341)| = F2j−1. Hence

aT (n; i) = F1 + F3 + F5 + · · ·+ F2i−3 + F2i−3 + aT (n− 1; i),

which, by the fact that F1 + F3 + F5 + · · ·+ F2i−3 = F2i−2, implies for 2 ≤ i ≤ n− 2 that

aT (n; i)− aT (n− 1; i) = F2i−1.

By summing both sides of the last equation over i = 2, 3, . . . , n− 2 and using the initial conditions, we

obtain for n ≥ 3,

aT (n)− aT (n− 1) = 2aT (n− 1)− aT (n− 2) + F2n−3 − F2n−5 +

n−2∑

i=2

F2i−1

= 2aT (n− 1)− aT (n− 2) + F2n−3 − F2n−5 + F2n−4 − 1

= 2aT (n− 1)− aT (n− 2) + 2F2n−4 − 1.
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It is routine to solve this difference equation for the generating function FT (x) using

∑

n≥0

F2n−1x
n =

1− 2x

1− 3x+ x2
.

3.3 Case 166

The two representative triples T are:

{1243,3142,3412} (Theorem 10)

{1324,3142,3412} (Theorem 12)

3.3.1 T = {1243, 3142, 3412}
Let bn(i) = |ST (n; i, n)| and bn(i, j) = |ST (n; i, n, j)| so that bn(i) and bn(i, j) count T -avoiders for

which the second letter is n by first letter, i, and third letter, j. We first obtain a recurrence for bn(i, j).

Note that when the second letter is n, the conditions i = 1 and j ∈ [2, n − 2] force the last entry

to be n − 1 or 2 for else a forbidden pattern will be present. Deleting this entry gives contributions

of bn−1(1, j), bn−1(1, j − 1) to bn(1, j) according as to whether the last entry is n − 1 or 2. Clearly,

bn(1, n− 1) = bn−1(1). Hence, for i = 1, we have the following table of recursive values for bn(1, j):

j ∈ [2, n− 2] n− 1

bn(1, j) bn−1(1, j) + bn−1(1, j − 1) bn−1(1)

Similarly, the conditions 2 ≤ i ≤ n − 2 and j ∈ [i + 1, n − 2] force the last entry to be n − 1 or 1

and deleting it gives contributions of bn−1(i, j), bn−1(i − 1, j − 1) according as the last entry is n − 1
or 1. Hence, for 2 ≤ i ≤ n − 2, we have the table (the straightforward verification of entries other than

j ∈ [i + 1, n− 2] is left to the reader):

j ∈ [1, i− 2] i− 1 ∈ [i+ 1, n− 2] n− 1

bn(i, j) 0 bn−1(i− 1) bn−1(i, j) + bn−1(i− 1, j − 1) bn−1(i)

Lastly, for i = n − 1, bn(n − 1) = 1 because π = (n − 1)nπ′ ∈ Sn(T ) implies π = (n − 1)n(n −
2)(n− 3) · · · 1.

The table for i = 1 yields bn(1) =
∑n−1

j=2 bn(1, j) =
∑n−2

j=2

(
bn−1(1, j)+ bn−1(1, j− 1)

)
+ bn(1, n−

1) = 3bn−1(1) − bn−2(1) for n ≥ 4. Together with the initial conditions b2(1) = b3(1) = 1, this

recurrence implies that bn(1) = F2n−5 for n ≥ 2, where Fn is the n-th Fibonacci number.

Lemma 9. Let bn =
∑n−1

i=1 |ST (n; i, n)|. Then the generating function for the sequence bn is given by

B(x) =
∑

n≥2

bnx
n =

x2(1− 5x+ 7x2 − x3)

(1− 3x+ x2)(1 − 3x)(1− x)
.
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Proof: Clearly, bn =
∑n−1

i=1 bn(i). Using the preceding results, we have

bn = 2bn−1 +

n−3∑

i=2

n−2∑

j=i+1

bn(i, j) +

n−2∑

j=2

bn(1, j)

= 2bn−1 +

n−4∑

i=1

n−3∑

j=i+1

bn−1(i, j) +

n−3∑

i=2

n−2∑

j=i+1

bn−1(i, j) +

n−2∑

j=2

bn(1, j)

= 2bn−1 + bn−1 − 2bn−2 + bn−1 − bn−2 + F2n−7 − F2n−7

= 4bn−1 − 3bn−2 + F2n−8,

with b1 = 0, b2 = 1 and b3 = 2. Hence, by using the fact that
∑

n≥4 F2n−8x
n = x5

1−3x+x2 , we obtain

B(x) = x2(1−5x+7x2−x3)
(1−3x+x2)(1−3x)(1−x) .

Theorem 10. We have

FT (x) =
1− 9x+ 30x2 − 44x3 + 27x4 − 7x5

(1 − 3x)(1− x)(1 − 3x+ x2)2
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m = 2. Let π = iπ′nπ′′ ∈ Sn(T )
with two left-right maxima. If π = i(i− 1) · · · i′nπ′′, then the contribution is B(x)/(1− x) (see Lemma

9). Otherwise, π = iπ′nπ′′ where π′ is a permutation on {i′, i′ + 1, . . . , i − 1} that avoids T and

has at least one ascent. Since π avoids 1243, π′′ = (i′ − 1) · · · 21. Thus, the contribution is given by
x2

1−x

(
FT (x) − 1/(1− x)

)
. Hence,

G2(x) =
1

1− x
B(x) +

x2

1− x

(
FT (x) −

1

1− x

)
.

Now let us write an equation for Gm(x) with m ≥ 3. Let π = i1π
(1) · · · imπ(m) ∈ Sn(T ) with exactly

m left-right maxima, i1, i2, . . . , im. Since π avoids 1243, we have that π(2), . . . , π(m) are all < i2. If π(1)

has an ascent, then π(1) > π(2) > · · · > π(m) and π(1) avoids T and π(2) · · ·π(m) = (i′ − 1) · · · 1 with i′

the minimal letter of π(1). Thus, the contribution is given by xm

(1−x)m−1

(
FT (x) − 1/(1− x)

)
.

From now, we can assume that π(1) = (i − 1) · · · (i′ + 1)i′. Let s ∈ {2, 3, . . . ,m} be the minimal

number such that π(s) contains a letter from the set [i′ − 1]. We have the following cases:

• s = 2: Here π′(2)π(3) · · ·π(m) = (i′−1) · · · 21, where π′(2) is the subsequence of all letters of π(2)

that are smaller than i′. Hence, by the definition of B(x) (see Lemma 9), we get a contribution of
xm−2

(1−x)m−1

(
B(x) − x2K(x)

)
, where K(x) =

∑
n≥0 |Sn(132, 3412)|xn = 1−2x

1−3x+x2 (see [18, Seq.

A001519]).

• s = 3, 4, . . . ,m − 1: Here π(2) > π(3) > · · · > π(s−1) > i1 > π(s) > π(s+1) > · · · > π(m)

and π(s) · · ·π(m) = (i′ − 1) · · · 21 and π(3) · · ·π(s−1) = (i′1 − 1) · · · (i1 + 2)(i1 + 1), where i′1 is

the minimal letter of π(2). Moreover, π(2) avoids 132 and 3412. Thus, the contribution is given by
xm+1

(1−x)mK(x).
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• s = m. Here i′ = 1 and π(2) > π(3) > · · · > π(m) > i1 and π(3) · · ·π(s−1) = (i′1 − 1) · · · (i1 +
2)(i1 +1) and π(2) avoids 132 and 3412, where i′1 is the minimal letter of π(2). Thus, the contribu-

tion is given by xm

(1−x)mK(x).

By the preceding cases, we obtain for m ≥ 3,

Gm(x) =
xm

(1− x)m−1

(
FT (x) −

1

1− x

)
+

xm−2

(1− x)m−1

(
B(x)− x2K(x)

)

+ (m− 3)
xm+1

(1− x)m
K(x) +

xm

(1− x)m
K(x).

Since FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x) +
1

1− x
B(x) +

∑

m≥2

xm

(1 − x)m−1

(
FT (x) −

1

1− x

)

+
∑

m≥3

xm−2

(1− x)m−1
(B(x) − x2K(x)) +

∑

m≥4

(m− 3)
xm+1

(1− x)m
K(x)

+
∑

m≥3

xm

(1− x)m
K(x).

After several algebraic operations, and solving for FT (x), we complete the proof.

3.3.2 T = {1324, 3142, 3412}
Let bn(i, j) = |ST (n; i, n, j)|. Then, in analogy with the previous subsection,

bn(i, j) = F2n−2j−3, 2 ≤ i+ 1 < j ≤ n− 2,

with bn(i + 1, i) = bn(i, i+ 1) = bn(i, n− 1) = bn−1(i) and bn(n− 2, n− 1) = 1.

Lemma 11. Let bn(i) = |ST (n; i, n)|, bn =
∑n−1

i=1 bn(i), and B(x) =
∑

n≥2 bnx
n. Then

B(x) =
x2(1− 5x+ 7x2 − x3)

(1− 3x+ x2)(1 − 3x)(1− x)
.

Proof: From the preceding results, we have

bn = 3bn−1 − 1 +

n−4∑

j=1

F2j−1(n− 3− j),

with b2 = 1. Thus,

bn − bn−1 = 3bn−1 − 3bn−2 + F1 + F3 + · · ·+ F2n−9,

which, by the fact that F1 + F3 + · · ·+ F2n−9 = F2n−8, implies

bn = 4bn−1 − 3bn−2 + F2n−8,

with b2 = 1 and b3 = 2. This is the same recurrence as in Lemma 9.
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Theorem 12. We have

FT (x) =
1− 9x+ 30x2 − 44x3 + 27x4 − 7x5

(1 − 3x)(1− x)(1 − 3x+ x2)2
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). By using similar arguments as in the proof of Theorem 10, we obtain that (see

Lemma 11) G2(x) = K(x)B(x).

Now let us write an equation for Gm(x) with m ≥ 3. Let π = i1π
(1) · · · imπ(m) ∈ Sn(T ) with

exactly m left-right maxima. Since π avoids 1324, we have that i1 > π(1) > · · · > π(m−1). Let

s ∈ {2, 3, . . . ,m − 1} (s need not exist) be the minimal number such that π(s) 6= ∅. We have the

following cases:

• s = 2, 3, . . . ,m− 1: Here π(2) = π(3) = · · · = π(s−1) = ∅ and there is no letter in π(m) between

is−1 and is. Thus, the contribution is given by xs

1−xGm+1−s(x).

• s does not exist. Here π(2) = π(3) = · · · = π(m−1) = ∅. Consider whether or not π(m) contains a

letter from the set {i1 + 1, . . . , im−1 − 1}. If so, then π(m) can be written as π(m) = π′(im−1 −
1) · · · (im−2 + 2)(im−2 + 1) · · · (i1 − 1) · · · 21 with π′ and π(1) avoiding 132 and 3412, whence

the contribution in this case is given by xm

1−x(1/(1 − x)m−2 − 1)K(x)2. If not, then one gets a

contribution of xm−2G2(x).

Combining the previous cases, we obtain

Gm(x) = xm−2G2(x) +
xm

1− x
(1/(1− x)m−2 − 1)K(x)2 +

m−1∑

s=2

xs

1− x
Gm+1−s(x).

Since FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x) +
1

1− x
K(x)B(x) +

∑

m≥3

xm

1− x
(1/(1− x)m−2 − 1)K(x)2

+
x2

(1− x)2
(FT (x) − 1− xFT (x)).

Solving for FT (x) and using Lemma 11, we complete the proof.

3.4 Case 171

The two representative triples T are:

{1423,2314,2341} (Theorem 13)

{1324,1342,4123} (Theorem 17)
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3.4.1 T = {1423, 2314, 2341}
Theorem 13. Let T = {1423, 2314, 2341}. Then

FT (x) =
1− 4x+ 5x2 − x3 + (1− 4x+ 3x2 − x3)

√
1− 4x

(1− x)(1 − 3x+ x2)(1 − 2x+
√
1− 4x)

.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Next, we consider m ≥ 3. If π = i1π

(1) · · · imπ(m) avoids T , then

π(1) < π(2) < · · · < π(m−2) < π(m−1)imπ(m)

and π(1) avoids 231 and 1423 (due to the presence of im), π(j) = (ij+1 − 1) · · · (ij + 2)(ij + 1) for

j = 2, 3, . . . ,m− 2, and

im−1π
(m−1)imπ(m) = im−1(im−1 − 1) · · · ℓ im(im − 1) · · · (im−1 + 1) ℓ (ℓ− 1) · · · (im−2 + 1) .

These results are explained in the next figure, where entries are decreasing as indicated by arrows to avoid

1423, and other shaded regions are empty to avoid the indicated pattern.

. .
.

i1

im−1

im

π(1) 23
•
14

234
•
1

There are m left-right maxima and m regions containing arrows (to be filled with an arbitrary num-

ber of “balls”), and the generating function K :=
∑

n≥0 |Sn(231, 1423)|xn for {231, 1423}-avoiders is
1−2x

1−3x+x2 [18, Seq. A001519]. Hence, for m ≥ 3,

Gm(x) =
xm

(1− x)m
K.

Now we find an explicit formula for G2(x). In order to do that, we define the following notation. Let

gk(x) denote the generating function for T -avoiders in Sn with two left-right maxima and leftmost letter

n−1−k, 0 ≤ k ≤ n−2. Let g′k(x) be the generating function for T -avoiders with two left-right maxima

(n− 1− k)n in the two leftmost positions.

First, we find an equation for gk(x). Let π = (n− 1 − k)π′nπ′′ ∈ Sn(T ) with two left-right maxima

and leftmost letter n − 1 − k. If π′ is empty, then the contribution is g′k(x). Otherwise, since π′ avoids

2314, π′ has the form β′d β′′ where β′ < β′′ < d. If β′ is empty, then the contribution is x
∑

j≥0 gk+j(x),
upon considering deletion of n− 1− k. If β′ is not empty, then π has the form

(n− 1− k)β′d(d − 1) · · · d′n(n− 1) · · · (n− k)(n− 2− k) · · · (d+ 1)(d′ − 1) · · · (d′′ + 1),
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for some d′, where d′′ is the largest letter of β′. The contributions are xk+2 for {n− k− 1, n− k, . . . , n},

x for d, 1/(1 − x)3 for the 3 decreasing sequences, and K − 1 for β′, hence
xk+3(K−1)

(1−x)3 altogether. By

combining all the contributions, we obtain

gk(x) = g′k(x) + x
∑

j≥0

gk+j(x) +
xk+3(K − 1)

(1 − x)3

for k ≥ 1, with initial condition g0(x) = x(FT (x)−1) (delete n−1, which can play no role in a forbidden

pattern).

Define the generating function G(x, u) =
∑

k≥0 gk(x)u
k . Note that G(x, 1) = G2(x) since G2(x) =∑

k≥0 gk(x). The preceding recurrence for gk(x) can now be written as

G(x, u) = G′(x, u) + x(FT (x)− 1)− x2FT (x) +
xu

1− u

(
G(x, 1)−G(x, u)

)
+

x4u(K − 1)

(1− x)3(1− xu)
,

(5)

where G′(x, u) =
∑

k≥0 g
′
k(x)u

k.

Next, let us write an equation for g′k(x). So suppose π = (n − 1 − k)nπ′ ∈ Sn(T ) has two left-right

maxima. Clearly, g′0(x) = x2FT (x) (delete the first two letters, n− 1 and n). For k ≥ 1, π can be written

as π = (n− 1− k)nβ′(n− 1)β′′. If β′ is empty, then the contribution is given by xg′k−1(x). Otherwise,

similar to the gk case, β′ has the form γ′dγ′′ where γ′ < γ′′ < d, and by considering whether γ′ is empty

or not, we obtain the contribution x2
∑

j≥0 gk−1+j(x) +
xk+3(K−1)

(1−x)3 . Combining all the previous cases

yields

g′k(x) = xg′k−1(x) + x2
∑

j≥0

gk−1+j(x) +
xk+3(K − 1)

(1− x)3

for k ≥ 1, with g′0(x) = x2FT (x). Multiply by uk and sum over k ≥ 0 to obtain

G′(x, u) = xuG′(x, u) + x2FT (x) +
x2u

1− u

(
G(x, 1)− uG(x, u)

)
+

x4u

(1− x)3(1− xu)
(K − 1). (6)

Solving (6) for G′(x, u), and substituting into (5), yields

1− u+ xu2

1− u
G(x, u) =

x((1 − x)3 + xu(2 − xu)(x2 − (1− x)3))

(1− x)3(1− xu)

− x(1− xu + x2u)FT (x)−
x4u(2− xu)K

(1 − x)3(1− xu)
− xu(1 + x− xu)

1− u
G(x, 1) .

To solve the preceding functional equation, we apply the kernel method and take u = C(x), which cancels

out the G(x, u) term. A calculation, using the identity xC(x)2 = C(x) − 1 to simplify the result (best

done by computer), now yields

G(x, 1) =
x(−1 + (2− x)C(x))

1 + xC(x)
FT (x) −

x
(
1− 5x+ 9x2 − 4x3 + x4 − x2C(x)

)

(1− x)2 (1− 3x+ x2)
(
1 + x(1 − C(x))

) .
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Hence, since FT (x) =
∑

m≥0 Gm(x) and G2(x) = G(x, 1), we obtain

FT (x) = 1 + xFT (x) +G(x, 1) +
x3K

(1− x)2(1 − 2x)
,

which leads to

FT (x) =
1− 4x+ 5x2 − x3 + (1− 4x+ 3x2 − x3)

√
1− 4x

(1− x)(1 − 3x+ x2)(1 − 2x+
√
1− 4x)

,

as required.

3.4.2 T = {1324, 1342, 4123}
For this case, we define a(n; i1, i2, . . . , ik) for n ≥ k to be the number of T -avoiding permutations of

length n whose first k letters are i1, i2, . . . , ik. Let a(n) =
∑n

i=1 a(n; i) for n ≥ 1 and Ti,j be the subset

of permutations enumerated by a(n; i, j). It is convenient to consider separately the cases when either the

second or third letter equals n. To this end, let e(n; i) = a(n; i, n) for 1 ≤ i ≤ n − 2 (with e(n;n− 1)
defined to be zero) and f(n; i, j) = a(n; i, j, n) for 4 ≤ i ≤ n − 1 and 1 ≤ j ≤ i − 3. The arrays

a(n; i, j), e(n; i) and f(n; i, j) are determined recursively as follows.

Lemma 14. We have

a(n; i, i− 2) = a(n− 2; i− 2) + e(n− 1; i− 2) +
i−3∑

j=1

a(n− 1; i− 1, j), 3 ≤ i ≤ n, (7)

a(n; i, j) = f(n; i, j) +

j−1∑

ℓ=1

a(n− 1; i− 1, ℓ), 4 ≤ i ≤ n− 1 and 1 ≤ j ≤ i− 3, (8)

a(n;n, j) =

j∑

ℓ=1

a(n− 1;n− 1, ℓ), 1 ≤ j ≤ n− 3, (9)

e(n; i) = e(n− 1; i) +

i∑

j=1

a(n− 1;n− 1, j), 1 ≤ i ≤ n− 3, (10)

and

f(n; i, j) = f(n− 1; i, j) +

j−1∑

ℓ=1

a(n− 2;n− 2, ℓ), 4 ≤ i ≤ n− 2 and 1 ≤ j ≤ i− 3, (11)

with e(n;n − 2) = Cn−2 for n ≥ 3 and f(n;n − 1, j) = a(n − 1;n − 1, j) for 1 ≤ j ≤ n − 4.

Furthermore, we have a(n; i, j) = 0 if n ≥ 4 and 1 ≤ i < j − 1 < n− 1, a(n; i, i+ 1) = a(n− 1; i) if

1 ≤ i ≤ n− 1, and a(n; i, i− 1) = a(n− 1; i− 1) if 2 ≤ i ≤ n.

Proof: The formulas for a(n; i, i+1) and a(n; i, i− 1), and for a(n; i, j) when i < j− 1 < n− 1, follow

from the definitions. In the remaining cases, let x denote the third letter of a T -avoiding permutation.
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For (7), note that members of Ti,i−2 when i < n must have x = i − 1, x = n or x < i − 2, lest

there be an occurrence of 1324 or 1342. This is seen to give a(n − 2; i − 2), e(n − 1; i − 2) and∑i−3
j=1 a(n − 1; i − 1, j) possibilities, respectively, which implies (7). Observe that (7) also holds when

i = n since e(n − 1;n − 2) = 0, by definition. For (8), note that members of Ti,j where i < n and

j ≤ i− 3 must have x = n or x < j (as x = j + 1 is not permitted due to 4123 and j + 2 ≤ x ≤ n− 1
is not due to 1324, 1342). In the second case, the letter j becomes extraneous and thus may be deleted

since i, x imposes a stricter requirement on later letters than does j, x (with x < j making j redundant

with respect to 1324, 1342). Relation (8) then follows from the definitions. For (9), note that members of

Tn,j where j ≤ n− 3 must have x = n− 1 or x < j in order to avoid 4123, which accounts for the ℓ = j
term and the remaining terms, respectively, in the sum on the right-hand side.

For (10), note that members of Ti,n where i ≤ n − 3 must have x = n − 1, x < i or x = i + 1. The

letter n may be deleted in the first case, while the i may be deleted in the latter two (as n, x imposes a

stricter requirement on subsequent letters than i, x). Thus, there are e(n− 1; i),
∑i−1

j=1 a(n− 1;n− 1, j)
and a(n − 1;n − 1, i) possibilities, respectively, which implies (10). That e(n;n − 2) = Cn−2 follows

from the fact that members of Tn−2,n are synonymous with 123-avoiding permutations of length n − 2
which are well known to be enumerated by Cn−2 (note that n− 2 is redundant due to n). Finally, to show

(11), note that permutations counted by f(n; i, j) must have fourth letter y equal n − 1 or less than j. If

y = n − 1, then the letter n may be deleted and thus there are f(n − 1; i, j) possibilities, by definition.

If y < j, then n, y imposes a stricter requirement on the remaining letters with respect to 4123 than does

i, y or i, j, with the i and j also redundant with respect to 1324 or 1342 due to y. Thus, both i and j
may be deleted in this case, yielding

∑j−1
ℓ=1 a(n − 2;n − 2, ℓ) possibilities, which implies (11). That

f(n;n− 1, j) = a(n− 1;n− 1, j) holds for 1 ≤ j ≤ n− 4 since the letter n may be deleted in this case,

which completes the proof.

In order to solve the recurrences of the prior lemma, we introduce the following functions: an(u) =∑n
i=1 a(n; i)u

i for n ≥ 1, bn,i(v) =
∑i−2

j=1 a(n; i, j)v
j for 3 ≤ i ≤ n, bn(u, v) =

∑n−1
i=1 bn,i(v)u

i for

n ≥ 3,

cn,i(v) = a(n− 1; i) + a(n− 1; i− 1) + bn,i(v), 1 ≤ i ≤ n− 1,

cn(u, v) =
∑n−1

i=1 cn,i(v)u
i for n ≥ 2, en(u) =

∑n−2
i=1 e(n; i)ui for n ≥ 3, fn,i(v) =

∑i−3
j=1 f(n; i, j)v

j

for 4 ≤ i ≤ n− 1, and fn(u, v) =
∑n−1

i=4 fn,i(v)u
i for n ≥ 5.

By the definitions, we have

an(u) = cn(u, 1) + en(u) + Cn−1u
n, n ≥ 1. (12)

Assume bn,1(v) = bn,2(v) = 0. By (7) and (8), we have for 3 ≤ i ≤ n− 1,

bn,i(v) = (a(n− 2; i− 2) + bn−1,i−1(1) + e(n− 1; i− 2))vi−2 + fn,i(v)

+

i−3∑

j=1

vj
j−1∑

ℓ=1

a(n− 1; i− 1, ℓ)

= (a(n− 2; i− 2) + e(n− 1; i− 2))vi−2 + fn,i(v) +
v

1− v
(bn−1,i−1(v)− vi−2bn−1,i−1(1)).



18 David Callan, Toufik Mansour, Mark Shattuck

Multiplying both sides of the last equation by ui, and summing over 3 ≤ i ≤ n− 1, yields

bn(u, v) = u2(an−2(uv) + en−1(uv)− Cn−3(uv)
n−2) + fn(u, v)

+
u

1− v
(vbn−1(u, v)− bn−1(uv, 1)), n ≥ 3. (13)

By (7) and (9), we get

bn,n(v) = (a(n− 2;n− 2) + bn−1,n−1(1))v
n−2 +

1

1− v
(bn−1,n−1(v)− vn−2bn−1,n−1(1))

= Cn−3v
n−2 +

1

1− v
(bn−1,n−1(v)− vn−1bn−1,n−1(1)), n ≥ 3. (14)

By the definitions, we have

cn(u, v) = an−1(u) + u(an−1(u)− a(n− 1;n− 1)un−1) + bn(u, v)

= (u+ 1)an−1(u)− Cn−2u
n + bn(u, v), n ≥ 2. (15)

Multiplying both sides of (10) by ui, and summing over 1 ≤ i ≤ n− 3, gives

en(u) = e(n;n− 2)un−2 + en−1(u) +

n−3∑

j=1

a(n− 1;n− 1, j)

(
uj − un−2

1− u

)

= Cn−2u
n−2 + en−1(u) +

1

1− u
(bn−1,n−1(u)− un−2bn−1,n−1(1)), n ≥ 3. (16)

By (11), we have

fn,i(v) = fn−1,i(v) +
1

1− v

i−3∑

ℓ=1

a(n− 2;n− 2, ℓ)(vℓ+1 − vi−2), 4 ≤ i ≤ n− 2,

with

fn,n−1(v) =

n−4∑

j=1

f(n;n− 1, j)vj =

n−4∑

j=1

a(n− 1;n− 1, j)vj = bn−1,n−1(v)−Cn−3v
n−3, n ≥ 5.

We then get

fn(u, v)− fn,n−1(v)u
n−1 = fn−1(u, v) +

1

1− v

n−4∑

ℓ=1

a(n− 2;n− 2, ℓ)vℓ+1
n−2∑

i=ℓ+3

ui

− 1

1− v

n−4∑

ℓ=1

a(n− 2;n− 2, ℓ)

n−2∑

i=ℓ+3

uivi−2

= fn−1(u, v) +
uv

(1− u)(1− v)
(u2bn−2,n−2(uv)− un−2bn−2,n−2(v))

− u

v(1 − uv)(1− v)
(u2v2bn−2,n−2(uv)− (uv)n−2bn−2,n−2(1)), n ≥ 5.

(17)
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Let C(x) =
∑

n≥0 Cnx
n. Define the generating functions

a(x;u) =
∑

n≥1

an(u)x
n, b(x;u, v) =

∑

n≥3

bn(u, v)x
n, c(x;u, v) =

∑

n≥2

cn(u, v)x
n,

d(x; v) =
∑

n≥3

bn,n(v)x
n, e(x;u) =

∑

n≥3

en(u)x
n, f(x;u, v) =

∑

n≥5

fn(u, v)x
n.

By (15) at v = 1, we have

c(x;u, 1) = x(u + 1)a(x;u) + b(x;u, 1)− x2u2C(xu). (18)

Rewriting recurrences (12)–(14), (16), and (17) in terms of generating functions, and applying (18) to

the relation obtained from (12), yields the following system of functional equations.

Lemma 15. We have

(1− x(u + 1))a(x;u) = xu(1− xu)C(xu) + b(x;u, 1) + e(x;u), (19)

(
1− xuv

1− v

)
b(x;u, v) = f(x;u, v) + xu2e(x;uv)− x3u3vC(xuv)− xu

1− v
b(x;uv, 1)

+ x2u2a(x;uv), (20)

(
1− x

1− v

)
d(x; v) = x3vC(xv) − x

1− v
d(xv; 1), (21)

(1− x)e(x;u) = x2(C(xu) − 1) +
x

u(1− u)
(ud(x;u)− d(xu; 1)) , (22)

and

(1− x)f(x;u, v) = xd(xu; v) − x3u2(C(xuv) − 1) +
x2uv

(1 − u)(1− v)
(u2d(x;uv) − d(xu; v))

− x2u

v(1− uv)(1 − v)
(u2v2d(x;uv)− d(xuv; 1)). (23)

Note that the last three equations in the prior lemma are independent of the first two.

Lemma 16. We have

d(x; v) =
x2v(1 − (1− x)C(xv))

1− x− v
, (24)

e(x;u) =
x2u(1− (1− x)C(xu))

(1 − x)(1 − x− u)
, (25)

and

f(x; 1/(1− x), 1− x) =
1− 6x+ 9x2 − 2x3 − (1 − 3x)(1− x)

√
1− 4x

2x(1− x)2
. (26)
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Proof: Replacing x with x/v in (21) gives

(
1− x

v(1− v)

)
d(x/v; v) =

x3

v2
C(x) − x

v(1− v)
d(x; 1). (27)

Applying the kernel method to (27), and taking v = 1+
√
1−4x
2 = 1

C(x) , yields

d(x; 1) = x2

(
1− 1

C(x)

)
C2(x) = x(C(x) − 1)− x2C(x) = (x− x2)C(x) − x

and thus

d(x; v) =
x3v(1 − v)C(xv)

1− x− v
− x

1− x− v
(xv(1 − xv)C(xv) − xv)

=
x2v(1 − (1− x)C(xv))

1− x− v
.

Formula (25) now follows from (24) and (22). By taking u → 1/v in (23), we obtain

(1− x)f(x; 1/v, v)

= xd(x/v; v) − x3/v2(C(x) − 1) +
x2

(1− 1/v)(1− v)
(d(x; 1)/v2 − d(x/v; v))

− x2

v2(1− v)
lim

u→1/v

u2v2d(x;uv) − d(xuv; 1)

1− uv

= xd(x/v; v) − x3/v2(C(x) − 1) +
x2

(1− 1/v)(1− v)
(d(x; 1)/v2 − d(x/v; v))

+
x2(2d(x; 1) + d

dwd(x;w) |w=1 −x d
dxd(x; 1))

v2(1− v)
.

Substituting v = 1− x in the last expression, and using (24), yields (26).

We can now determine the generating function FT (x).

Theorem 17. Let T = {1324, 1342, 4123}. Then

FT (x) =
1− 3x+ x2 − x3 − (1 − x)3

√
1− 4x

2x(1 − 4x+ 4x2 − x3)
.

Proof: In the notation above, we seek to determine 1+a(x; 1). By (20) with u = 1/(1−x) and v = 1−x
and by (19) with u = 1, we have

f(x; 1/(1− x), 1− x) = − x

(1− x)2
e(x; 1) +

x3

(1− x)2
C(x) +

1

1− x
b(x; 1, 1)− x2

(1− x)2
a(x; 1),

a(x; 1) =
x(1− x)

1− 2x
C(x) +

1

1− 2x
b(x; 1, 1) +

1

1− 2x
e(x; 1).
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Substituting the expressions for e(x; 1) and f(x; 1/(1−x), x) from the prior lemma, and then solving the

system that results for a(x; 1) and b(x; 1, 1), we obtain

a(x; 1) =
1− 5x+ 9x2 − 9x3 + 2x4 − (1− x)3

√
1− 4x

2x(1− 4x+ 4x2 − x3)
,

b(x; 1, 1) =
1− 8x+ 22x2 − 23x3 + 5x4 − (1− 6x+ 12x2 − 7x3 + x4)

√
1− 4x

2x(1− 3x+ x2)
.

Hence,

1 + a(x; 1) =
1− 3x+ x2 − x3 − (1− x)3

√
1− 4x

2x(1− 4x+ 4x2 − x3)
,

as desired.

3.5 Case 174

The three representative triples T are:

{2134,2341,2413} (Theorem 18)

{2143,2314,2341} (Theorem 20)

{2143,2314,2431} (Theorem 21)

Theorem 18. Let T = {2134, 2341, 2413}. Then

FT (x) =
1− 6x+ 10x2 − 3x3 + x4

(1− 3x+ x2)(1 − 4x+ 2x2)
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2.

For m = 2, let π = iπ′nπ′′ ∈ Sn(T ) with two left-right maxima, i and n, and consider cases on i.
If i = n − 1, then π → π′(n − 1)π′′ is a bijection to nonempty T -avoiders of length n − 1, giving a

contribution of x(FT (x) − 1). If 2 ≤ i ≤ n− 2 and π′′ has the form (n− 1)(n− 2) · · · (i + 1)π′′′, then

π → π′iπ′′′ is a bijection to T -avoiders of length i, giving a contribution of x2/(1− x)(FT (x)− 1− x).

Lemma 19. If π = iπ′nπ′′ ∈ Sn(T ) has two left-right maxima, i ≤ n− 2 and π′′ does not have the form

(n− 1)(n− 2) · · · (i + 1)π′′′, then π′ = ∅ and i = 1.

Proof: Note first that all letters of [i + 1, n − 1] must occur prior to any letters of [i − 1] within π′′ in

order to avoid 2413. By hypothesis, there exist a, b ∈ π′′ such that i < a < b with a occurring before b.
If x ∈ π′, then ixab is a 2134. Hence, π′ = ∅. If i > 1, then 1 occurs (i) before a or (ii) after b. If (i),

i1ab is a 2134; if (ii), iab1 is a 2341, both forbidden. Hence, i = 1.

By the lemma, the only remaining case is π = 1nπ′′ with n ≥ 3 (since n = 2 falls under the case

i = n − 1). Here, π → π′′ is a bijection to T -avoiders of length n − 2, giving a contribution of

x2(FT (x)− 1). Summing all contributions, we find

G2(x) =
x

1− x
(FT (x) − 1) + x2

(
FT (x) −

1

1− x

)
.
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For m ≥ 3, let π = i1π
(1) · · · imπ(m) ∈ Sn(T ) with m left-right maxima. Then π(1) = π(2) = · · · =

π(m−2) = ∅ for otherwise a 2134 is present; also π(m−1) > im−3 (with i0 = 0) and π(m) > im−2

or a 2341 is present. Consequently, if there is no letter between im−3 and im−2, then π has the form

12 · · · (m− 2)π′ where π′ is a permutation of m− 1,m− 2, . . . , n with two left-right maxima that avoids

T , giving a contribution of xm−2G2(x). On the other hand, if there is a letter between im−3 and im−2,

the reader may verify that π must have the form

π = 12 · · · (m− 3)im−2im−1(im−1 − 1) · · · (im−2 + 1)π′im(im − 1) · · · (im−1 + 1) ,

where π′ is a nonempty permutation of im−3 +1, . . . , im−2 − 1 that avoids 213 and 2341. Here, the con-

tribution is xm

(1−x)2 (K − 1), where K =
∑

n≥0 |Sn(213, 2341)|xn = 1−2x
1−3x+x2 (see [18, Seq. A001519]).

Hence, for m ≥ 3,

Gm(x) = xm−2G2(x) +
xm

(1− x)2
(K − 1) .

Since FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x)−
x

(1 − x)2
(
(x2 − x− 1)FT (x) + x+ 1

)
+

(K − 1)x3

(1− x)3
,

with solution the stated FT (x).

Theorem 20. Let T = {2143, 2314, 2341}. Then

FT (x) =
1− 6x+ 10x2 − 3x3 + x4

(1− 3x+ x2)(1 − 4x+ 2x2)
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 3. Suppose π =
i1π

(1) · · · imπ(m) ∈ Sn(T ) with m ≥ 3 left-right maxima i1, i2, . . . , im. Then, because π avoids 2314

and 2341,

π(1) < i1 < π(2) < i2 < · · · < π(m−2) < im−2 < im−1π
(m−1)imπ(m).

If π(1) = · · · = π(j−1) = ∅ and π(j) 6= ∅ with j = 1, 2, . . . ,m − 2, then we have that π(j+1) = · · · =
π(m) = ∅ (π avoids 2143). So the contribution for each j = 1, 2, . . . ,m − 2 is xm(K − 1), where

K =
∑

n≥0 |Sn(231, 2143)|xn = 1−2x
1−3x+x2 (see [18, Seq. A001519]). If π(1) = · · · = π(m−2) = ∅, then

the contribution is given by xm−2G2(x). Thus,

Gm(x) = (m− 2)xm(K − 1) + xm−2G2(x), m ≥ 3.

It remains to find a formula for G2(x). So suppose π = iπ′nπ′′ and consider whether π′ is empty or not.

If π′ = ∅, then π → iπ′′ is a bijection to nonempty T -avoiders, giving a contribution of x
(
FT (x)− 1

)
. If

π′ 6= ∅, say x ∈ π′, then i = n− 1 because i < n− 1 implies ixn(n− 1) is a 2143. So π has first letter

n− 1 (contributes x(FT (x)− 1) ) and second letter 6= n (hence, subtract x2FT (x) ) for a net contribution

of x
(
FT (x) − 1− xFT (x)

)
. Thus,

G2(x) = x
(
FT (x)− 1

)
+ x

(
FT (x) − 1− xFT (x)

)
.
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Since FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x) +
x

1− x

(
2FT (x)− 2− xFT (x)

)
+

x3(K − 1)

(1− x)2
,

with solution the stated FT (x).

Theorem 21. Let T = {2143, 2314, 2431}. Then

FT (x) =
1− 6x+ 10x2 − 3x3 + x4

(1− 3x+ x2)(1 − 4x+ 2x2)
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. Suppose π =
i1π

(1) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right maxima i1, i2, . . . , im. Then, because π avoids 2314,

π(1) < i1 < π(2) < i2 < · · · < π(m−2) < im−2 < π(m−1) < im−1.

If π(1), . . . , π(m) are all empty, the contribution is xm. Now suppose the π’s are not all empty and j is

minimal such that π(j) 6= ∅.

First, suppose j ∈ [m − 1]. Then π(1) = · · · = π(j−1) = ∅ by supposition and π(j+1) = · · · =
π(m−1) = ∅ (to avoid 2143). Furthermore, πm > ij−1 (to avoid 2431) and πm < ij (to avoid 2143).

Hence, π = 12 · · · (j − 1)ijπ
(j)(ij + 1)(ij + 2) · · ·nπ(m). So “delete 12 · · · (j − 1) and (ij + 1)(ij +

2) · · · (n − 1) and standardize” is a bijection to T -avoiders with second largest letter in first position and

largest letter not in second position, giving a contribution of xm−1(FT (x)− 1− xFT (x)) as in Theorem

20, for each j ∈ [m− 1].
Next, suppose j = m so that π = i1i2 · · · imπ(m) with π(m) 6= ∅. Then, because π avoids 2431, π

has the form i1i2 · · · im β(1)β(2) · · ·β(m) with β(1) < i1 < β(2) < i2 < · · · < β(m) < im. Let ℓ be the

minimal index such that β(ℓ) is not empty, and say x ∈ β(ℓ). Then β(j) = ∅ for j ≥ ℓ + 2 because if

y ∈ β(j) with j ≥ ℓ+ 2, then ij−2ij−1xy is a 2314. Furthermore, β(ℓ+1) is increasing, because z > y in

β(ℓ+1) implies iℓxzy is a 2143.

If β(ℓ+1) = ∅, we get a contribution of xm(FT (x)− 1) for each ℓ ∈ [m].
If β(ℓ+1) 6= ∅, then β(ℓ) must avoid 231. So “delete the initial m letters (= the left-right maxima) and

standardize” is a bijection to pairs (γ(ℓ), γ(ℓ+1)) with γ(ℓ) a nonempty {231, 2143}-avoider and γ(ℓ+1) an

initial segment of the positive integers. Thus we get, for each ℓ ∈ [m−1], a contribution of xm x
1−x(K−1),

where K =
∑

n≥0 |Sn(231, 2143)|xn = 1−2x
1−3x+x2 (see [18, Seq. A001519]). Summing all contributions,

we have for m ≥ 2,

Gm(x) = xm+(m−1)xm−1
(
FT (x)−1−xFT (x)

)
+mxm(FT (x)−1)+(m−1)

(
xm+1

1− x
(K − 1)

)
.

Since F := FT (x) =
∑

m≥0 Gm(x), we find

F = 1 + xF +
x

(1 − x)2
(F − 1− xF ) +

(2 − x)x2

(1− x)2
(F − 1) +

x2

1− x
+

x3

(1− x)3
(K − 1),

with solution the stated FT (x).
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3.6 Case 177

The two representative triples T are:

{2143,2341,2413} (Theorem 22)

{2143,2341,3241} (Theorem 23)

Theorem 22. Let T = {2143, 2341, 2413}. Then

FT (x) =
1− 4x+ 3x2 − x3

1− 5x+ 6x2 − 3x3
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. So suppose π =
i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right maxima. We consider the following three cases:

• π(1) 6= ∅. Here, the only letters occurring after i2 that are > i1 are i3, . . . , im (to avoid 2143) and no

letter occurring after i3 is < i1 (to avoid 2341). So π has the form i1π
(1)(i1 + 1)γ(2)(i1 + 2) · · ·n

with γ(2) < i1. Thus, (i1 + 2) · · ·n contributes xm−2 and deleting these letters is a bijection to

T -avoiders of length r for some r ≥ 2 with first letter r − 1 and second letter 6= r, contributing

x(FT − 1)− x2FT .

• π(1) = ∅ and π(2) has a letter a < i1. Here, no non-left-right max letter occurring after i3 (if

present) is > i1 (2143) and, again, no letter occurring after i3 is < i1 (2341). Also, in π2, all

letters > i1 occur before all letters < i1 (2413). So π has the form i1i2γ
(2)γ(1)(i2 + 1) · · ·n with

γ(1) < i1 < γ(2) < i2 and, furthermore, γ(2) is decreasing because b < c in γ(2) implies i1bca is a

2341. So π = i1i2(i2 − 1) · · · (i1 +1)γ(1)(i2 +1) · · ·n with γ(1) a T -avoider of length ∈ [n−m],
giving a contribution of xm

1−x (FT (x)− 1).

• π(1) = ∅ and π(2) > i1. This condition implies i1 = 1 (obvious if m = 2 and because i1i2i31
would be a 2341 if m ≥ 3), giving a contribution of xGm−1(x).

Summing the contributions, we have for m ≥ 2,

Gm(x) = xm−1(FT (x)− 1− xFT (x)) +
xm

1− x
(FT (x) − 1) + xGm−1(x).

Since FT (x) =
∑

m≥0 Gm(x), we find that

FT (x) = 1 + xFT (x) +
x

1− x
(FT (x)− 1− xFT (x)) +

x2

(1− x)2
(FT (x) − 1) + x(FT (x) − 1),

which, by solving for FT (x), completes the proof.

Theorem 23. Let T = {2143, 2341, 3241}. Then

FT (x) =
1− 4x+ 3x2 − x3

1− 5x+ 6x2 − 3x3
.
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Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. So suppose π =
i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right maxima. We consider the following three cases:

• π(1) 6= ∅. Since T contains 2143 and 2341, π has the form i1π
(1)(i1 + 1)γ(2)(i1 + 2) · · ·n with

γ(2) < i1, as in Theorem 22. Furthermore, π(1) < γ(2) for else i1, i1 + 1 are the 3 and 4 of a 3241.

Hence, if π(1) is increasing, then π(1) = 12 · · · i for some i ≥ 1 and π → St(γ(2)) is a bijection to

T -avoiders, giving a contribution of xm+1

1−x FT (x). On the other hand, if π(1) is not increasing, then

γ(2) = ∅ because b > a in π(1) and c ∈ γ(2) implies bai2c is a 2143. So, π → π(1) is a bijection to

non-identity T -avoiders, giving a contribution of xm(FT (x) − 1
1−x).

• π(1) = ∅ and π(2) has a letter smaller than i1. Here π has the form i1i2π
(2)(i2 + 1) · · ·n (to avoid

2143, 2341) with i1 6= 1, and π → i1π
(2) is a bijection to T -avoiders of length ≥ 2 with first letter

6= 1, giving a contribution of xm−1(FT (x) − 1− xFT (x)).

• π(1) = ∅ and π(2) > i1. As in Theorem 22, i1 = 1 and the contribution is xGm−1(x).

Summing the contributions, we have for m ≥ 2,

Gm(x) =
xm+1

1− x
FT (x) + xm

(
FT (x) −

1

1− x

)
+ xm−1

(
FT (x)− 1− xFT (x)

)
+ xGm−1(x).

Since FT (x) =
∑

m≥0 Gm(x), we find that

FT (x) = 1 + xFT (x) +
x3

(1− x)2
FT (x) +

x2

1− x

(
FT (x) −

1

1− x

)

+
x

1− x

(
FT (x) − 1− xFT (x)

)
+ x(FT (x)− 1),

which, by solving for FT (x), completes the proof.

3.7 Case 191

Theorem 24. Let T = {1342, 2134, 2413}. Then

FT (x) =
(1− x)(1 − 2x)(1 − 3x)

1− 7x+ 16x2 − 14x3 + 3x4
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2.

For m = 2, let π = iπ′nπ′′ ∈ Sn(T ) with two left-right maxima. The entries after n and > i all

precede entries < i or else i, n are the “2,4”of a 2413. Hence, π = iπ′nβ′β′′ with β′ > i > β′′.

If π′ = ∅ so that π = inβ′β′′, then β′ avoids 231 or i would start a 1342. So β′ avoids 2134 and

231 (which subsumes 2413), and β′′ avoids T . The generating function K(x) for {231, 2134}-avoiders

is K(x) = 1 + x(1−3x+3x2)
(1−x)(1−2x)2 [18, Seq. A005183]. Thus the contribution is x2K(x)FT (x).
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If π′ 6= ∅, then β′ is decreasing (or i max(π′) would start a 2134) and St(π′nβ′′) is a T -avoider that

does not start with its max. Thus, by deleting i, we have a contribution of x
1−x

(
FT (x) − 1− xFT (x)

)
.

Hence,

G2(x) = x2K(x)FT (x) +
x

1− x

(
FT (x) − 1− xFT (x)

)
.

Now, suppose m ≥ 3 and π avoids T with m left-right maxima i1 < i2 < · · · < im. Then π has the

form shown in the figure below with shaded regions empty to avoid a pattern involving the gray bullet as

indicated, and entries in β′ preceding entries in β′′ to avoid 2413, and similarly for γ′, γ′′.

i1

im−2

im−1

im

β′

β′′

γ′

γ′′
2
•
134

2
•
134

134
•
2

. . .

. .
.

We consider 4 cases according as β′, β′′ are empty or not.

If β′, β′′ are both empty, then γ′ avoids 231 (else im−1 is the “1” of a 1342) and γ′′ avoids T , giving a

contribution of xmK(x)FT (x).
If β′ 6= ∅, β′′ = ∅, then β′ avoids 213 due to im (2134) and avoids 231 due to im−2 (1342). The

generating function L(x) for {213, 231}-avoiders is L(x) = 1−x
1−2x [17]. Also, γ′ is decreasing (2134),

and γ′′ avoids T . By deleting the left-right maxima and γ′, the contribution is xm

1−x(L(x) − 1)FT (x).
If β′ = ∅, β′′ 6= ∅, then γ′ is decreasing once again and St(β′′ im γ′′) avoids T and does not start with

its max. Deleting i1, . . . , im−1 and γ′, the contribution is xm−1

1−x

(
FT (x) − 1− xFT (x)

)
.

If β′, β′′ are both nonempty, then β′ avoids 213 and 231, γ′ is decreasing, and St(β′′ im γ′′) avoids T

and does not start with its max. Again deleting i1, . . . , im−1 and γ′, the contribution is xm−1

1−x (L(x) −
1)
(
FT (x)− 1− xFT (x)

)
.

Hence, for m ≥ 3,

Gm(x) = xmK(x)FT (x) +
xm

1− x
(L(x) − 1)FT (x) +

xm−1

1− x
L(x)

(
FT (x) − 1− xFT (x)

)
.

Since FT (x) =
∑

m≥0 Gm(x), we obtain

FT (x) = 1 + xFT (x) + x2K(x)FT (x) +
x

1− x

(
FT (x)− 1− xFT (x)

)

+
x3

1− x
K(x)FT (x) +

x3

(1− x)2
(L(x) − 1)FT (x) +

x2

(1− x)2
L(x)

(
FT (x) − 1− xFT (x)

)
.

By solving for FT (x), we complete the proof.

3.8 Case 196

The two representative triples T are:

{2143,2431,3241} (Theorem 25)

{2413,2431,3214} (Theorem 27)
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Theorem 25. Let T = {2143, 2431, 3241}. Then

FT (x) =
1− 5x+ 7x2 − 4x3

1− 6x+ 11x2 − 9x3 + 2x4
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). For m ≥ 2, we need a simple lemma. Let Sn,m denote the set of all permutations

π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn with m left-right maxima i1, i2, . . . , im and Rn,m the subset that

satisfy the condition (*) π(1) = ∅ and π(j) < ij−1 for all j = 2, 3, . . . ,m. Let Sn,m(T ) and Rn,m(T )
have the obvious meaning.

Lemma 26. For m ≥ 2, the map φ : i1π
(1)i2π

(2) · · · imπ(m) → i1π
(2)i2π

(3) · · · im−1π
(m) is a bijection

from Rn,m to Sn−1,m−1. Furthermore, the restriction of φ to Rn,m(T ) is a bijection to Sn−1,m−1(T ).

Now suppose π ∈ Sn,m(T ) with m ≥ 2 and consider cases according as condition (*) holds or not.

If (*) holds, so that π ∈ Rn,m(T ), then the contribution is xGm−1(x), by the lemma. If (*) does not

hold, then there exists an index s ∈ [m] such that π(s) contains a letter between is−1 and is. This imposes

restrictions on π as illustrated:

324
•
1

214
•
3

2
•
143

i1

is−1

is

is+1

im

. .
.

. .
.

β1

βs

π(s+1)

π(m)

,

where dark bullets indicate mandatory entries, shaded regions are empty to avoid the pattern involving a

light bullet as indicated, blank regions are empty, and the β’s and π’s are in the displayed order to avoid

2431.

Thus, the contribution is xm
∑m

s=1 Lm,s;s(x), where Lm,s;d(x) is the generating function for such

avoiders π (as illustrated) with β1 = · · · = βs−d = ∅, 1 ≤ d ≤ s, when the left-right maxima are

understood to make no contribution, i.e., are weighted with 1 rather than x. Note the latter condition on

the β’s is vacuous—no restriction—when d = s. We need to introduce d because we can get a recurrence

for Lm,s;d in terms of Lm,s;d−1 that will yield Lm,s;s. To do so, let 2 ≤ d ≤ s and consider whether

βs−d+1 is empty or not. If βs−d+1 = ∅, clearly the contribution is Lm,s;d−1(x). If βs−d+1 6= ∅ then, to

avoid 2143, βi is increasing (could be empty) for s−d+2 ≤ i ≤ s−1while βs is increasing and nonempty.

Moreover, also to avoid 2143 (but utilizing different letters), π(j) = ∅ for all j = s + 1, s + 2, . . . ,m.

There are d− 1 β’s required to be increasing and so the contribution is (FT (x) − 1) x
(1−x)d−1 .

Adding the two contributions, we have

Lm,s;d(x) = Lm,s;d−1(x) + (FT (x)− 1)
x

(1− x)d−1
. (28)
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To complete the recurrence, we need an expression for Lm,s;1(x). Here, β1, . . . , βs−1 are all empty. Set

r = m − s, Mr = Lm,s;1(x) and relabel β’s and π’s so that the boxes not required to be empty for Mr

contain β0 6= ∅, π(1), . . . , π(r). Now consider variable r. Clearly, M0 = FT (x) − 1 and we obtain a

recurrence for Mr, r ≥ 1, conditioning on the first nonempty π(j). If all π’s are empty, the contribution

is FT (x)− 1. Otherwise, let j ∈ [r] be minimal with π(j) 6= ∅. Then β0 is increasing (b > a in β0 would

make ba the 21 of a 2143) and the contribution is x
1−xMr−j (because π(j) can play the role of β0). So

Mr = FT (x) − 1 + x
1−x

∑r
j=1 Mr−j for r ≥ 1, with M0 = FT (x) − 1. This recurrence has solution

Mr =
FT (x)−1
(1−x)r . So Lm,s;1(x) =

FT (x)−1
(1−x)m−s , the initial condition for recurrence (28), with solution

Lm,s;d(x) =
(
FT (x)− 1

)( 1

(1− x)d−1
+

1

(1− x)m−s
− 1

)
.

Hence,

Gm(x) = xGm−1(x) + xm
m∑

s=1

Lm,s;s(x)

= xGm−1(x) + xm
m∑

s=1

(
FT (x)− 1

)( 1

(1 − x)s−1
+

1

(1 − x)m−s
− 1

)
,

which implies

Gm(x) = xGm−1(x) + xm

(
FT (x) − 1

)(
2(1− x)1−m −mx− 2(1− x)

)

x
.

By summing over all m ≥ 2 and using the initial condition G0(x) = 1 and G1(x) = xFT (x), we obtain

FT (x)− 1− xFT (x) = x
(
FT (x) − 1

)
+

(2x2 − 3x+ 2)(FT (x)− 1)x2

(1− 2x)(1− x)2
,

with solution the desired FT .

Theorem 27. Let T = {2413, 2431, 3214}. Then

FT (x) =
1− 5x+ 7x2 − 4x3

1− 6x+ 11x2 − 9x3 + 2x4
.

Proof: Let an = |Sn(T )| and let an(i1, i2, . . . , is) denote the number of permutations i1i2 · · · isπ ∈
Sn(T ). We will obtain expressions for an(i, j) and an(i) and deduce a recurrence for an. Clearly,

an(1) = an(n) = an−1. For 2 ≤ i ≤ n− 1, we have the following expressions for an(i, j):

an(i, j) =





an−1(i− 1) if j = 1 ,

aj−1 if 2 ≤ j < i ,

an−1(i) if j = i+ 1 ,

0 if j ≥ i+ 2 .
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For the first item, “delete 1 and standardize” is a bijection from T -avoiders that begin i1 to one-size smaller

T -avoiders that begin i − 1. For the second item, n occurs before 1 (3214) and so π = ijπ′nπ′′1π′′′.
Also, π′ > j (3214), π′′ < j (2431), π′′′ < j (2413), and π′ is increasing (2431). These results imply

that π = ij(j + 1) · · · î · · ·nβ (where î indicates that i is missing) with β ∈ Sj−1(T ). The easy proofs of

the last two items are left to the reader.

Since an =
∑n

i=1 an(i) = an(1) +
∑n−1

i=2

∑n
j=1 an(i, j) + an(n), the preceding results yield

an =
n−3∑

i=1

(n− 2− i)ai + 2
n−1∑

i=1

an−1(i) + 2(an−1 − an−2)

for n ≥ 3, which implies

an = 4an−1 − 2an−2 +

n−3∑

i=1

(n− 2− i)ai ,

with a0 = a1 = 1 and a2 = 2. Since FT (x) =
∑

n≥0 anx
n, the recurrence for an translates to

FT (x)− 1− x− 2x2 = 4x
(
FT (x)− 1− x

)
− 2x2

(
FT (x) − 1

)
+

x3

(1− x)2
(
FT (x)− 1

)
,

with solution the desired FT .

3.9 Case 201

The two representative triples T are:

{1243,1324,3142} (Theorem 28)

{1342,1423,2314} (Theorem 31)

3.9.1 T = {1243, 1324, 3142}
Theorem 28. Let T = {1243, 1324, 3142}. Then

FT (x) =
1− 3x+ x2

1− x
C3(x).

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x).

Now suppose m ≥ 2 and π = i1π
(1) · · · imπ(m) avoids T . Then {i2, i3, . . . , im = n} are consecutive

integers (a gap would give a 1324 or a 1243). We consider two cases.

• i1 = n −m + 1, its maximum possible value. Here, π(1) > π(2) > · · · > π(m) (to avoid 3142).

Also, for j ∈ [m − 1], π(j) avoids 132 (or ij+1 is the “4” of a 1324), and π(m) avoids T . Hence,

the contribution is xmC(x)m−1FT (x).

• i1 < n−m+ 1. Here, i1 and i2 are not consecutive and π has the form
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π(1) π(m)

· · ·

3
•
142

13
•
24i1

i2
i3

im

,

where the top shaded rectangle is empty (1324) and hence π(m) contains i1 + 1; the rectangle

below it is empty (3142); π(1) is decreasing (or im(i1 + 1) would terminate a 1243) and i1π
(1)

has no gaps (else there exist a < b < i1 with a ∈ π(1) and b ∈ π(m) and then i1aimb is a

3142). Also, i1π
(m) avoids T and does not start with its maximal letter. Hence, the contribution is

xm−1

1−x (FT (x) − 1− xFT (x)).

Combining the preceding cases gives Gm(x) for m ≥ 2, and by summing over all m ≥ 0, we obtain

FT (x) = 1 +
∑

m≥1

xmC(x)m−1FT (x) +
∑

m≥2

xm−1

1− x

(
FT (x)− 1− xFT (x)

)
,

which implies

FT (x) = 1 + xC(x)FT (x) +
x

(1− x)2
(
FT (x)− 1− xFT (x)

)
,

with solution FT (x) =
1−3x+x2

(1−x)
(
1−2x+(x2−x)C(x)

) , equivalent to the stated expression.

3.9.2 T = {1342, 1423, 2314}
To enumerate the members of Sn(T ), we consider the relative positions of the letters n and n− 1 within

a permutation. More precisely, given 1 ≤ i, j ≤ n with i 6= j, let a(n; i, j) denote the number of

permutations π = π1π2 · · ·πn ∈ Sn(T ) such that πi = n and πj = n − 1. If n ≥ 2 and 1 ≤ i ≤ n,

then let a(n; i) =
∑n

j=1 a(n; i, j), with a(1; 1) = 1. The array a(n; i, j) is determined by the following

recurrence relations.

Lemma 29. If n ≥ 3, then

a(n; i, i− 1) = a(n− 1; i− 1, i− 2) +

i−2∑

j=2

a(n− 1; i− 1, j), 3 ≤ i ≤ n, (29)

and

a(n; i, j) = a(n− 1; i, j) + a(n− 1; i− 1, j − 1) +

n−1∑

k=j+1

a(n− 1; j − 1, k), 2 ≤ i ≤ j − 2. (30)



Wilf classification of triples of 4-letter patterns I 31

Furthermore, we have a(n; i, 1) = a(n − 1; i − 1) for 2 ≤ i ≤ n, a(n; 1, j) = a(n − 1; j − 1) for

2 ≤ j ≤ n, a(n; i, j) = a(n − 1; i − 1, j) for 2 ≤ j ≤ i − 2, and a(n; i, i + 1) = a(n − 1; i) for

1 ≤ i ≤ n− 1.

Proof: Throughout, let π = π1π2 · · ·πn ∈ Sn(T ) be of the form enumerated in the case under considera-

tion. The formulas for a(n; i, 1) and a(n; 1, j) follow from the fact that an initial letter n− 1 or n within a

member of Sn(T ) may be safely deleted. To determine a(n; i, j) where 2 ≤ j ≤ i−2, first note that within

π ∈ Sn(T ) in this case, the letter n− 2 cannot go to the left of n− 1 (for if it did, then there would be an

occurrence of 2314 of the form (n−2)(n−1)xn for some x < n−2). Furthermore, the letter n−2 cannot

go to the right of n, for otherwise there would be an occurrence of 1342 of the form x(n − 1)n(n − 2)
for some x < n− 2 (since j ≥ 2 implies n− 1 is not the first letter). Thus, n− 2 must go between n− 1
and n in this case. Note also that min{πj+1, πj+2, . . . , πi−1} > max{π1, π2, . . . , πj−1} so as to avoid

an occurrence of 2314 (of the form x(n − 1)yn). Thus, j ≥ 2 implies the section πj+1πj+2 · · ·πi−1 is

decreasing in order to avoid 1423, whence πj+1 = n− 2. It follows that the letter n− 2 may be deleted,

which implies a(n; i, j) = a(n−1; i−1, j) if 1 < j < i−1. Next, observe that a(n; i, i+1) = a(n−1; i)
since the letter n − 1 is extraneous in this case and may be deleted (as none of the patterns in T contain

“4” directly followed by “3”).

We now show (29). Note that the letter n− 2 in this case must occur to the left of n− 1, for otherwise

there would be a 1342. If π1 = n−2, there are a(n−1; i−1, i−2) possibilities as the letter n−2 may be

deleted since it cannot play the role of a “2” within a 2314. So suppose πj = n−2 for some 2 ≤ j ≤ i−2.

Then we must have min{πj+1, πj+2, . . . , πi−2} > max{π1, π2, . . . , πj−1} in order to avoid 2314, with

min{π1, π2, . . . , πj−1} > max{πi+1, πi+2, . . . , πn} to avoid 1342. Since all of the same restrictions on

π are seen to apply if we delete n, it follows that there are
∑i−2

j=2 a(n− 1; i − 1, j) possibilities if n− 2
does not start a permutation. Combining this case with the previous implies formula (29).

Finally, to show (30), it is convenient to write π ∈ Sn(T ) enumerated by a(n; i, j) when 1 < i < j− 1
as π = w(1)w(2) · · ·w(r), where w(i) for i < r denotes the sequence of letters of π between the i-th and

the (i + 1)-st left-right minimum, including the former but excluding the latter (with w(r) comprising all

letters to the right of and including the rightmost left-right minimum). Observe that n must be the final

letter of some w(ℓ). For if not, then j > i + 1 implies that there would be an occurrence of 1423 of the

form xny(n− 1), where x is a left-right minimum and y is not. Then n− 2 must be the first letter of π or

go to the right of n, for otherwise, π would contain an occurrence of 2314 of the form x(n− 2)y(n− 1),
where x is the first letter and y is the successor of n (and hence a left-right minimum). If n − 2 is the

first letter, then it is seen to be extraneous (since n− 1 occurs to the right of n within π) and thus may be

deleted, yielding a(n − 1; i − 1, j − 1) possibilities. If n − 2 occurs to the right of n, then it must also

occur to the right of n − 1 in order to avoid 1423. If πj+1 = n − 2, then it is seen that n − 2 may be

deleted as there can be no possible occurrence of a pattern in T involving both n − 2 and n − 1 in this

case, whence there are a(n− 1; i, j) possibilities. On the other hand, if πk = n− 2 for some k > j + 1,

then the letter n− 1, like n, must be the last letter of some w(ℓ) in order to avoid 1423.

We claim that the letter n may be deleted in this case. First note that i > 1 implies n belongs to

the leftmost w(ℓ) such that w(ℓ) is not of length one (for otherwise, there would be an occurrence of

2314, with n playing the role of the “4”). If s denotes the index of this w(ℓ), then w(s) must be of

length two, for if not and w(s) contained a third letter, then π would contain 2314, as witnessed by the

subsequence xyz(n − 1), where x and z are the first letters of w(s) and w(s+1) and y is the second

letter of w(s). It follows that the letters to the left of n within π form a decreasing sequence. By similar
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reasoning, the letters between n and n − 1 are decreasing since πk = n − 2 for some k > j + 1. Since

min{π1, π2, . . . , πi−1} > max{πi+1, πi+2, . . . , πj−1} in order to avoid 1423, it follows that the letters

to the left of n− 1 excluding n form a decreasing sequence. From this, it is seen that the letter n may be

deleted, which gives
∑n−1

k=j+1 a(n−1; j−1, k) additional possibilities. Combining this with the previous

cases implies (30) and completes the proof.

Define the functions bn,i(v) =
∑n

j=i+2 a(n; i, j)v
j for 1 ≤ i ≤ n−2 and cn,i(v) =

∑i−1
j=2 a(n; i, j)v

j

for 3 ≤ i ≤ n. Then recurrences (30) and (29) imply

bn,i(v) = bn−1,i(v) + vbn−1,i−1(v) +

n∑

j=i+2

bn−1,j−1(1)v
j , 2 ≤ i ≤ n− 2, (31)

and

cn,i(v) = cn−1,i−1(v) + cn−1,i−1(1)v
i−1 + a(n− 1; i− 1, i− 2)vi−1, 3 ≤ i ≤ n. (32)

Let

an(u) =
n∑

i=1

a(n; i)ui for n ≥ 1, bn(u, v) =
n−2∑

i=2

bn,i(v)u
i for n ≥ 4,

cn(u, v) =

n∑

i=3

cn,i(v)u
i for n ≥ 3, dn(u) =

n∑

i=2

a(n; i, i− 1)ui for n ≥ 2.

Let a(n) = an(1) for n ≥ 1, with a(0) = 1.

By Lemma 29, we have

n−1∑

i=2

a(n; i, i+ 1)ui =

n−1∑

i=2

a(n− 1; i)ui = an−1(u)− a(n− 2)u, n ≥ 2,

and
n∑

i=2

a(n; i, 1)ui =

n∑

i=2

a(n− 1; i− 1)ui = uan−1(u), n ≥ 2.

Thus, by the definitions, we have

an(u) = u(a(n− 1)− a(n− 2)) + (1 + u)an−1(u) + bn(u, 1) + cn(u, 1), n ≥ 2, (33)

with a1(u) = u, upon considering separately the cases of a(n; i, j) when i = 1, j = 1 or both i, j > 1.

Note that by the definitions,

bn,1(v) =

n∑

j=3

a(n; 1, j)vj =

n∑

j=3

a(n− 1; j − 1)vj = v(an−1(v) − a(n− 2)v), n ≥ 3.
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Multiplying both sides of (31) by ui, and summing over 2 ≤ i ≤ n− 2, then yields

bn(u, v) = bn−1(u, v) + uv(bn−1(u, v) + ubn−1,1(v)) +

n∑

j=3

bn−1,j−1(1)v
j

j−2∑

i=2

ui

= (1 + uv)bn−1(u, v) + u2v2(an−2(v)− a(n− 3)v)

+
v

1− u
(u2bn−1(v, 1)− bn−1(uv, 1)), n ≥ 4. (34)

Multiplying both sides of (32) by ui, and summing over 3 ≤ i ≤ n, gives

cn(u, v) = u(cn−1(u, v) + cn−1(uv, 1) + dn−1(uv)), n ≥ 3. (35)

Finally, using recurrence (29) and noting a(n; 2, 1) = a(n− 2), we get

dn(u) = a(n− 2)u2 + udn−1(u) +

n∑

i=3

cn−1,i−1(1)u
i

= a(n− 2)u2 + udn−1(u) + ucn−1(u, 1), n ≥ 2. (36)

Define the generating functions

a(x;u) =
∑

n≥1

an(u)x
n, b(x;u, v) =

∑

n≥4

bn(u, v)x
n,

c(x;u, v) =
∑

n≥3

cn(u, v)x
n, d(x;u) =

∑

n≥2

dn(u)x
n.

Rewriting recurrence (33)–(36) in terms of generating functions yields the following system of functional

equations.

Lemma 30. We have

(1− x− xu)a(x;u) = xu(1− x)(1 + a(x; 1)) + b(x;u, 1) + c(x;u, 1), (37)

(1− x− xuv)b(x;u, v) = (xuv)2(a(x; v)− xva(x; 1)− xv)+
xv

1− u
(u2b(x; v, 1)− b(x;uv, 1)), (38)

(1− xu)c(x;u, v) = xu(c(x;uv, 1) + d(x;uv)), (39)

and

(1− xu)d(x;u) = x2u2(1 + a(x; 1)) + xuc(x;u, 1). (40)

We can now determine the generating function FT (x).

Theorem 31. Let T = {1342, 1423, 2314}. Then

FT (x) =
1− 3x+ x2

1− x
C3(x).
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Proof: In our present notation, we seek 1+ a(x; 1). By taking u = v = 1 in (37), (39) and (40), and then

solving the resulting system for b(x; 1, 1), c(x; 1, 1) and d(x; 1), we obtain

b(x; 1, 1) =
(1− x)(1 − 5x+ 6x2 − x3)a(x; 1)− x(1 − 4x+ 5x2 − x3)

1− 3x+ x2
,

c(x; 1, 1) =
x3(1 + a(x; 1))

1− 3x+ x2
,

d(x; 1) =
x2(1− 2x)(1 + a(x; 1))

1− 3x+ x2
.

Hence, equation (38) with v = 1 can be written as

(
1 +

xu2

1− u

)
b(x;u, 1) = (xu)2((1− x)a(x; 1) − x)

+
xu2

1− u

(1 − x)(1 − 5x+ 6x2 − x3)a(x; 1)− x(1− 4x+ 5x2 − x3)

1− 3x+ x2
.

Applying the kernel method to this last equation, it is seen that taking u = C(x) cancels out the left-hand

side. This gives, after several algebraic operations, the formula

1 + a(x; 1) =
2(1− 3x+ x2)

(1− x)(1 − 3x) + (1− x)2
√
1− 4x

=
1− 3x+ x2

1− x
C3(x),

as desired.

Remark: From the formula for a(x; 1), one can now determine b(x; 1, 1), as well as c(x;u, 1) and

d(x;u, 1), by (39) and (40). This in turn allows one to find b(x;u, 1), by (38) at v = 1. By (37), one then

obtains a formula for 1 + a(x;u) which generalizes FT (x) (reducing to it when u = 1).
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262.

[24] J. West, Generating trees and forbidden subsequences, Discrete Math. 157 (1996), 363–374.

[25] Wikipedia, Permutation pattern, https://en.wikipedia.org/wiki/Permutation pattern

[26] Wikipedia, Enumerations of specific permutation classes, https://en.wikipedia.org/wiki/Enumer

ations of specific permutation classes


