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The 3-SAT problem consists in determining if a boolean formula with 3 literals per clause is satisfiable. When the
ratio between the number of clauses and the number of variables increases, a threshold phenomenon is observed: the
probability of satisfiability appears in simulations to decrease sharply from 1 to 0 in the neighbourghood of a threshold
value, conjectured to be close to 4.25. Although the threshold has been proved to exist for the 2-SAT formulæ and
for closely related problems like 3-XORSAT, there is still no precise mathematical characterization of the threshold
phenomena involved in the 3-SAT problem.

Recent works have provided so far upper and lower bounds for the threshold’s potential location. We present here a
unified approach to upper bounds that is based on urn models, generating functions, and saddle-point bounds. No new
upper bound is presented here but instead, we show that several existing results (with long proofs) can be organized
in a simpler and uniform manner.

Keywords: First moment method, exponential generating functions, saddle-point bounds

1 Introduction
We consider boolean formulæ over a set of variablesx1, . . . ,xn (where thex j range over{0,1} or, equiv-
alently, {true, false}). A literal is either a variablex j or a negated variable¬x j . It is known that each
boolean formula admits a conjunctive normal form, being a conjunction of clauses, themselves disjunc-
tions of literals. A 3-SAT formula is then such a formula with exactly 3 literals per clause. A typical
formula is then for example:

Φ = (x1∨¬x2∨x4)∧ (¬x2∨¬x3∨x5)∧ (x1∨¬x4∨¬x5)∧ (x3∨¬x4∨¬x5).

We will choose the standard probabilistic model where each clause is composed of a set of three literals
composed of distinct variables. There are then 8

(n
3

)

distinct clauses and(8
(n

3

)

)m formulæ withm clauses.
The quantitiesn,mare the fundamental parameters of the model. From previous studies, we know that the
“interesting” region is whenn andm are linearly relatedm= rn. (Alternative models have occasionally
been used for convenience in calculations, for example, the three literals may be ordered and not neces-
sarily distinct so that there would be 8n3 clauses. All such models are easily proved to be equivalent with
respect to the asymptotic probability of satisfiability).
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In Figure 1, taken from Ludovic Meunier’s master’s thesis [19], aphase transition phenomenoncan
be observed regarding the satisfiability of these formulæ when they are drawn at random. As the ratio
r = m/n of the numbermof clauses to the numbern of variables increases, the probability of satisfiability
drops abruptly from nearly 1 to nearly 0.
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Fig. 1: Ratio of satisfiable formulæwrt the parameterm/n.

From these experiments, it is believed that there exists a critical valuer3 such that for anyε > 0, the
probability of satisfiability tends to 1 forr < r3 − ε (as m and n tend to infinity), and tends to 0 for
r > r3 + ε. Experiments suggest forr3 the value 4.25±0.05. However, so far, only successive upper and
lower bounds on the threshold’s potential location have been obtained. The table below lists the bounds
successively established for the 3-SAT threshold. The bounds marked with a star admit an extension to
k-SAT for any k. A survey by Olivier Dubois explains the techniques used to obtain them [7]. For the
lower bounds, one can refer to the surveys by Franco [11] and Achlioptas [2].

Lower bounds for 3-SAT threshold Upper bounds for 3-SAT threshold
2.9∗ Chao and Franco (1986,1990) [6] 5.191∗ Franco and Paull (1983) [12]
2/3∗ Chvátal and Reed (1992) [20] 5.081 El Mafthoui and

Fernandez de la Vega (1993) [10]
1.63 Broder et al. (1993) [5] 4.883∗ Dubois and Boufkhad (1999) [4]
3.003∗ Frieze and Suen (1996) [14] 4.762∗ Kamath et al. (1995) [16]
3.145 Achlioptas (2000) [1] 4.643∗ Dubois and Boufkhad (1997) [8]
3.26 Achlioptas and Sorkin (2000) [3] 4.602 Kirousis et al. (1998) [18]
3.42 Kaporis, Kirousis and Lalas (2002) [17] 4.596 Janson et al. (1999) [15]

4.506 Dubois et al. (2003) [9]
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Apart from these works, Friedgut [13] also proved that there exists a sequenceγn such that for any
ε > 0, if m/n < γn− ε then, the probability of satisfiability tends to 1 asm andn increase while it tends
to 0 if m/n > γn + ε. But it has not been proved that the sequenceγn converges to some limit valueγ, that
would then be equal to the thresholdr3.

The aim of the present paper is to present some of the most significant upper bounds on the satisfiability
threshold and organize them within a unified framework. We will specifically focus on enumerative
proofs, based on generating functions.

2 Expectation of the number of solutions
The first bound for the 3-SAT threshold has been obtained by several authors as a direct application of the
first moment method to the random variable giving the number of solutions of a random formula. Under
an enumerative perspective, it can be regarded as a direct application of the following simple remark:
since positive integer are≥ 1, one has the inequality:

|{ Φ satisfiable}| ≤ |{ (Φ,S) such thatΦ is satisfied byS}| (1)

where|E| denotes the cardinality of the setE. There,S represents an assignment of then variables to
values in{0,1}. LetC = ±xi ∨±x j ∨±xk be a clause and fix some assignmentC (we identify negation¬
with the minus sign). There is only one way to choose the signs of the three literals in order to have the
value ofC be false underS: each literal must have the opposite sign of its assignment. Then, there are 7
ways to choose the signs in order to renderC true. The number of clauses satisfied by any givenS is then
7
(n

3

)

. SinceS is a solution of a 3-SAT formulaΦ iff all clauses ofΦ are satisfied byS, for any assignment,
there are exactly(7

(n
3

)

)m formulas withm clauses which admitSas a solution.
The cardinality of the pairs(Φ,S) such thatS is a solution ofΦ is then given by 2n(7

(n
3

)

)m. Dividing
each term of (1) by the total number of formulæ(8

(n
3

)

)m gives (withr = m/n):

Pr( Φ satisfiable) ≤
(

2

(

7
8

)r)n

. (2)

For r > ln(2)/ ln(8/7) ≈ 5.191, the right side of (2) tends to 0 asn tends to infinity, and so does the
probability of satisfiability. This gives the first upper bound obtained by Franco and Paull as early as
1983.

This argument can easily be extended to the problemk-SAT for anyk. For any fixed assignment, the
number of clauses it satisfies which are disjunctions ofk literals is given this time by(2k −1)

(n
k

)

. The
number of satisfied formulæ is hence

(

(2k−1)
(n

k

))m
and since the total number of formulæ is

(

2k
(n

k

))m
,

one has

Pr( Φ k-SAT satisfiable) ≤
(

2

(

(2k−1)

2k

)r
)n

. (3)

The probability of satisfiability ofk-SAT formulæ tends to 0 whenr > − ln(2)/ ln(1−2−k) and the fol-
lowing proposition holds
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Proposition 1 (Franco and Paull [12]) Let m,n be integers andΩm,n the set of k-SAT formulae with m
clauses constructed over n variables. Let m,n→∞, while m/n≥ r. Then, for any r>− ln(2)/ ln(1−2−k),
the expectation of the number of solutions of a random formula tends to0 and hence

Pr{φ∈ Ωm,nis satisfiable} −→ 0.

For k = 3, the bound is5.191.

Note that this majorization of the threshold also holds fork = 2, but the value− ln(2)/ ln(3/4) ≈ 2.4
is appreciably greater than the exact value of the 2-SAT threshold, which has been proved to be 1. It also
suggests 2k ln(2) as an approximate value of the threshold for largek of the potential threshold location.

3 Prime implicants
In the previous section, we have bounded the number of satisfiable formulæ by the number of formula-
solution pairs. Since a satisfiable formula may have from 1 to almost 2n solutions, the upper bound
obtained may be very coarse. The next idea is to group some of the solutions which look very close to
each other, and enumerate only these groups for each formula. In this way, it may be possible to get an
improved upper bound on the satisfiability threshold.

This leads to the idea of using partial assignments and prime implicants, first introduced in this context
by Olivier Dubois and Yacine Boufkhad [4]. Apartial assignment Ais simply an assignment to a subset
of then variables (possibly all, so that complete assignment are also considered partial assignments). Let
us say thatA satisfies a formulaΦ iff all complete assignmentsA′ extendingA are solutions ofΦ. A
necessary and sufficient condition for this is that in each clause ofΦ, at least one of the three literals is
true underA. Note that this implies that at least one variable is assigned. If there arei missing variables
in a partial assignmentA, thenA “groups” 2i solutions together.

A natural order may be placed on partial assignments. We say thatA is smaller thanB if we can remove
some assigned variables fromB to getA. A prime implicantof a formulaφ is then defined as a partial
assignment which is minimal with respect to this order. Any satisfiable formula has then at least one prime
implicant since it has at least one solution and the set of partial assignments is then non empty. As in the
previous section, we get from there the inequality (see (1)):

|{ Φ satisfiable}| ≤ |{ (Φ, I) such thatI is a prime implicant ofΦ }| . (4)

Note that the sets of solutions grouped together by two different partial assignments are not necessarily
disjoint and some formulæ may even have more prime implicants than solutions. But in fact, on average,
the number of prime implicants of a random formula appears to be smaller by an exponential factor than
the number of solutions.

At this point, we start an original re-derivation of the upper bound value 4.883 obtained by O. Dubois
and Y. Boufkhad for the 3-SAT threshold, with the help of generating functions, which provides a much
shorter proof of their estimate.

Let us consider the partial assignmentI which assigns all variablesx1, . . . ,xℓ to 0. Then, all clauses in
a formulaΦ that admitsI as a prime implicant must contain at least one literal satisfied byI . Any such
clause is hence of the form¬xi ∨a∨b with 1≤ i ≤ ℓ. Let An,ℓ be the set of such clauses andαn,ℓ their
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number. Since the complement ofAn,ℓ is the set of clauses which do not contain any literal(¬xi)i∈[[1;ℓ ]],
it follows

αn,ℓ = 8

(

n
3

)

−
[(

ℓ

3

)

+2

(

ℓ

2

)

(n− ℓ)+4ℓ

(

n− ℓ

2

)

+8

(

n− ℓ

3

)]

.

Recall thatI has to be minimal with respect to the order defined earlier. Remove the variablexi from
the set of assigned variables. Then at least one clause inΦ no longer contains a positive literal. HenceΦ
must contains a clause of the form¬xi ∨a∨b with a andb either of the form(xi)i∈[[1;ℓ ]] or (±xi)i∈[[ℓ+1;n]].
Let Bn,ℓ,i be the set of these clauses andβn,ℓ,i their number. It is easy to see that these sets are mutually
disjoint and have the same cardinality

βn,ℓ,i = βn,ℓ =

(

ℓ−1
2

)

+2(ℓ−1)(n− ℓ)+4

(

n− ℓ

2

)

.

Finally, to build a formula which admitsI as a prime implicant, one must drawm elements in the setAn,ℓ

so that in the subsets(Bn,ℓ,i)i∈[[1;ℓ ]], at least one element is taken. The number of such draws is then the
numberIm,n,ℓ whose generating function is given by

In,ℓ(z) = ∑
m≥0

In,ℓ,m
zm

m!
= ez(αn,ℓ−ℓβn,ℓ)

(

ezβn,ℓ −1
)ℓ

. (5)

The proof of this statement is given in the first part of the appendix. It is based on generating functions
and the enumeration of throws in urns.

Now, it is clear that for any other partial assignment ofℓ variables, the number of formulæ of length
m for which it is a prime implicant is the same as the one where theℓ first variables are assigned to 0
and thus, it only depends onm, n andℓ. Finally, since there are

(n
ℓ

)

2ℓ possible partial assignments ofℓ
variables, the total number of pairs(Φ, I) such thatI is a prime implicant forΦ is given by:

|{ (Φ, I prime implicant) }| =
n

∑
ℓ=1

(

n
ℓ

)

2ℓ Im,n,ℓ. (6)

The next step depends on the following general remark: if( fk) is a sequence of non negative reals and
f (z) = ∑ fk zk then for alls> 0 within the domain of convergence off (z):

fk ≤ min
s

f (s)
sk .

This is a very classical majorization called the saddle-point bound (the minimum of the functions 7→
f (s)s−k is called the saddle point and the shape of the complex function

∣

∣ f (s)s−k
∣

∣ in its neighbourhood
looks like a horse’s saddle). The majorization may seem coarse since

f (s)s−k = f0s−k + · · ·+ fk + fk+1s+ · · · ,

but in many cases it gives the exact exponential rate of growth of the coefficientfk knowing the generating
function f (z).

From now on, we setℓ = αn, m= rn and make use of the majorizationsαn,ℓ− ℓβn,ℓ ≤ 1
3ℓ2(3n− ℓ) and

βn,ℓ ≤ 1
2(2n− ℓ)2. From the previous remark, it follows that for anyuα

Irn,n,αn ≤ (rn)! n2m
(

eα2(1−α/3)uα
(

e2(1−α/2)2uα −1
)α

u−r
α

)n
.
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The same remark proves that for any integers, one has1
s! ≤ es

ss . Combining this inequality (for the
denominator) with Stirling’s formula (for the numerator) ensures that there exists a constantC such that,
for each integern and eachα such thatαn is an integer, one has

(

n
αn

)

≤C
√

n
(

αα(1−α)1−α)−n
. (7)

Naturally, stronger asymptotic estimates are possible, e.g.
( n

αn

)

∼ (2πnα(1−α))−1/2
(

αα(1−α)1−α)−n

follows obviously from three applications of Stirling formula. However, equation (7) wholy suffices for
our purposes while making subsequent argumentations simpler.

Finally, since(rn)!n2rn

(8(n
3))

rn ∼
√

2πre3rn1/2
(

3r
4e

)rn
, (4) and (6) give

Pr( Φ satisfiable) ≤C′n ∑
α∈{ 1

n , 2
n ,..., n−1

n ,1}
fr(α,δα)n (8)

with fr(α,δα) =
(

3r
4e

)r 2α

αα(1−α)1−α

(

e
α2(1−α/3)

2(1−α/2)2
δα (

eδα −1
)α δ−r

α 2r (1−α/2)2r

)

and whereδα can be any strictly positive real. In order to get the best majorization,δα has to minimize
the expression between parentheses. If 0< α < r, this expression has a unique minimumδα given by

α2(1−α/3)

2(1−α/2)2 δα +α
δα

1−e−δα
= r.

Assume thatr > 1. Then one gets

Pr( Φ satisfiable) ≤C′n2
(

max
α∈]0,1]

gr(α)

)n

with gr(α) = fr(α,δα).

Any realr > 1 such that the maximum ofgr over]0,1] is strictly smaller than 1 is hence an upper bound
on the satisfiability threshold. The valuer = 4.883 is then the best value computed with Maple which has
this property (details are given in the second part of appendix).

Proposition 2 (Dubois and Boufkhad [4]) Let m,n be integers andΩm,n the set of3-SAT formulae with
m clauses constructed over n variables. Let m,n → ∞, while m/n ≥ r. Then, for any r> 4.883, the
expectation of the number of prime implicants of a random formula tends to0 and

Pr{φ∈ Ωm,nis satisfiable} −→ 0.

The same analysis can easily be extended tok-SAT for any integerk.

4 Negatively prime solutions
The next idea is to introduce a partial order on the set of solutions. DefineB to be an assignment smaller
thanA if one can change the values of some ofB’s variables from 0 to 1 to getA. We could envisage to
enumerate only pairs(Φ,S) whereS is a maximal solution with respect to this order; however, it is very
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difficult to find for any given assignment a simple characterization of formulæ for which it is a maximal
solution. In order to remedy this situation, Olivier Dubois and Yacine Boufkhad introduced a weaker
definition of local maximal solution(also callednegatively prime solutionor NPSs). This is a solution
for which changing the value of any variable from 0 to 1 no longer gives a solution. This amounts to
considering solutions which do not admit a greater solution that differs in exactly one variable. Once
more, there holds the inequality

|{ Φ satisfiable}| ≤ |{ (Φ,S) such thatSis anNPSof Φ }| (9)

and the probability of satisfiability is smaller than the expectation of the number ofNPSs. What follows
now is a new calculation of this expectation.

Let A be an assignment settingℓ variables to the value 0 andΦ a formula for whichA is anNPS . Then,
all clauses ofΦ must belong to the setAn of all 7

(n
3

)

clauses satisfied byA (as seen in Section 2). Now,
if any variablexi assigned to 0 is changed to 1, there must be at least one clause inΦ that is no longer
satisfied by this new assignment: at least one clause must be thus of the form¬xi ∨a∨b, wherea and
b are false underA. If we denote byCxi this last set of clauses (for each variable assigned to 0), then all
these sets have the same number

(n−1
2

)

of elements and are mutually disjoint. As in the previous section,
since there are

(n
ℓ

)

solutions withℓ variables assigned to 0, we get:

|{ (Φ,A NPS) }| =
n

∑
ℓ=0

(

n
ℓ

)

m! [zm]ez(7(n
3)−ℓ(n−1

2 ))
(

ez(n−1
2 )−1

)ℓ

where[zm] f (z) represents the coefficientfm in the Taylor expansionf (z) = ∑ fizi . The linearity of coeffi-
cient extraction gives a closed-form expression:

|{ (Φ,A NPS) }| = m! [zm]ez7(n
3)
(

2−e−z(n−1
2 )
)n

. (10)

The same use of saddle-bound as in the previous section, the same majorization provided by Stirling’s
formula, and the change of variableδ = z

(n−1
2

)

provide that, for anyδ > 0 with m= rn,

Pr(Φ satisfiable) ≤C
√

2πrn

(

(

3r
8e

)r e
7
3δ(2−e−δ)

δr

)n

. (11)

This expression is minimized byδ
(

7
3 − 1

2eδ−1

)

= r and, with such aδ, is strictly smaller than 1 as soon

asr > 4.643. Hence

Proposition 3 (Dubois and Boufkhad [8]) Let m,n be integers andΩm,n the set of3-SAT formulae with
m clauses constructed over n variables. Let m,n → ∞, while m/n ≥ r. Then, for any r> 4.643, the
expectation of the number ofNPSs of a random formula tends to0 and

Pr{φ∈ Ωm,nis satisfiable} −→ 0.

Once more, this upper bound can be extended tok-SAT for anyk. For any assignment giving the value
0 to ℓ variables, the number of satisfied clauses which are disjunction ofk literals is this time(2k−1)

(n
k

)

.
Once more, for all variablexi assigned to 0, define the setCxi of clauses which forbid the flip ofxi from 0
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to 1. Then, all these sets are mutually disjoint and have the same cardinality
(n−1

k−1

)

. The same arguments
then provide the exact formula

|{ (Φ k-SAT,A NPS) }| =
n

∑
ℓ=0

(

n
ℓ

)

m! [zm]ez((2k−1)(n
k)−ℓ(n−1

k−1))
(

ez(n−1
k−1)−1

)ℓ
(12)

which gives the general majorization for anyδ > 0, consideringk-SAT formulæ of lengthm= rn,

Pr(Φ k-SAT satisfiable) ≤C
√

2πrn





(

kr
2ke

)r e
2k−1

k δ(2−e−δ)

δr





n

. (13)

With δ
(

2k−1
k − 1

2eδ−1

)

= r, one determines that the probability of satisfiability ofk-SAT formulæ of length

m= rn tends to 0 as soon asr > 10.217 fork= 4 andr > 43.508 fork= 6 for instance. This general upper
bound has first been obtained by Olivier Dubois and is still so far the best one for generalk. However, the
initial proof took 25 pages where ours only needs about 2.

5 Appendix
5.1 Throws into urns and generating functions
Let us consider a general problem. LetM1, . . . ,Mp be subsets ofN. One has a collection ofp urns and
wants to throw in these urnsmdistinguishable balls (say by integer labels 1,2,3, . . .), such that in the end,
the number of balls in urni is in Mi . For instance, ifM1 = {0,1,2} andM2 = {2,3, . . .}, one want to throw
at most two balls in the first urn and at least two balls in the second one. The problem is to enumerate the
number of such throws.

Let Fm be this number. Then clearly, one has

Fm = ∑
n1+···+np=m

(

m
n1; · · · ;np

)

[[n1 ∈ M1]]×·· ·× [[np ∈ Mp]] (14)

where[[P ]] equals 1 ifP is true and equals 0 otherwise. The binomial coefficient enumerates all ways to
putn1 balls in urn 1,n2 balls in urn 2 and so on. The product is then equal to 1 if and only if all conditions
concerning the final number of balls in each urn are satisfied.

Introduce the exponential generating function of the sequence(Fm). Then, (14) immediately implies

F(z) = ∑
m∈N

Fm
zm

m!
=

(

∑
i∈M1

zi

i!

)

×·· ·×
(

∑
i∈Mp

zi

i!

)

. (15)

For instance, the generating function of the example above isF(z) = ( z2

2 +z+1)(ez−z−1).
Let us now consider a slightly more complex problem. We now havep subsets of urns, sayE1, . . . ,Ep

of cardinalitye1, . . . ,ep, andp subsets ofN M1, . . . ,Mp. This time, we want to throwm distinguishable
balls in all these urns such that in the end, for anyi, the total number of balls in the subsetEi of urns is an
element ofMi . The formula (14) now becomes

Fm = ∑
n1+···+np=m

(

m
n1; · · · ;np

)

[[n1 ∈ M1]] (e1)
n1 · · · [[np ∈ Ep]] (ep)

np. (16)
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since there is now(ei)
ni ways to throwni balls in the subsetEi of urns, and the translation of this formula

into generating function gives

F(z) = ∑
m∈N

Fm
zm

m!
=

(

∑
i∈M1

(e1z)i

i!

)

×·· ·×
(

∑
i∈Mp

(epz)i

i!

)

. (17)

In section 3, we had to pick elements in one setAn,ℓ, so that inℓ subsetsBn,ℓ,i , at least 1 element is
picked. LetÃn,ℓ = An,ℓ − (∪1≤i≤ℓBn,ℓ,i). This is equivalent to picking any number of elements inÃn,ℓ and
at least one in each of theBn,ℓ,i .

”Replace” now each clause by an urn. Pickingmclauses with replacement to construct a formula is then
equivalent to throwingmdistinguishable balls in the set of urns. The enumeration of such draws can thus
be regarded as an urn problem just defined, where we dispose ofℓ+1 sets of urns. The first set contains
α̃n,ℓ = αn,ℓ − ℓβn,ℓ urns and we may throw any number of balls in it (henceM1 = N). The other sets each
containβnℓ urns and we must throw at least one ball in one urn of the set (henceM2 = · · · = Mℓ+1 = N

∗).
The equation (17) finally gives the desired result.

5.2 Maple computations
In this section, we prove with the help of Maple that forr = 4.883, the maximum ofgr defined in section
3 is strictly smaller than 1. The idea is to get a coarse majorization ofg′r and then to ask Maple to evaluate
gr at sufficiently many pointsx0 < · · · < xp. With the mean value theorem, the condition

1− max
i∈[[0;p]]

{gr(xi)} >
||g′r ||

2
max

i∈[[0;p−1]]
|xi+1−xi | (18)

ensures that for anyt ∈/ {x0, . . . ,xp}, it also holds thatgr(t) < 1. The purpose of this section is hence to
replace many pages of analysis by Dubois and Boufkhad by a combination of straightforward inequalities
and trivial computation.

A minor difficulty arises from the fact that the functionα 7→ 2α

αα(1−α)1−α has infinite derivatives at 0 and

1. Hence, a rough majorization ofgr on intervals of the form]0,ε] and[1−η,1] must be obtained first.
Monotonicity properties : The functiongr can be written as a product of one constant

(

3r
2e

)r
and two

functions which are:

f1 : α 7→ 2α

αα(1−α)1−α

(

1− α
2

)2r
f2 : α 7→ exp

(

α2(1−α/3)

2(1−α/2)2 δα +α ln
(

eδα −1
)

− r ln δα

)

.

First of all, one can prove thatδα and f2 are both monotonic functions. Let us define

h(x,y) =
x2(1−x/3)

2(1−x/2)2 y+x
y

1−e−y .

Sinceh(α,δα) = r, differentiating this expression with respect toα yields

∂h
∂x

(α,δα)+δ′α
∂h
∂y

(α,δα) = 0 ⇒ δ′α =

(

−
∂h
∂x
∂h
∂y

)

(α,δα).
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It now easy to verify that both∂h
∂x and ∂h

∂y are positive function on[0,1]×]0,+∞[ and hence,δα is a
decreasing function ofα. Concerning the functionf2, the conditionh(α,δα) = r also implies

f ′2(α) =

(

α(12−6α +α2)

3(2−α)3 δα + ln(eδα −1)

)

f2(α).

The functionα 7→ δα being decreasing, for anyα, ln(eδα −1) ≥ ln(eδ1 −1) ≈ 1.8017> 0. Hence,f ′2 is
positive andf2 is an increasing function ofα.

Finally, the functionf1 satisfies

f ′1(α) =

(

ln(2)− ln(α)+ ln(1−α)− 2r
2−α

)

f1(α).

The expression between parentheses is smaller than ln(2)− ln(α)+ ln(1−α)− r, which is negative as
soon asα > 2

er+2 ∼ 0.0149. The functionf1 is thus decreasing on[0.015,1].

Majorization of gr on ]0,0.897] and [0.957,1]: First of all, we make use of the majorization

2α

αα(1−α)1−α

(

1− α
2

)2r
≤ 3 ∀ α ∈ [0,1]

which implies that for anyα ∈]0,0.414], gr(α) ≤ 3
(

3r
2e

)r
f2(0.414) ≈ 0.992. Then we use the fact thatf1

is decreasing on[0.015,1] to conclude that on any interval[a,b] with a > 0.015,

for any α ∈ [a,b], gr(α) ≤
(

3r
2e

)r

f1(a) f2(b).

By subdividing[0.015,1] into many small intervals, it is shown with this majorization thatgr is smaller
than 1 on both intervals]0,0.897] and[0.957,1].

Majorization of g′r on [0.897,0.957]: For anyα ∈ [0.897,0.957], one hasδ0.957≤ δα ≤ δ0.897. Differen-
tiatinggr with respect toα gives

g′r(α) =
∂ fr
∂α

+δ′α
∂ fr
∂δα

=

(

∂ fr
∂α

−
∂h
∂x
∂h
∂y

∂ fr
∂δα

)

(α,δα).

It is easy to see that both∂h
∂x and ∂h

∂y are positive increasing functions ofx andy so their respective greatest

and lowest values are∂h
∂x(0.957,δ0.897) and ∂h

∂y(0.897,δ0.957). To majorize∂ fr
∂α and ∂ fr

∂δα
, we introducear

such thatfr = exp(ar). Then

ar(α,δα) = C′′ +α ln(2)−α ln(α)− (1−α) ln(1−α)+
α2(1−α/3)

2(1−α/2)2 δα

+α ln(eδα −1)− r ln(δα)+2r ln(1−α/2),

and we have both∂ fr
∂x = fr

∂ar
∂x and ∂ fr

∂y = fr
∂ar
∂y . The derivatives ofar are simple functions, and finally, a

coarse majorization offr ,
∂ar
∂x and ∂ar

∂x gives the bound:

for any α ∈ [0.897,0.957],
∣

∣g′r(α)
∣

∣≤ 60.
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Numerical evaluations: We setr = 4.883. We got Maple to compute the greatest value ofgr with an
accuracy of 15 digits for points in the interval[0.897,0.957] at distance at most 0.6 ·10−7 of each other
(106 values). The greatest value returned was 1−0.2721·10−5. Hence, the condition (18) is verified and
the value 4.883 is proved to be a valid upper bound of the satisfiability threshold.
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