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Locating faulty processors in a multiprocessor system gives the motivation for locating-dominating codes.
We consider these codes in binary hypercubes and generalize the concept for the situation in which we
want to locate more than one malfunctioning processor.
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1 Introduction and definitions

Let F = {0, 1} denote the binary field and Fn the n-dimensional Cartesian product of it. A code

is a subset of Fn. The elements of Fn (resp. a code) are called words (resp. codewords) and the
Hamming distance d(x, y) between two words x, y ∈ Fn is the number of coordinate positions in
which they differ. The Hamming weight w(x) of a word x ∈ Fn is the number of 1’s in x. The
minimum distance of a code is the smallest distance between any distinct pair of codewords (if
the code consists of less than two codewords, then we define the minimum distance to be n + 1).
We denote Si(x) = {y ∈ Fn | d(x, y) = i} and the Hamming ball Br(x) = ∪r

i=0Si(x). If X ⊆ Fn,
we denote by Br(X) the union of the sets Br(x) for x ∈ X. The cardinality of X is denoted by
|X| and V (n, r) = |Br(x)|. We say that x r-covers or covers y if d(x, y) ≤ r.

Consider the binary hypercube (or an arbitrary graph). Assume that it is used to model
a multiprocessor architecture, and that each node corresponds to a processor and each edge
corresponds to a dedicated link between two processors. We choose some of the processors as
codewords, and ask each of them to check its r-neighbourhood. Each codeword sends us the
symbol 2 if it itself is malfunctioning, 1 if it itself is fine, but at least one processor in its r-
neighbourhood is malfunctioning, and 0 otherwise. When we have received the reports from
all the codewords we wish to locate the malfunctioning processors, under the assumption that
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there are at most l of them. The integers r and l are given at the outset. This is the classical
locating-dominating set problem [8] if l = 1 (and then the requirement for the code C, i.e., the
set of codewords, is that the sets Br(x)∩C are different and nonempty for all x ∈ Fn \C). This
leads to the following definition.

Definition 1. Let r and l be non-negative integers. A code C ⊆ Fn is an (r,≤ l)-locating-

dominating code of type A — an (r,≤ l)-LDA for short — if for all X ⊆ Fn and Y ⊆ Fn of size

at most l,
Br(X) ∩ C = Br(Y ) ∩ C (1)

X ∩ C = Y ∩ C (2)

implies that X = Y .

If X = ∅, then Br(X)∩C = ∅: so, in particular, the previous definition implies that Br(Y )∩C 6=
∅ whenever Y 6= ∅.

In the second variant we only consider subsets X and Y of Fn \ C. Then X ∩ C and Y ∩ C
are empty, (2) becomes void, and (1) takes the simple form Br(X) ∩ C = Br(Y ) ∩ C. This
corresponds to a two-step testing procedure: we first fix all the codewords that have sent 2, and
then immediately perform a second round, during which we only receive 1’s and 0’s.

Definition 2. Let r and l be non-negative integers. A code C ⊆ Fn is an (r,≤ l)-locating-

dominating code of type B — an (r,≤ l)-LDB for short — if for all sets X ⊆ Fn \ C and

Y ⊆ Fn \ C of size at most l,
Br(X) ∩ C = Br(Y ) ∩ C

implies that X = Y .

When l = 1, both definitions reduce to the definition of an r-locating-dominating code. Such
codes have been considered, for instance, in Haynes, Hedetniemi and Slater [8] and [19, 16, 20,
21, 4, 3].

The smallest cardinality of an (r,≤ l)-LDA (resp. an (r,≤ l)-LDB) of length n is denoted by

LA
(≤l)
r (n) (resp. LB

(≤l)
r (n)).

Both these concepts are closely related to that of an identifying code: by definition, a code
C ⊆ Fn is (r,≤ l)-identifying, if for all X ⊆ Fn and Y ⊆ Fn of size at most l, the condition
Br(X) ∩ C = Br(Y ) ∩ C implies that X = Y . This corresponds to the situation where each
codeword only reports back whether it has detected problems in its r-neighbourhood or not
(and each reply is therefore 0 or 1). The minimum cardinality of an (r,≤ l)-identifying code of

length n is denoted by M
(≤l)
r (n). Identifying codes were introduced by Karpovsky, Chakrabarty

and Levitin [12] in 1998. Identifying codes in binary hypercubes have been further studied, for
instance, in [1, 2, 10, 11, 9, 14]. For results about identifying codes in other graphs, see, e.g.,
[6, 7].

Clearly, an (r,≤ l)-identifying code is an (r,≤ l)-LDA, and an (r,≤ l)-LDA is an (r,≤ l)-LDB.

Example 1. (i) Let C be the even-weight code of length n ≥ 5, i.e., it consists of all 2n−1

words of length n that have even weight. An immediate consequence of Theorem 1 is that C
a (1,≤ ⌊(n + 1)/2⌋)-LDA. Clearly, C is not (1,≤ 2)-identifying (take X = {100 . . . 0}, Y =
{000 . . . 0, 100 . . . 0}).
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(ii) The code C = Fn−1 ⊕ {0}, n ≥ 2, is a (1,≤ 2n−1)-LDB (and hence a (1,≤ l)-LDB for all
l). Clearly, C is not (1,≤ 2)-LDA (take X = {(x, 0)} and Y = {(x, 0), (x, 1)} for any x ∈ Fn−1).

(iii) An (r,≤ l)-LDA (resp. an (r,≤ l)-LDB) is always an (r,≤ k)-LDA (resp. an (r,≤ k)-LDB)
for all k ≤ l.

In what follows we often utilize the following lemma, which is easy to check.

Lemma 1. For a, b ∈ Fn we have

|B1(a) ∩ B1(b)| =







n + 1 if a = b
2 if d(a, b) = 1 or 2
0 otherwise.

In Sections 2 and 3 we examine LDAs and LDBs, respectively, when l ≥ 2. Section 4 deals
with the case l = 1 and the last section considers linear codes. In this paper, we study mainly
the case r = 1.

2 Bounds and constructions on LDAs

We have the following characterization of the LDAs; cf. [13].

Theorem 1. Assume that l ≥ 3. A code C ⊆ Fn is a (1,≤ l)-LDA if and only if every element

of Fn \ C is covered by at least 2l − 1 codewords of C.

Proof. Assume first that every element of Fn \ C is covered by at least 2l − 1 codewords of C.
Assume that X and Y are two subsets of Fn, each of size at most l, and that X ∩ C = Y ∩ C
and

B1(X) ∩ C = B1(Y ) ∩ C. (3)

Assume that x ∈ X \ C does not belong to Y . Without loss of generality x = 000 . . . 0. As
a non-codeword, x is covered by at least 2l − 1 codewords, say c1, . . . , c2l−1; and without loss
of generality, they have been indexed in such a way that c1, . . . , ci ∈ X, whereas ci+1, . . . ,
c2l−1 /∈ X (0 ≤ i ≤ l− 1). The fact that X ∩C = Y ∩C immediately implies that c1, . . . , ci ∈ Y
and ci+1, . . . , c2l−1 /∈ Y .

By (3), the codewords ci+1, . . . , c2l−1 are therefore covered by the at most l− i words of weight
two of Y , each covering at most two of the codewords ci+1, . . . , c2l−1. Because 2(l − i − 1) <
2l − 1− i, there are exactly l − i words of weight two in Y (together with the remaining i words
of weight one).

We first notice that the set X does not contain any word of weight four. Indeed, because
X ∩C = Y ∩C, and Y does not contain any word of weight four, there is no codeword of weight
four in X. Any non-codeword of weight four in X would be covered by at least (2l − 1) − 4
(> 0) codewords of weight five, which cannot be, because no word in Y could cover a codeword
of weight five.

Assume that y ∈ Y \ C has weight two. We show that y ∈ X. By assumption, y is covered by
at least 2l−1 codewords, of which at least 2l−3 have weight three; and they all must be covered
by the words in X. Because there are no words of weight four in X, all these at least 2l−3 words
of weight three must be covered by the at most l − 1 − i words of weight two and three in X.
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Because 2l − 3 > l − 1 − i for all l ≥ 3, and no word of weight two or three other than y itself
covers more than one of these at least 2l − 3 words, we conclude that y must belong to X.

We have shown that Y \ C ⊆ X. We already knew that Y ∩ C = X ∩ C ⊆ X, and hence
Y ⊆ X. But Y has size l, and therefore Y = X, contradicting the fact that x ∈ X \ Y .

We have therefore shown that C is a (1,≤ l)-LDA.
Assume conversely that C is a (1,≤ l)-LDA, and let x ∈ Fn \ C be arbitrary. Without loss

of generality, x = 000 . . . 0. Assume that the codewords that cover x are c1, c2, . . . , cj . Let
i = ⌈j/2⌉. We can choose i words x1, x2, . . . , xi ∈ Fn \ {x} that together cover all the words c1,
c2, . . . , cj . Then X = {x1, x2, . . . , xi, x} and Y = {x1, x2, . . . xi} satisfy (1) and (2), and both
have cardinality at most i + 1 ≤ l, unless j ≥ 2l − 1. Hence every non-codeword is covered by at
least 2l − 1 codewords of C.

Let us denote by K(n, r, µ, ν) the smallest cardinality of a code C ⊆ Fn such that every non-
codeword is r-covered by at least µ codewords and every codeword is r-covered by at least ν
codewords.

From [17, proof of Theorem 1] we get the following lower bound.

Theorem 2. For l ≥ 3,

LA
(≤l)
1 (n) = K(n, 1, 2l − 1, 1) ≥ (2l − 1)2n

n + 2l − 1
.

Proof. By the previous theorem it suffices to prove the inequality. Assume that C ⊆ Fn attains
the bound K(n, 1, 2l − 1, 1). We count in two ways the number of pairs (c, x), where c ∈ C,
x ∈ Fn and d(c, x) ≤ 1. Given c, there are n+1 choices for x, so the number of such pairs equals
(n + 1)|C|. Given x, there are at least 2l − 1 choices for c if x is not a codeword, and at least
one, if x is a codeword. Hence (n + 1)|C| ≥ (2l − 1)(2n − |C|) + |C|, which gives the claim.

From [13] we know that

M
(≤l)
1 (n)

(2l − 1)2n/(n + 1)
→ 1

for a given l ≥ 3 when n → ∞. Because LA
(≤l)
1 (n) ≤ M

(≤l)
1 (n), the previous theorem gives the

following corollary.

Corollary 1. For a fixed l ≥ 3,

LA
(≤l)
1 (n) ∼ (2l − 1)2n

n

when n → ∞.

We also get the following infinite family of exact values.

Theorem 3. Assume that l ≥ 3. Then

LA
(≤l)
1 ((2l − 1)(2s − 1)) = 2(2l−1)(2s−1)−s

for all s = 1, 2, . . ..
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Proof. From [15] we know that for n = (2l − 1)(2s − 1) the inequality of Theorem 2 is attained
by a linear code whose parity check matrix has as its columns 2l − 1 copies of every non-zero
element in F s; cf. the beginning of Section 5.

The direct sum of the codes C1 ⊆ Fn1 and C2 ⊆ Fn2 is

C1 ⊕ C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2} ⊆ Fn1+n2 .

Theorem 4. Let l ≥ 3. If C is a (1,≤ l)-LDA then the direct sum C ⊕F is also a (1,≤ l)-LDA.

Thus LA
(≤l)
1 (n) ≤ 2LA

(≤l)
1 (n − 1).

Proof. The claim follows from Theorem 1 since the direct sum with F preserves the property
that each non-codeword is covered by at least 2l − 1 codewords.

3 Bounds and constructions on LDBs

Let us first give a lower bound on the cardinality of a (1,≤ l)-LDB for l ≥ 2. Because trivially

LB
(≤l)
1 (1) = 1 and LB

(≤l)
1 (2) = 2, we may assume in what follows that n ≥ 3.

Let C ⊆ Fn. In the sequel, when there is no ambiguity on which code is considered, it is
convenient to denote (X ⊆ Fn)

I(X) =
⋃

x∈X

(C ∩ B1(x)).

This is called the I-set of X and we denote I({v1, . . . , vs}) = I(v1, . . . , vs).
We denote

N = Fn \ C,

Ci = {c ∈ C | |I(c)| = i},
Ni = {x ∈ N | |I(x)| = i}

and Ci,j = ∪j
k=iCk and further Ni,j = ∪j

k=iNk.

Theorem 5. Let 2 ≤ l ≤ n − 1. Then

LB
(≤l)
1 (n) ≥

⌈

l

n + l − 1
2n

⌉

.

Proof. Assume that C ⊆ Fn is a (1,≤ l)-LDB where 2 ≤ l ≤ n − 1.
Let us count in two ways the number of pairs (x, c) where x ∈ N1,l−1, c ∈ Cn and d(c, x) = 1.

Every x ∈ N1,l−1 has at least one c ∈ Cn in I(x), since otherwise there would exist yi ∈
N ∩ S2(x) ∩ B1(ci) for all ci ∈ I(x) and thus

I(y1, . . . , y|I(x)|) = I(y1, . . . , y|I(x)|, x)

which is a contradiction, since |I(x)| ≤ l − 1. On the other hand, each c ∈ Cn can have at most
one x ∈ N1,l−1 at distance one from it. Therefore,

|N1,l−1| ≤ |Cn|. (4)
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Next we compute in two ways the number of pairs (x, c) where c ∈ C1, x ∈ Nl+1,n and
d(x, c) = 1. All the non-codewords at distance one from c ∈ C1 belong to Nl+1,n. Indeed, assume
that there were a word x at distance one from c such that I(x) = {c1, . . . , ci, c} (0 ≤ i ≤ l−1). If
i = 0, let y be any word other than x which is at distance 1 from c. Then I(y) = I(y, x). Assume
that i ≥ 1. Denoting by yi the unique word other than x such that d(c, yi) = d(yi, ci) = 1, we
get the contradiction (note that yi ∈ N)

I(y1, . . . , yi) = I(y1, . . . , yi, x).

On the other hand, a non-codeword x ∈ Nl+1,n can have at most n elements of C1 at distance
one from it. Consequently,

|C1| ≤ |Nl+1,n|.

Finally, we count the number of pairs (x, c) such that x ∈ Fn, c ∈ C and d(x, c) ≤ 1. Now
using (4) and the previous inequality, we obtain

|C|(n + 1) =
n

∑

i=1

i|Ni| +
n+1
∑

i=1

i|Ci|

≥ l|N | − (l − 1)|N1,l−1| + |Nl+1,n| + 2|C| − |C1| + (n − 2)|Cn|
≥ l|N | + 2|C|.

This yields the claim.

Theorem 6. If n ≥ 3 and l ≥ n − 1, then

LB
(≤l)
1 (n) = 2n−1.

Proof. By Example 1 (iii) and the previous theorem, LB
(≤l)
1 (n) ≥ LB

(≤n−1)
1 (n) ≥ 2n−1. The

claim now follows from Example 1 (ii).

Theorem 7. If C is a (1,≤ l)-LDB, then C ⊕ F is also a (1,≤ l)-LDB. In particular,

LB
(≤l)
1 (n + 1) ≤ 2LB

(≤l)
1 (n).

Proof. Suppose C is a (1,≤ l)-LDB of length n. Divide the words of Fn+1 into two layers O0

and O1 depending on the last bit of the word, i.e., Oi = Fn ⊕ {i} for i ∈ F . Only a codeword
can have in its I-set a codeword from the other layer than where it itself lies. Thus the I-set of
a set of non-codewords on the layer Oi has codewords only from the same layer. So, if |X| ≤ l,
then |X ∩ Oi| ≤ l for both i ∈ F , and because C is a (1,≤ l)-LDB, I(X ∩ Oi) ⊆ Oi uniquely
identifies X ∩ Oi for both i ∈ F .

The covering radius of a code C ⊆ Fn is defined to be

max
x∈F n

min
c∈C

d(x, c).



On Locating-Dominating Codes in Binary Hamming Spaces 271

We denote by K(n, R) the smallest cardinality of a code C ⊆ Fn such that it has covering radius
at most R. For an account of this subject, consult [5].

We denote by A(n, d, w) the smallest cardinality of a code of length n and minimum distance
d whose codewords all have weight w. For values of this function, see [15].

Denote Si = Si(00 . . . 0).

Theorem 8. For l ≤ n/2 − 1 we have

LB
(≤l)
1 (n) ≤ K(n, l + 1)(V (n, l) − A(n, 6, l)).

Proof. Let D be a code attaining the value K(n, l + 1), A a code attaining the value A(n, 6, l),
and B = Bl(00 . . . 0). We shall show that the code

C = D + (B \ A) = {c + b | c ∈ D, b ∈ B \ A}

is a (1,≤ l)-LDB. In the code C there are at most K(n, l + 1)(V (n, l) − A(n, 6, l)) codewords.
Suppose there are sets X ⊆ N and Y ⊆ N such that X 6= Y, |X|, |Y | ≤ l and I(X) = I(Y ).

There is a word x ∈ X such that x 6∈ Y. Since x 6∈ C there exists a codeword c ∈ D such that
d(x, c) = l or l + 1. Without loss of generality we can assume that c = 00 . . . 0.

If d(x, c) = l, then x is covered by l codewords of weight l − 1. None of them can belong to
I(Y ) since Bl−1(00 . . . 0)∩N = ∅ and non-codewords in Sl \ {x} are at least at distance six from
x.

Suppose now that d(x, c) = l + 1. Then l ≤ |I(x) ∩ Sl| ≤ l + 1. If y ∈ Y covers a codeword
of weight l in I(x), then the weight of y must be l + 1; and since y 6= x, y can cover only one
codeword of weight l in I(x). Because |Y | ≤ l, this implies that |I(x)∩Sl| = l, |Y | = l, Y ⊆ Sl+1,
and each word in Y covers one codeword from I(x) ∩ Sl.

If y ∈ Y , then |I(y) ∩ Sl| = l + 1, because the minimum distance of non-codewords of weight l
is six. As we have already seen (for x whose role y now assumes), this is only possible if y ∈ X.
Consequently, X must contain all the l elements of Y together with x /∈ Y , which is impossible,
since |X| ≤ l.

The previous theorem is interesting in the light of the well-known conjecture [5, p. 352] that
for every fixed R

lim
n→∞

K(n, R)V (n, R)

2n
= 1.

Namely, for every fixed l ≥ 2 Theorems 5 and 8 give the bounds

l

n
2n(1 + f(n)) ≤ LB

(≤l)
1 (n) ≤ l + 1

n
2n(1 + g(n)),

where both f(n) and g(n) tend to zero when n → ∞.

Let us next improve on the lower estimate of Theorem 5 for
√

n + 1 ≤ l ≤ n − 1.

Lemma 2. Let C ⊆ Fn be a (1,≤ l)-LDB with 2 ≤ l ≤ n − 1. If j is a non-negative integer

satisfying l − j ≥ 1 and l + j ≤ n, then

(l − j)|N1,l+j | ≤ (n − l + j + 1)|Cl−j,n−1| + (l − j)|Cn|.
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Proof. Let us count the number of pairs (c, x), where c ∈ Cl−j,n, x ∈ N1,l+j and d(x, c) = 1, in
two ways. As mentioned in the proof of Theorem 5, if x ∈ N1,l−1, then there exists at least one
such pair (c, x).

Let us then concentrate on x ∈ Nl,l+j . If there is c ∈ I(x) such that c ∈ Cn, then there exists
again one sought pair. Assume then that for all c ∈ I(x) we have |I(c)| ≤ n − 1. Denote by
Ml,l+j the subset of Nl,l+j which consists of all such elements x.

Let x ∈ Ml,l+j and without loss of generality x = 00 . . . 0. Denote by P a maximal subset of
{y ∈ N ∩ S2 | |I(y) ∩ I(x)| = 2} such that its minimum distance is at least four. Since C is a
(1,≤ l)-LDB, we must have

l ≤ |I(x)| − |P |. (5)

Indeed, suppose |I(x)| − |P | ≤ l − 1. Denote by yi a word in N ∩ S2 such that d(yi, ci) = 1 for
ci ∈ R = I(x) \ I(P ). Notice that such words yi exist for every ci because x ∈ Ml,l+j . Now this
leads to

I(P ∪ {y1, . . . , y|R|}) = I(P ∪ {y1, . . . , y|R|, x})

which is impossible because

|P ∪ {y1, . . . , y|R|, x}| = |I(x)| − |P | + 1 ≤ l.

Clearly, by (5), 0 ≤ |P | ≤ |I(x)|− l ≤ j. Hence, by virtue of (5), |R| = |I(x)|−2|P | ≥ l−|P | ≥
l − j. Since P is maximal, {y ∈ S2 | |I(y) ∩ R| = 2} ⊆ C, and consequently, we get at least l − j
pairs from every x ∈ Ml,l+j .

All in all the number of sought pairs is at least

|N1,l−1| + |Nl,l+j \ Ml,l+j | + (l − j)|Ml,l+j |
= |N1,l−1| + |Nl,l+j | + (l − j − 1)|Ml,l+j |.

On the other hand, at distance one from c ∈ Cl−j,n−1 (resp. c ∈ Cn) there are at most
n − l + j + 1 words (resp. one word) of N and hence possibly of N1,l+j . Thus the number of
sought pairs is at most

(n − l + j + 1)|Cl−j,n−1| + |Cn|.

Furthermore, one immediately verifies the modification of (4) that |N1,l−1|+ |Nl,l+j \Ml,l+j | ≤
|Cn|. Multiplying this by l−j−1 and adding it to the inequality which we get from the estimates
of the number of pairs proves the claim.

Theorem 9. Let
√

n + 1 ≤ l ≤ n − 1. Denote

k = min

{⌊

l2 − n − 1

1 + l + n

⌋

, n − l − 1

}

.

Then

LB
(≤l)
1 (n) ≥

⌈

l + k + 1

n + l + k + 1
2n

⌉

.
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Proof. Let C ⊆ Fn be a (1,≤ l)-LDB with
√

n + 1 ≤ l ≤ n − 1. Obviously,

|C|(n + 1) ≥ (l + k + 1)|N | − (k + 1)|Nl,l+k| − (l + k)|N1,l−1|
+|C| + (l − k − 1)|Cl−k,n−1| + (n − 1)|Cn|.

Since l ≤ n − 1 we get by (4) that

|C|(n + 1) ≥ (l + k + 1)|N | − (k + 1)|Nl,l+k| − (k + 1)|N1,l−1|
+|C| + (l − k − 1)|Cl−k,n−1| + (n − l)|Cn|.

The choice of k satisfies

l − k − 1 ≥ (k + 1)(n − l + k + 1)

l − k

and furthermore
n − l ≥ k + 1.

Consequently, it is easy to check that we can use Lemma 2 for j = k and hence

|C|(n + 1) ≥ (l + k + 1)|N | + |C|.

The claim follows immediately from this.

If l ≥ 1
2 (
√

2n2 + 2n + 1 − 1), n ≥ 3, then k = n − l − 1 and the previous theorem combined
with Example 1(ii) and Theorem 6 gives the following result.

Theorem 10. Let n ≥ 3. If l ≥ 1
2 (
√

2n2 + 2n + 1 − 1), then

LB
(≤l)
1 (n) = 2n−1.

Next we construct some (1,≤ 2)-LDBs.

Theorem 11. Let n ≥ 5 and C be a code attaining the bound K(n, 3). Then the code

D = C ∪ {c + x | c ∈ C, x ∈ Fn, w(x) = 2}

is a (1,≤ 2)-LDB and has cardinality at most K(n, 3)(1 +
(

n
2

)

).

Proof. Suppose there are X, Y ⊆ Fn \ D such that |X|, |Y | ≤ 2, X 6= Y and I(X) = I(Y ). By
the definition of D, every y /∈ D has distance 1 or 3 to C.

We first claim that any word y ∈ Y for which there is a codeword c ∈ C such that d(c, y) = 1
also belongs to X. Indeed, such a word y is covered by n (≥ 5) codewords of D and thus by
Lemma 1 no set of size at most two where y does not belong to can cover all those words. Thus
in order to have I(X) = I(Y ) we must also have y ∈ X.

Since X 6= Y , we can assume that Y contains a word y /∈ X, and we can assume that d(y, c) = 3,
where c ∈ C. Without loss of generality, c = 0000 . . . and y = 1110 . . .. Then y is covered by the
codewords 1100 . . ., 1010 . . . and 0110 . . . of D. If an element x of X ⊆ Fn \D covers at least one
of these three words, then x has weight one or three. If w(x) = 3, then x (6= y) covers at most
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one of them. Consequently, there is a word x ∈ X of weight one which covers two of them. But
being of weight one, x must also belong to Y . Without loss of generality, x = 1000 . . ..

Still we have one codeword c = 0110 . . . which is not in I(x). To cover this word c we need one
more word in the set X. This word cannot have weight one since then it should belong to Y as
well, which is impossible. So, without loss of generality, the other word in X is 0111 . . .. But then
0101 . . . and 0011 . . . belong to I(X) but not to I(Y ), which gives the required contradiction.

Example 2. The repetition code {0000000, 1111111} has the properties of Theorem 11. Thus
we can construct a (1,≤ 2)-LDB of length 7 and cardinality 44. From this we get by Theorem 7

a (1,≤ 2)-LDB of length 8 and cardinality 88. We know by [18] that M
(≤2)
1 (7) = 48, and the

best known (1,≤ 2)-identifying code of length 8 is of cardinality 96.
Let C be the perfect binary Golay code of length 23, dimension 12 and minimum distance

7 (and covering radius 3). By Theorem 11 we can construct a (1,≤ 2)-LDB of length 23 with

cardinality 212(1 +
(

23
2

)

) = 1040384. It is known [18] that M
(≤2)
1 (23) = 220 = 1048576.

Theorem 12.

LB
(≤2)
1 (6) ≤ 29.

Proof. The code C = {000000, 110000, 101000, 100100, 010100, 010001, 001010, 001001, 000110,
000011, 110010, 100101, 100011, 011100, 011010, 001101, 111010, 111001, 110011, 101110, 101101,
100111, 011110, 011101, 010111, 111101, 111011, 110111, 011111} is a (1,≤ 2)-LDB of cardinality
29 and length 6.

4 On the case l = 1

In this section we examine the case l = 1. We denote

L(n) = LA
(≤1)
1 (n) = LB

(≤1)
1 (n).

From [12] we know that M
(≤1)
1 (n) ≤ nK(n, 2). This implies trivially that L(n) ≤ nK(n, 2).

Denote by e1 the word of weight one whose first coordinate equals one.

Theorem 13. For all n ≥ 4,

L(n + 1) ≤ (2n − 1)K(n, 2).

Proof. Let C ⊆ Fn (n ≥ 4) be a code with covering radius two and K(n, 2) codewords. De-
note C1 = {w ∈ Fn | w ∈ S1(c) for some c ∈ C} and C2 = {w ∈ Fn | w ∈ S1(c) \ {c +
e1} for some c ∈ C}. We claim that D = C1 ⊕ {0} ∪ C2 ⊕ {1} is 1-locating-dominating.

We again denote Oi = Fn ⊕ {i} for i = 0, 1. By the construction, I(x) 6= ∅ for all x ∈ Fn+1.
Assume that x, y ∈ Fn+1 \D and x 6= y. It is shown in [12] that C1 is (1,≤ 1)-identifying. Hence,
if x, y ∈ O0, then I(x) 6= I(y).

Suppose x ∈ O0 and y ∈ O1. Because x /∈ D, the structure of C1 implies that |I(x) ∩ O0| ≥ 2
whereas |I(y) ∩ O0| ≤ 1. Hence again I(x) 6= I(y).
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Assume next that x, y ∈ O1 \ D. There exists c ∈ C ⊕ {1} such that d(c, x) ≤ 2. If x = c,
then |I(x) ∩ S1(c)| ≥ 3 and |I(y) ∩ I(x)| ≤ 2 by Lemma 1. If x = c + e1, then I(x) ∩ O0 6= ∅
and thus I(x) 6= I(y). Assume then that x ∈ S2(c) and that x covers two elements of I(c).
In this case only y = c could cover both elements of I(x) ∩ S1(c), and this is impossible as we
have seen. Suppose finally that x ∈ S2(c) and only covers one element of I(c): in other words,
that c + e1 /∈ D, d(x, c + e1) = 1. Then y should cover the unique element in I(x) ∩ S1(c)
and consequently y ∈ S2(c), but then y would cover also another codeword of I(c), which gives
I(x) 6= I(y).

By [20, Theorem 10] we have the next theorem.

Theorem 14.

L(n) ≥
⌈

2n+1

n + 3

⌉

.

Let us recall the notion of excess (see, e.g., [5, Chapter 6], [22]). Assume that the covering
radius of C ⊆ Fn is at most 1. We denote the excess on x ∈ Fn by E(x) = |I(x)| − 1 and

E(X) =
∑

x∈X

E(x).

Theorem 15.

L(n) ≥
⌈

n22n+1

n3 + 2n2 + 3n − 2

⌉

.

Proof. (Cf. [1].) Suppose C is an optimal 1-locating-dominating code of length n. Denote by K
the cardinality of C.

It is not difficult to check that there can be only four kinds of words in Fn :

1. a word which is covered by exactly one codeword,

2. a codeword, say c1, which forms a couple with another codeword c2 such that I(c1) =
I(c2) = {c1, c2},

3. a word x which has E(x) ≥ 2, and

4. a word y which has E(y) = 1 and for which there exists a word x such that E(x) ≥ 2 and
I(y) ⊂ I(x).

A word of type 3 is called a father. A word of type 4 is called a son; the word x such that
I(y) ⊂ I(x) is called its father (it is easy to see that x is uniquely defined). A family consists of
a father and its sons. The families, couples and points with excess zero partition the whole space
Fn.

Suppose that a father is covered by i codewords. Then there are at most
(

i
2

)

sons in the family.
The average excess on the points in a family whose father is covered by exactly i ≥ 3 codewords
is therefore at least

f(i) :=

(

i
2

)

+ i − 1
(

i
2

)

+ 1
.
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This is decreasing function on i ≥ 4; and f(3) = f(6). Assume that n ≥ 6. Then f(i) ≥ f(n) for
all 3 ≤ i ≤ n. Since C is an optimal code there is no codeword c ∈ C such that |I(c)| = n + 1.

The excess on Fn is K(n + 1) − 2n. We now estimate it in a different way. There are at most
2K words outside the families. We can estimate

K(n + 1) − 2n ≥ (2n − 2K)f(n),

from which we get the claimed lower bound on K for n ≥ 6.
When n = 5 then the minimum of f(3), f(4) and f(5) is f(3). Now we can estimate 6K −25 ≥

(25 − 2K)f(3). From this we get K ≥ 9. And thus the lower bound holds for n = 5. Similarly
when n = 4 we notice that the lower bound holds. For 1 ≤ n ≤ 3 the lower bound is true by
Theorem 14.

Theorem 16. If C is 1-locating-dominating with the property that d(c, C \{c}) = 1 for all c ∈ C,

then D = C ⊕ F ⊆ Fn is (1,≤ 1)-identifying.

Proof. Assume that x, y ∈ Fn, x 6= y. We show that I(x) 6= I(y).
We again denote Oi = Fn−1 ⊕ {i}.
Assume first that x, y ∈ O0 (the case x, y ∈ O1 can be proved in the same way). If x, y /∈ D,

then they can be separated (their I-sets are different) by the locating-dominating property of C.
If x ∈ D, but y /∈ D, then I(x)∩O1 6= ∅ whereas I(y)∩O1 = ∅. If both x, y ∈ D and I(x) = I(y),
then I(x) ∩ O1 = I(y) ∩ O1 and thus x = y.

Suppose then that x ∈ O0 and y ∈ O1. If x /∈ D, then I(x)∩O1 = ∅ and we are done. Assume
then that x ∈ D. By the assumption d(x, (C ⊕ {0}) \ {x}) = 1, and hence |I(x) ∩ O0| ≥ 2 and
|I(y) ∩ O0| ≤ 1.

The bounds on LB
(≤l)
1 (n) for small values of l and n are summarized in Table 1. The cases

n = 1 are trivial. The codes {0000, 1100, 0101, 1110, 1011, 0111} and {x ∈ F 5 | w(x) = 1 or 4} are
1-locating-dominating. All the other upper bounds are from Example 1(ii). The lower bounds
L(2) ≥ 2 and L(3) ≥ 4 are easy to check by hand and Example 1(iii) then gives the other lower

bounds for lengths two and three. The lower bounds on L(4), L(5) and LB
(≤2)
1 (4) have been

obtained by computer, LB
(≤3)
1 (4) ≥ 8 and LB

(≤2)
1 (5) ≥ 11 from Theorem 5, and LB

(≤3)
1 (5) ≥ 15

from Theorem 9.

n L(n) LB
(≤2)
1 (n) LB

(≤3)
1 (n)

1 1 1 1
2 2 2 2
3 4 4 4
4 6 8 8
5 10 11–16 15–16

Tab. 1: Values of LB
(≤l)
1 (n) for short lengths and l = 1, 2, 3.
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5 Optimal linear locating-dominating codes

A binary code C ⊆ Fn is said to be linear if it is a k-dimensional subspace of Fn. In this section

we consider linear (1,≤ l)-LDBs and (1,≤ l)-LDAs. We denote by LB
(≤l)
1 [n] (resp. LA

(≤l)
1 [n])

the smallest cardinality of a linear (1,≤ l)-LDB (resp. (1,≤ l)-LDA) of length n.
A linear k-dimensional code C ⊆ Fn can always be defined by choosing an (n− k)× n matrix

H — called its parity check matrix — such that

x ∈ C if and only if HxT = 0.

Let x ∈ Fn be arbitrary, and consider its syndrome HxT . If HxT appears in H as the i-th
column, then clearly the word obtained by changing the i-th bit in x belongs to C. Consequently,
if x is a codeword, the number of codewords within distance one from it equals one plus the
number of zero columns in H; if x is a non-codeword, the number of codewords within distance
one from it equals the number of times the syndrome of x appears as a column in H.

The next auxiliary lemma from [17] will be used often.

Lemma 3. If C ⊆ Fn is a linear code and c ∈ C then for all x ∈ Fn

I(x + c) = I(x) + c.

Proof. Clearly, y ∈ I(x+ c) if and only if y ∈ C and d(x+ c, y) ≤ 1. This is equivalent to the fact
that y + c ∈ C (because C is linear) and d(x, y + c) ≤ 1; that is, y + c ∈ I(x). This is equivalent
to y ∈ I(x) + c.

Let us first consider the case l = 1 and denote L[n] = LA
(≤1)
1 [n] = LB

(≤1)
1 [n].

Theorem 17.

L[n] ≥ 2r ≥
⌈

3 · 2n

n + 5

⌉

,

where r is the smallest integer such that the latter inequality holds.

Proof. Suppose C is a linear (1,≤ 1)-LDB of length n and |C| = K. There can be K non-
codewords which are covered by one codeword each. All the other non-codewords must be covered
by at least three codewords. Namely, if I(x) = {c1, c2} for some x 6∈ C, then for y = x + c1 + c2,
I(y) = I(x) by Lemma 3.

Thus we have 2K + 3(2n − 2K) ≤ K(n + 1), from which the claim follows.

Theorem 18. Let n = 3 · 2k − 5 + s, for k ≥ 1 and 0 ≤ s < 3 · 2k. Then L[n] = 2n−k.

Proof. The lower bound follows from Theorem 17.
Because n ≥ 3 ·2k −5, we can choose a k×n matrix H in which every nonzero column appears

at least three times except for one nonzero column which appears exactly once. Let C be the code
with parity check matrix H. We claim that C is a (1,≤ 1)-LDB. Each non-codeword which is
covered by at least three codewords is clearly identified since in the intersection of three Hamming
balls of radius one there is at most one word. Each non-codeword of N1 is also identified, because
for each c ∈ C, there is exactly one word of N1 at distance one from c.
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Lemma 4. Suppose C is (1,≤ 2)-LDB of length n and x 6∈ C. If I(x) = {c}, then |I(c)| = n. If

I(x) = {c1, c2} for some c1, c2 ∈ C, c1 6= c2, then x + c1 + c2 ∈ C.

Proof. See the proof of (4) for the first claim.
If I(x) = {c1, c2}, c1 6= c2, and x + c1 + c2 6∈ C then I(x) ⊆ I(x + c1 + c2) and hence

I(x, x + c1 + c2) = I(x + c1 + c2), which is a contradiction.

Theorem 19. For all n ≥ 5,

LB
(≤2)
1 [n] ≥ 2r ≥

⌈

5 · 2n

n + 5

⌉

,

where r is the smallest integer such that the latter inequality holds.

Proof. Let C be a linear (1,≤ 2)-LDB of cardinality K.
If I(x) = {c} for some x 6∈ C then by Lemma 4, |I(c)| = n and thus by Lemma 3, |I(c)| = n

for all c ∈ C. Hence K · n + (2n − K) ≤ K(n + 1), i.e., K ≥ 2n−1, and the claim follows. So
assume that |I(x)| ≥ 2 for all x 6∈ C.

Assume that |I(x)| = 2 for some x /∈ C, and that I(x) = {c1, c2}. Then by Lemma 4,
x + c1 + c2 ∈ C, which is impossible when C is linear and x /∈ C and c1, c2 ∈ C.

Similarly, as in [17, Theorem 6] we can show that each non-codeword must be covered by at
least five codewords. We repeat the proof here. First we show that |I(x)| ≥ 4 for all x 6∈ C.
Assume on the contrary that x 6∈ C and |I(x)| = 3. Without loss of generality (by Lemma 3) we
can assume that x ∈ S1. There exist two different non-codewords y and z in S1 \ {x} such that
x+y and x+z belong to the code, and by linearity also y+z ∈ C. Now I(x) = {00 . . . 0, x+y, x+z}
and by Lemma 3, I(y) = I(x + (x + y)) = {x + y, 00 . . . 0, y + z} and I(z) = I(x + (x + z)) =
{x + z, y + z, 00 . . . 0}. Hence I(x, y) = {00 . . . 0, x + y, x + z, y + z} = I(x, z), which is a
contradiction. Hence |I(x)| ≥ 4 for all x 6∈ C.

Assume now that x 6∈ C and I(x) = {x+e1, x+e2, x+e3, x+e4} where ei ∈ S1, for i = 1, . . . , 4
are different non-codewords. Consider the non-codewords

y = x + e1 + e2,
z = x + e3 + e4,
v = y + e3 + e4.

Using Lemma 3 we get

I(y) = {y + e1 = x + e2, y + e2 = x + e1, y + e3, y + e4},
I(z) = {z + e1, z + e2, z + e3 = x + e4, z + e4 = x + e3},
I(v) = {v + e1, v + e2, v + e3 = y + e4, v + e4 = y + e3}.

Now z + e1 = x + e3 + e4 + e1 = y + e3 + e4 + e2 = v + e2 and similarly z + e2 = v + e1. Thus
we have I(x, v) = I(y, z) which is a contradiction, and hence |I(x)| ≥ 5 for all x 6∈ C.

Now we have K + 5(2n − K) ≤ K(n + 1), from which the claim follows.

Theorem 20. Let n = 5(2k − 1) + s, for k ≥ 1 and 0 ≤ s < 5 · 2k. Then LB
(≤2)
1 [n] = 2n−k.
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Proof. The lower bound follows from Theorem 19. Let H be a k×n matrix where every nonzero
k-tuple appears at least five times, and let C be the code which has parity check matrix H. Now
every non-codeword is covered by five codewords of C, and this code is a (1,≤ 2)-LDB. Namely,
if X, Y ⊆ Fn \ C have both size at most two and x ∈ X \ Y , then by Lemma 1, the at most two
words in Y cannot cover all the at least five codewords in I(x).

Theorem 21. For l ≥ 3 and n ≥ 2l − 1,

LB
(≤l)
1 [n] ≥ 2r ≥

⌈

(2l − 1)2n

n + 2l − 1

⌉

,

where r is the smallest integer such that the latter inequality holds.

Proof. Assume that C is a linear (1,≤ l)-LDB of length n and cardinality K.

If there is a word x /∈ C such that |I(x)| = 1, then the beginning of the previous proof (since C
is trivially also a (1,≤ 2)-LDB) shows that K ≥ 2n−1, and since we have assumed that n ≥ 2l−1,
we are already done.

Assume now that |I(x)| ≥ 2 for all x /∈ C. We shall show that each non-codeword must be
covered by at least 2l − 1 codewords. Assume to the contrary that x /∈ C, |I(x)| = j for some
2 ≤ j ≤ 2l − 2, and that I(x) = {c1, . . . , cj}. For all i, 1 ≤ i ≤ j/2, let xi = x + c2i−1 + c2i

(which is the unique word other than x at distance one from both c2i−1 and c2i). If j is odd,
define x0 = x + c1 + cj . Let X consist of all the words xi, 1 ≤ i ≤ j/2, together with x0, if j is
odd. Because C is linear and x /∈ C, we know that X ⊆ Fn \ C. Now I(X) = I(X ∪ {x}) gives
a contradiction, because |X ∪ {x}| = ⌈j/2⌉ + 1 ≤ l.

Thus we have K + (2l − 1)(2n − K) ≤ K(n + 1), and the claim follows.

Theorem 22. Let l ≥ 3 and n = (2l − 1)(2k − 1) + s, for k ≥ 1 and 0 ≤ s < (2l − 1)2k. Then

LB
(≤l)
1 [n] = 2n−k.

Proof. The lower bound follows from Theorem 21. Let H be a k × n matrix in which every
nonzero k-tuple appears at least 2l − 1 times. The code which has H as a parity check matrix is
(1,≤ l)-LDB by Theorem 1, and has the required dimension.

The previous proof in fact gives the following theorem as an immediate corollary.

Theorem 23. Let l ≥ 3. For all n ≥ 2l − 1, the smallest dimension of a linear (1,≤ l)-LDA of

length n is the same as the smallest dimension of a linear (1,≤ l)-LDB of length n.

Theorem 24. For all n ≥ 5, the smallest dimension of a linear (1,≤ 2)-LDA of length n is the

same as the smallest dimension of a linear (1,≤ 2)-LDB of length n.

Proof. By Theorems 20, 22 and 23 we know that for all n ≥ 5, LB
(≤2)
1 [n] = LB

(≤3)
1 [n] =

LA
(≤3)
1 [n]. Trivially, LA

(≤3)
1 [n] ≥ LA

(≤2)
1 [n] ≥ LB

(≤2)
1 [n], and the claim follows.
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