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This paper deals with statistics concerning distances between randomly chosen nodes in varieties of increasing trees.
Increasing trees are labelled rooted trees where labels along any branch from the root go in increasing order. Many
important tree families that have applications in computer science or are used as probabilistic models in various
applications, likerecursive trees, heap-ordered treesor binary increasing trees(isomorphic to binary search trees)
are members of this variety of trees. We consider the parametersdepthof a randomly chosen node,distancebetween
two randomly chosen nodes, and the generalisations wherep nodes are randomly chosen: the size of theancestor-tree
of these selected nodes and the size of the smallest subtree generated by these nodes, also calledSteiner distance.
Under the restriction that the node-degrees are bounded, we can prove that all these parameters converge in law to the
Normal distribution. This extends results obtained earlier for binary search trees and heap-ordered trees to a much
larger class of structures.

Keywords: increasing trees, Steiner-distance, ancestor-tree size

1 Introduction
In this paper we consider families of increasing trees. Increasing trees as defined in [2] are labelled trees
(the nodes of a tree of sizen are labelled by distinct integers of the set{1, . . . ,n}), such that each sequence
of labels along any branch starting at the root is increasing. As the underlying tree model, we use the
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so called simply generated trees, compare [12]. They are essentially the same as Galton-Watson trees,
obtained as the family tree of a Galton-Watson branching process conditioned on a given total size, see
e. g., [1]. Additionally, they are equipped with increasing labellings. We will thus speak aboutsimple
families of increasing trees. A thorough study of families (=varieties) of increasing trees was conducted
in [2].

A classT of a simple family of increasing trees can be defined in the following way. A sequence of
non-negative numbers(ϕk)k≥0 with ϕ0 > 0 is used to define the weightw(T) of any planted plane treeT
by w(T) = ∏vϕd(v), wherev ranges over all vertices ofT andd(v) is the out-degree ofv. Further,λ(T)
denotes the number of different increasing labellings of the treeT. Then the familyT consists of all trees
T together with their weightsw(T) and the various increasing labellingsλ(T).

For a given integer sequence(ϕk)k≥0, the quantities

Tn := ∑
|T|=n

w(T) ·λ(T),

are counting the number of trees of sizen in T , where|T| denotes the size (=number of nodes) of the tree
T.

Further we define by
ϕ(t) = ∑

k≥0

ϕkt
k, (1)

the degree generating functionϕ(t), which contains all the information required for analysing the tree
parameters that we consider in this paper.

As it is natural in enumeration problems related tolabelledstructures, we use theexponential generat-
ing function

T(z) := ∑
n≥0

Tn
zn

n!
. (2)

It follows then from the recursive way in which these trees are generated that

T ′(z) = ∑
n≥1

Tn
zn−1

(n−1)!
= ∑

n≥1
∑

k≥0
ϕk ∑

n1+···+nk=n−1
∑

T: |T|=n,
d(root)=k,

|S1|=n1,...,|Sk|=nk

( n−1
n1,...,nk

)w(S1)λ(S1)···w(Sk)λ(Sk)zn−1

(n−1)!

= ∑
k≥0

ϕkT
k(z) = ϕ

(

T(z)
)

,

where the degree of the root isk and the subtreesS1, . . . ,Sk have sizesn1, . . . ,nk, respectively.
Thus, for simple families of increasing trees with degree generating functionϕ(t), the (exponential)

generating functionT(z) satisfies theautonomousfirst order differential equation

T ′(z) = ϕ
(

T(z)
)

, T(0) = 0. (3)

As an example we list in Figure 1 all planar unary-binary increasing trees of size 4. These trees are
described via the degree generating functionϕ(t) = 1+ t + t2.

In [2], an asymptotic study of many parameters related to simple families of increasing trees can be
found.
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Fig. 1: All 9 planar unary-binary increasing trees of size 4.

These results are obtained by means of a generating functions approach and naturally depend on the
degree generating functionϕ(t).

We want to give a few examples as an illustration that simple families of increasing trees are not an
obscure construction but occur rather naturally.

We begin with the so calledrecursive trees,which are the family of non-planar increasing trees where
all node degrees≥ 0 are allowed. They are described by the degree generating functionϕ(t) = exp(t).
This model is used among other things to describe the spread of epidemics, for pyramid schemes or as a
basis of Burge’s sorting method (see e. g., [11]).

Another family of trees are the so calledheap ordered trees(also known as plane recursive trees),
which are planar increasing trees such that all node degrees are allowed. They are described by the degree
generating functionϕ(t) = 1

1−t . They can be used for pyramid schemes based on the principle “success
breeds success” (see also [11]).

Finally we want to mention the so calledbinary increasing trees, which are labelled unary-binary trees
with one sort of leaves and one sort of binary nodes, but two sorts of unary nodes (left branching nodes
and right branching nodes); thus they are described by the degree generating functionϕ(t) = (1+ t)2.
They can be used as a data structure to represent mergeable priority queues, with algorithms that can be
precisely analysed (see [2]). This tree model is also isomorphic to the model of standard binary search
trees (and thus to the Quicksort algorithm, see e. g., [7]). Hence when analysing structural parameters, we
can either do it in the binary search tree model or in the binary increasing tree model.

For the last-mentioned model of binary search trees, two tree parameters are analysed in [15], which
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extend the quantitiesdepth of a random nodeanddistance between two random nodes. The depth of a
nodev is here defined as the number of nodes lying on the unique path from the root tov. The natural
extensionsize of the ancestor-treeof p chosen nodesv1, . . . ,vp measures the size of the tree spanned by
the root andv1, . . . ,vp and therefore counts the number of nodes that are lying on at least one direct path
from the root tovi for 1≤ i ≤ p. For binary search trees this parameter is of interest when analysing the
average behaviour of the Multiple Quickselect algorithm (see e. g. [16]), which is used to find arbitrary
p-order statistics in a data file of lengthn.

The node distance betweenv1 andv2 is defined as the number of nodes lying on the direct path from
v1 to v2. A study of the distance between nodes is of interest for various tree families. E. g., the distance
between two specified nodes appears in the analysis of the costs of finger search operations in search
tree structures (see [5]). Moreover, heap ordered trees (they are a special instance of the so called Albert-
Barab́asi-model for scale-free networks, see [3])) and recursive trees (see [8]) are used to model the growth
of the world-wide-web. Thus in this context the distance between randomly chosen nodes in heap ordered
trees resp. recursive trees is of interest when analysing the “hopcount” problem of the internet, which
asks for the number of hops (= traversed routers) along the shortest path between two arbitrary nodes in
the internet.

The natural extension for the parameter distance between two nodes is thespanning subtree sizeof p
chosen nodesv1, . . . ,vp and thus counts the number of nodes that lie on at least one direct path fromvi to
v j for 1≤ i ≤ j ≤ p. In the literature, this parameter is also known as theSteiner distancebetween these
p nodes (see e. g., [4]). Such measures are used for analyzing transportation networks and multiprocessor
computer networks.

Our previous paper [15] contains the following results for the binary search tree model: Under the as-
sumption that all

(n
p

)

possibilities of selectingp nodes in a tree of sizen are equally likely, the distribution
of the Steiner distance ofp chosen nodes as well as the distribution of the size of the ancestor-tree ofp
chosen nodes is asymptotically Gaussian forn → ∞ and fixedp; mean and variance are asymptotically
2plogn.

See Figure 2 for a comparison of both parameters considered here:ancestor-tree sizeand Steiner-
distancefor a given increasing tree.
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(a) Ancestor-tree of the three marked nodes{4,9,11} is
of size 7.

1

5 28

937

4

10

6 11

(b) Steiner distance of the three marked nodes{4,9,11}
is 6.

Fig. 2: An increasing tree with the two parameters under consideration
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The intention of this work is to generalise the limiting distribution results for the Steiner distance and
for the ancestor-tree size that were obtained for the special case of binary increasing trees in [15], and for
the case of heap ordered trees in [13], to other members of the simple family of increasing trees. We will
carry out this analysis for all simple increasing trees where the possible node degrees are bounded, and
thus the degree generating functionϕ(t) = ϕ0 + · · ·+ϕdtd is apolynomialof degreed ≥ 2. We will thus
speak aboutthe polynomial variety of increasing trees.

Important special cases are thed-ary increasing trees (ϕ(t) = (1+ t)d) and the planar unary-binary
increasing trees (ϕ(t) = 1+ t + t2), whereas the above mentioned recursive trees and heap-ordered trees
are not covered by this analysis. So, the results in [14] (recursive trees), [13] (heap ordered trees) and in
the present paper complement each other.

However, in principle one can also obtain results for tree classes with unbounded node-degrees (where
ϕ(t) is not a polynomial) using the methods of this paper. This is technically more subtle and depends on
whether one can describe the behaviour ofT(z) near their dominant singularities (see Section 2).

Throughout this paper we will (for a given tree family) denote byXn,p the random variable counting the
size of the ancestor tree ofp randomly chosen nodes in a tree of sizen and byYn,p the random variable
counting the Steiner distance ofp randomly chosen nodes in a tree of sizen. The main result concerning
the limiting distribution of these parameters in a polynomial variety of increasing trees is then stated in
the next two theorems. The distribution function of the standard normal distributionN (0,1) is denoted
by Φ(x).

Theorem 1. Given a polynomial variety of increasing trees with degree generating function
ϕ(t) = ϕ0 + · · ·+ ϕdtd with d ≥ 2, ϕ0 > 0, ϕd > 0 and ϕk ≥ 0 for 0 < k < d. The distribution of
the random variable Xn,p, which counts the size of the ancestor-tree of p randomly chosen nodes in a
random tree of size n, is for fixed p≥ 1 asymptotically Gaussian, where the convergence rate is of order
O

(

1√
logn

)

:

sup
x∈R

∣

∣

∣

∣

∣

P

{

Xn,p−E(Xn,p)
√

V(Xn,p)
≤ x

}

−Φ(x)

∣

∣

∣

∣

∣

= O
( 1√

logn

)

.

The expectation En,p = E(Xn,p) and the variance Vn,p = V(Xn,p) satisfy

En,p =
pd

d−1
logn+cp +O

( 1

n
1

d−1−ε

)

,

Vn,p =
pd

d−1
logn+dp +O

( 1

n
1

d−1−ε

)

,

with constants cp resp. dp that are specified in Section 3.

Theorem 2. Given a polynomial variety of increasing trees with degree generating function
ϕ(t) = ϕ0 + · · ·+ ϕdtd with d ≥ 2, ϕ0 > 0, ϕd > 0 and ϕk ≥ 0 for 0 < k < d. The distribution of
the random variable Yn,p, which counts the Steiner distance (and thus the spanning subtree size) of p
randomly chosen nodes in a random tree of size n, is for fixed p≥ 2 asymptotically Gaussian, where the
convergence rate is of orderO

(

1√
logn

)

:
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sup
x∈R

∣

∣

∣

∣

∣

P

{

Xn,p−E(Xn,p)
√

V(Xn,p)
≤ x

}

−Φ(x)

∣

∣

∣

∣

∣

= O
( 1√

logn

)

.

The expectation En,p = E(Yn,p) and the variance Vn,p = V(Yn,p) satisfy

En,p =
pd

d−1
logn+ c̃p +O

( 1

n
1

d−1−ε

)

,

Vn,p =
pd

d−1
logn+ d̃p +O

( 1

n
1

d−1−ε

)

,

with constants̃cp resp.d̃p that are specified in Section 4.

2 Mathematical analysis of the parameters
2.1 Known results for the generating function T(z)

As the starting point in our analysis of the parametersXn,p andYn,p, we will collect results from [2]
concerning the structure of the generating functionT(z).

Theorem 3. [Bergeron et al.]The exponential generating function T(z) of a simple family of increasing
trees defined by the degree functionϕ(t) = ∑k≥0ϕktk, ϕ0 > 0, ϕk ≥ 0 is given implicitly by

Z T(z)

0

dt
ϕ(t)

= z. (4)

Depending on the degree functionϕ(t), periodicity phenomena can occur. Ifϕ(t) is a function oftq

for someq ≥ 2, such thatϕ(t) = ψ(tq) for some power seriesψ, one says thatϕ(t) is periodic and the
maximum possibleq is called the period (otherwiseϕ(t) is called aperiodic,q = 1). For a periodq≥ 2
one gets e. g., by applying the Lagrange inversion formula, thatT(z) = zT∗(zq) for some power seriesT∗.
Thus non-zero coefficientsTn can occur only if the congruence conditionn≡ 1(modq) is satisfied. For the
asymptotic behaviour of the coefficientsTn one can translate the behaviour ofT(z) in the neighbourhood
of the dominant singularities (singularities with smallest modulus) via singularity analysis (see [6]).

The next theorem describes the location of the dominant singularities.

Theorem 4. [Bergeron et al.] Given a polynomial degree functionϕ(t) = ∑0≤k≤d ϕktk with ϕ0 > 0,
ϕd > 0, ϕk ≥ 0 for 0 < k < d. The dominant real positive singularity of the function T(z), solution of
T ′(z) = ϕ(T(z)), T(0) = 0, is then given by

ρ =
Z ∞

0

dt
ϕ(t)

. (5)

Furthermore, ifϕ(t) is non periodic,ρ is the only dominant singularity of T(z). If ϕ(t) has period q≥ 2,
then T(z) = zT∗(zq), where T∗(t) has a unique dominant singularity at t= ρq.
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From this theorem it follows thatT(z) is analytic in a domain larger than the disk of convergence if we
slit at angles 2πm/q: it exists aρ′ > ρ, such thatT(z) is analytic in the domain

D := {z∈ C : |z| ≤ ρ′,z 6= reiφ with ρ ≤ r ≤ ρ′, φ= 2πm/q and 0≤ m< q}. (6)

The next theorem describes the behaviour ofT(z) near the dominant singularityρ. For a polynomial
degree generating functionϕ(t) = ∑0≤k≤d ϕktk of degreed we use throughout this paper the abbreviations

δ :=
1

d−1
and η :=

(ϕd ρ
δ

)δ
. (7)

Theorem 5. [Bergeron et al.]Letϕ(t) = ϕ0 + · · ·+ϕdtd with ϕ0 > 0, ϕd > 0, ϕk ≥ 0 for 0 < k < d, be a
polynomial degree function with degree d≥ 2. Then in a complex neighbourhood ofρ, the solution T(z)
is of the form

T(z) =
1

∆(z)
H

(

∆(z)
)

, where ∆(z) = η
(

1− z
ρ

)δ
, (8)

and H(t) = ∑k≥0hktk is analytic at t= 0, with h0 = 1.

Via singularity analysis one gets then in the aperiodic case immediately the asymptotic behaviour of the
coefficientsTn. If the degree generating functionsϕ(t) has periodq≥ 2 one hasq dominant singularities,
and their contributions have to be added. This leads to an extra factorq in the formula (9) as stated in the
next theorem.

Theorem 6. [Bergeron et al.] Let T be a polynomial variety associated with the degree generating
functionϕ(t) = ϕ0 + · · ·+ϕdtd, ϕ0 > 0, ϕd > 0, ϕk ≥ 0 for 0 < k < d. The quantities Tn of elements ofT
with size n satisfy for d≥ 2:

Tn

n!
=

q
ηΓ(δ)

ρ−nn−1+δ
(

1+O
(

n−2δ)
)

. (9)

2.2 Outline of the generating functions approach for Xn,p and Yn,p

We will start now by giving a generating functions approach to obtain the results for the random variables
Xn,p andYn,p stated in Theorem 1 and Theorem 2. To do this, we introduce the generating functions

G(z,u,v) = ∑
n≥0, p≥0,m≥0

P{Xn,p = m}Tn

(

n
p

)

zn

n!
upvm, (10)

F(z,u,v) = ∑
n≥0, p≥0,m≥0

P{Yn,p = m}Tn

(

n
p

)

zn

n!
upvm. (11)

If we take the recursive generation of the simple families of increasing trees into consideration, we can
translate these recurrences into equations for the corresponding generating functions. This gives for the
generating function of the ancestor-tree size the non-linear first order differential equation

∂
∂z

G(z,u,v) = v(1+u)ϕ
(

G(z,u,v)
)

+(1−v)ϕ
(

T(z)
)

, G(0,u,v) = 0. (12)
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The derivative w. r. t.z in the left side of this equation reflects the marking of the root with label 1; in the
right side of this equation the factorv reflects the counting of the root, regardless whether the root is one
of the chosen nodes or not (which leads to a factor 1+u). But in the casep = 0, where we do not select
any node, the root must not be counted. Thus we have to add the stated correction term.

The parameters “Steiner distance” and “ancestor-tree size” are closely related; differences occur only if
all selected nodes are hanging on the same subtree. One gets by translating the recursive generation of the
simple families of increasing trees a linear first order differential equation that connects both generating
functions:

∂
∂z

F(z,u,v) =

ϕ′(T(z)
)

F(z,u,v)+
∂
∂z

G(z,u,v)−vϕ′(T(z)
)

G(z,u,v)− (1−v)ϕ′(T(z)
)

T(z), (13)

with inital valueF(0,u,v) = 0.
Essential in our analysis will be the knowledge of the asymptotic behaviour of the coefficients

Gp(z,v) := p![up]G(z,u,v) resp.Fp(z,v) := p![up]F(z,u,v) near the dominant singularityz= ρ uniformly
in a neighbourhood ofv = 1. These singular expansions will be given in the formulæ (23) resp. (46).
To get (23) we will “pump out” the main term and the order of the remainder term ofGp(z,v) from the
differential equation (12) by induction, where we have to solve a first-order differential equation in every
induction step. This is done in the Subsections 3.1-3.4. Using singularity analysis, we can translate this ex-
pansion ofGp(z,v) into an asymptotic formula for the moment generating function∑m≥0P{Xn,p = m}ems

in a neighbourhood ofs= 0 for fixed p andn → ∞. To obtain the stated Gaussian limiting distribution
result (Theorem 1), we can apply a central limit theorem (the so called quasi power theorem, which is due
to Hwang, see [9]), that is very powerful in particular when dealing with combinatorial structures; this is
done in Subsection 3.5.

Since the generating functions for the quantities ancestor-tree size and Steiner distance are closely re-
lated by a first order differential equation, we can translate the asymptotic expansion around the dominant
singularityz= ρ of Gp(z,v) (given by equation (23)) into the asymptotic expansion (46) ofFp(z,v), which
will be established in Subsection 4.1. From this expansion, we obtain also an asymptotic formula for the
moment generating function∑m≥0P{Yn,p = m}ems and the stated normal convergence result (Theorem 2)
follows by applying the quasi power theorem; this is done in Subsection 4.2.

For computing the second order termscp resp. dp in the asymptotic expansion of the expectation
resp. of the variance ofXn,p, we will consider in Subsection 3.6 the coefficients of the main term in the
expansion ofGp(z,v) in more detail. Via generating functions, we can solve the recurrence equation that
appears, at least in principle, and obtain a formula for thecp’s, as defined in Theorem 1. This formula is
obtained in Subsection 3.7 and given as Theorem 13 (with more effort, one could also obtain a formula for
dp, but this is omitted here). Due to the close relation betweenXn,p andYn,p, we obtain in Subsection 4.3
as Corollary 14 a formula for ˜cp, as defined in Theorem 2.

The quasi power theorem as proven in [9], which we will apply to our problem, is stated below for the
reader’s convenience.

Theorem 7. [H. K. Hwang] Let {Xn}n≥1 be a sequence of integral random variables. Suppose that the
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moment generating function satisfies the asymptotic expression

Mn(s) := E
(

eXns) = ∑
m≥0

P{Xn = m}ems= eHn(s)(1+O(κ−1
n )

)

,

theO–term being uniform for|s| ≤ σ, s∈ C, σ > 0, where

(i) Hn(s) =U(s)φ(n)+V(s), with U(s) and V(s) analytic for|s| ≤ σ and independent of n; U′′(0) 6= 0,

(ii) φ(n) → ∞,

(iii) κn → ∞.

Under these assumptions, the distribution of Xn is asymptotically Gaussian with the given convergence
rate in the Kolmogorov metric:

sup
x∈R

∣

∣

∣

∣

∣

P

{

Xn−E(Xn)
√

V(Xn)
≤ x

}

−Φ(x)

∣

∣

∣

∣

∣

= O

(

1
κn

+
1

√

φ(n)

)

.

Moreover, the mean and the variance of Xn satisfy

E(Xn) = U ′(0)φ(n)+V ′(0)+O(κ−1
n ), V(Xn) = U ′′(0)φ(n)+V ′′(0)+O(κ−1

n ).

Throughout this paper, we will use the following abbreviations for the rising factorialsxn := x(x+
1) · · ·(x+ n− 1), the falling factorialsxn := x(x− 1) · · ·(x− n+ 1) and the harmonic numbersHn :=
∑1≤k≤n

1
k . We will also use the notationsDu for the differential operator w. r. t.u andNu for the operator

that evaluates atu = 0.

3 The ancestor-tree size
3.1 Recurrences for the generating functions Gp(z,v)

As already pointed out in Subsection 2.2 the main step in the proof of Theorem 1 is a thorough analysis
of the asymptotic behaviour of the functions

Gp(z,v) :=
∂p

∂up G(z,u,v)

∣

∣

∣

∣

u=0
= NuDp

uG(z,u,v) = p![up]G(z,u,v) (14)

near the dominant singularityz= ρ uniformly in a neighbourhood ofv = 1.
Here we start our analysis by describing how one can obtain the functionsGp(z,v) recursively. It

follows immediately from the definition ofG(z,u,v), that G0(z,v) = G(z,0,v) = T(z). The functions
Gp(z,v), for p ≥ 1, will be obtained recursively. Differentiating equation (12)p times w. r. t. u and
evaluating atu = 0 gives forp≥ 1 that

∂
∂z

NuDp
uG(z,u,v) = vNuDp−1

u ϕ
(

G(z,u,v)
)

+vNuDp
uϕ

(

G(z,u,v)
)

.
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If we denote byϕ(L)(t) theL-th derivative ofϕ(t), it also holds forp≥ 1 that

NuDp
uϕ(L)

(

G(z,u,v)
)

= NuDp−1
u

(

ϕ(L+1)
(

G(z,u,v)
)

DuG(z,u,v)
)

=
p−1

∑
l=0

(

p−1
l

)

NuDl
u

(

ϕ(L+1)
(

G(z,u,v)
)

)

NuDp−l
u G(z,u,v)

= ϕ(L+1)
(

T(z)
)

Gp(z,v)+
p−1

∑
l=1

(

p−1
l

)

NuDl
u

(

ϕ(L+1)
(

G(z,u,v)
)

)

Gp−l (z,v).

(15)

Using (3), we get that the functionsGp(z,v) satisfy forp≥ 1 the differential equation

∂
∂z

Gp(z,v) = v
ϕ′(T(z)

)

T ′(z)

ϕ
(

T(z)
) Gp(z,v)

+vNuDp−1
u ϕ

(

G(z,u,v)
)

+v
p−1

∑
l=1

(

p−1
l

)

NuDl
u

(

ϕ′(G(z,u,v)
)

)

Gp−l (z,v),

(16)

with initial valuesGp(0,v) = 0. By solving this first-order linear differential equation, we get forp≥ 1
equations, which define theGp(z,v) recursively, where the auxiliary functionsDuNl

uϕ(L)
(

G(z,u,v)
)

for
1≤ l < p appear, as defined by (15):

Gp(z,v) = v(T ′(z))v ×

×
Z z

t=0

[

NuDp−1
u ϕ

(

G(t,u,v)
)

+
p−1

∑
l=1

(

p−1
l

)

NuDl
u

(

ϕ′(G(t,u,v)
)

)

Gp−l (t,v)

]

(

T ′(t)
)−v

dt. (17)

3.2 Analyticity of the functions Gp(z,v)

In order to prove the analyticity of the functionsGp(z,v) within the analytic domainD of T(z) (which
will be done in Lemma 8) it is necessary to show thatT ′(z) 6= 0 for all zwithin this domainD. But if there
would exist aκ ∈ D such thatT ′(κ) = 0, we would get by (3), thatϕ

(

T(κ)
)

= 0 holds as well. Using the
integral representation (4) and expanding the polynomialϕ(t) aroundT(κ),

ϕ(t) = a1(t −T(κ))+ · · ·+ad(t −T(κ))d,

one gets immediately that the integral is unbounded:

|κ| =
∣

∣

∣

∣

Z T(κ)

t=0

dt
ϕ(t)

∣

∣

∣

∣

= ∞.

ThusT ′(z) 6= 0 for z∈ D and therefore the functions
(

T ′(z)
)v

resp.
(

T ′(z)
)−v

are for fixedv also analytic
for z∈ D.

Lemma 8. The functions Gp(z,v) and NuDp
uϕ(L)

(

G(z,u,v)
)

are for p≥ 0, 0 ≤ L ≤ d− 1 and fixed v
analytic within the domain z∈ D where T(z) is analytic. Their dominant singularities are the dominant
singularities of T(z) and are thus located at z= ρ in the aperiodic case, resp. by z= ρe2πim/q, 0≤ m< q,
if ϕ(t) has period q.
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Proof. We start by considering

G0(z,v) = NuG(z,u,v) = T(z) and Nuϕ(L)
(

G(z,u,v)
)

= ϕ(L)
(

T(z)
)

=
d

∑
k=L

ϕkk
LTk−L(z),

in which instance we know from Theorem 4 that the lemma is true. Moreover, we get that

Nuϕ(d)
(

G(z,u,v)
)

= ϕdd!.

Using the recursive description (17) of the functionsGp(z,v), we will show the lemma forp ≥ 1
by induction. We assume thus, that the lemma is forp ≥ 1 already shown for allGl (z,v) and
NuDl

uϕ(L)
(

G(z,u,v)
)

with 0 ≤ l < p and 0≤ L ≤ d− 1. SinceT ′(z) 6= 0 for z∈ D, it follows imme-
diately that the integrand in the representation ofGp(z,v) as given by (17) is analytic in the considered
domainD. The dominant singularities are the dominant singularities ofT ′(z) and thus ofT(z). It follows
then that the lemma is also true forGp(z,v).

Once the lemma is proven forGp(z,v), we can use for 0≤ L ≤ d− 1 the recursive description of
NuDp

uϕ(L)(G(z,u,v)) stated as equation (15), to show that the lemma is also true for these auxiliary func-
tions. Moreover, one gets forp≥ 1 that

NuDp
uϕ(d)

(

G(z,u,v)
)

= 0.

3.3 Singular behaviour of G1(z,v)

The next lemma describes the asymptotic behaviour ofG1(z,v) nearz= ρ.

Lemma 9. G1(z,v) has for fixed v,|1−v| ≤ σ andσ small enough in a neighbourhood of the dominant
singularity z= ρ the expansion

G1(z,v) = α1(v)g1
(

∆(z),v
)

(

1− z
ρ

)−(1+δ)v
+g2

(

∆(z),v
)

(

1− z
ρ

)−δ
,

with g1(0,v) = 1, and where g1(t,v) and g2(t,v) are for fixed v with|1−v| ≤ σ, σ small enough, analytic
around t= 0. Moreover,α1(v) is analytic for v with|1−v| ≤ σ, σ small enough, and given by

α1(v) = v
( δ

ρη

)v
C(v), with C(v) =

Z ρ

t=0

(

T ′(t)
)1−v

dt.

Proof. We start with the integral representation

G1(z,v) = v
(

T ′(z)
)v

Z z

t=0

(

T ′(t)
)1−v

dt, (18)

which is obtained from (17).

From Theorem 5 we get viaT ′(z) = − ∆′(z)
∆(z)2

[

H
(

∆(z)
)

−∆(z)H ′(∆(z)
)

]

, the local expansion

T ′(z) =
δ

ρη

(

1− z
ρ

)−1−δ
H̃

(

∆(z)
)

, (19)
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whereH̃(t) := H(t)− tH ′(t) = ∑k≥0hk(1− k)tk. ThusH̃(t) = ∑k≥0 h̃ktk is analytic aroundt = 0 with
h̃0 = 1. From this expansion, we get in a neighbourhood ofz= ρ the expansions

(

T ′(z)
)1−v

=
( δ

ρη

)1−v(

1− z
ρ

)−(1+δ)(1−v)
Ĥ

(

∆(z),v
)

, (20)

(

T ′(z)
)v

=
( δ

ρη

)v(

1− z
ρ

)−(1+δ)v
Ȟ

(

∆(z),v
)

, (21)

with functionsĤ(t,v) = ∑k≥0 ĥk(v)tk andȞ(t,v) = ∑k≥0 ȟk(v)tk, that are for fixedv with |1− v| ≤ σ, σ
small enough, analytic aroundt = 0 with ĥ0(v) = 1 andȟ0(v) = 1.

Next, we consider the integral
Z z

t=0

(

T ′(t)
)1−v

dt =
Z ρ

t=0

(

T ′(t)
)1−v

dt−
Z ρ

t=z

(

T ′(t)
)1−v

dt. (22)

We want to show that the first part of equation (22),

C(v) :=
Z ρ

t=0

(

T ′(t)
)1−v

dt,

is an analytic function ofv in a neighbourhood ofv = 1. This is not completely obvious in advance, since
T ′(z) is not analytic atz= ρ. We will consider the coefficients

cn :=
∂n

(
R ρ

t=0(T
′(t))1−vdt

)

∂vn

∣

∣

∣

∣

v=1
= (−1)n

Z ρ

t=0

(

logT ′(t)
)n

dt

in the expansionC(v) = ∑n≥0
cn
n! (v−1)n and show that they will not grow too fast. We chooseε > 0 small

enough, such that the expansion ofT ′(z) as given by (19) holds for|1−z/ρ| ≤ ε and write

Z ρ

t=0

(

logT ′(t)
)n

dt =
Z ρ(1−ε)

t=0

(

logT ′(t)
)n

dt+
Z ρ

t=ρ(1−ε)

(

logT ′(t)
)n

dt.

SinceT ′(z) 6= 0 in the domainD, logT ′(z) is bounded in the interval[0,ρ(1− ε)]. We defineM0 :=
maxz∈[0,ρ(1−ε)] logT ′(z) and get

∣

∣

∣

∣

Z ρ(1−ε)

t=0

(

logT ′(t)
)n

dt

∣

∣

∣

∣

≤ ρ(1− ε)Mn
0.

From the expansion (19), we get

logT ′(z) = log
( δ

ρη

)

+ logH̃(∆(z))− (1+δ) log(1−z/ρ).

DefiningM1 := maxz∈[ρ(1−ε),ρ]

(

log
( δ

ρη
)

+ logH̃(∆(z))
)

, we obtain forz∈ [ρ(1− ε),ρ]:

| logT ′(z)| ≤ M1− (1+δ) log(1−z/ρ),
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and with the substitutionx = 1− t/ρ:
∣

∣

∣

∣

Z ρ

t=ρ(1−ε)

(

logT ′(t)
)n

dt

∣

∣

∣

∣

≤ ρ
Z ε

x=0
(M1− (1+δ) logx)ndx.

Since
Z ε

0
(logx)ndx= ε

n

∑
k=0

(−1)k nk (logε)n−k,

we get further
∣

∣

∣

∣

Z ρ

t=ρ(1−ε)

(

logT ′(t)
)n

dt

∣

∣

∣

∣

≤ ρ
n

∑
j=0

(

n
j

)

Mn− j
1 (−1) j(1+δ) jε

j

∑
k=0

jk(logε) j−k(−1)k

= ρεMn
1

n

∑
k=0

(

1+δ
M1

)k n!
(n−k)!

n−k

∑
j−k=0

(

n−k
j −k

)

(−1) j−k
(

(1+δ) logε
M1

) j−k

= ρεMn
1

(

1− (1+δ) logε
M1

)n n

∑
k=0

n!
(n−k)!

(

1+δ
M− (1+δ) logε

)k

.

Since 1+δ
M1−(1+δ) logε < 1, for ε small enough, we obtain the bound

∣

∣

∣

∣

Z ρ

t=ρ(1−ε)

(

logT ′(t)
)n

dt

∣

∣

∣

∣

≤ ρε(n+1)! (M1− (1+δ) logε)n.

Thus we found that
cn ≤ ρε(n+1)! (M1− (1+δ) logε)n +ρεMn

0,

and this gives by majorisation, thatC(v) converges for|v| < 1
M1−(1+δ) logε and is analytic therein.

For the second part in (22) we obtain
Z ρ

t=z

(

T ′(t)
)1−v

dt =
Z ρ

t=z

( δ
ρη

)1−v(

1− t
ρ

)−(1+δ)(1−v)
Ĥ(∆(t),v)dt

=
( δ

ρη

)1−v Z ρ

t=z
∑
k≥0

ĥk(v)ηk
(

1− t
ρ

)δk−(1+δ)(1−v)
dt

=
( δ

ρη

)1−v

∑
k≥0

ĥk(v)ηk
−ρ

(

1− t
ρ
)δk−(1+δ)(1−v)+1

ρk− (1+δ)(1−v)+1

∣

∣

∣

∣

∣

ρ

t=z

=
( δ

ρη

)1−v ρ
1− (1+δ)(1−v)

(

1− z
ρ

)1−(1+δ)(1−v)

∑
k≥0

ĥk(v)
(

1− (1+δ)(1−v)
)

1− (1+δ)(1−v)+δk

(

η
(

1− z
ρ

))k

=
( δ

ρη

)1−v ρ
1− (1+δ)(1−v)

(

1− z
ρ

)1−(1+δ)(1−v)
H̀(∆(z),v),

with

H̀(t,v) := ∑
k≥0

ĥk(v)
(

1− (1+δ)(1−v)
)

1− (1+δ)(1−v)+δk
tk.
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It follows again by majorisation, which is omitted here, thatH̀(t,v) is for fixedv with |1−v| ≤ σ, σ small
enough, in a neighbourhood oft = 0 an analytic function, sincêH(t,v) is analytic there.

Combining these results, we get from (18) the expansion

G1(z,v) =
(

1− z
ρ

)−(1+δ)v
v
( δ

ρη

)v
C(v)Ȟ(∆(z),v)

+
(

1− z
ρ

)−δ
(

− vδ
η(1− (1+δ)(1−v))

)

Ȟ(∆(z),v)H̀(∆(z),v).

Setting

α(v) := v
( δ

ρη

)v
C(v), g1(∆(z),v) := Ȟ(∆(z),v),

g2(∆(z),v) := − vδ
η(1− (1+δ)(1−v))

Ȟ(∆(z),v)H̀(∆(z),v),

the lemma is proven.

3.4 Establishing the singular behaviour of Gp(z,v) by induction
The crucial step in proving the normal convergence theorem in our approach is the description of the
behaviour of the functionsGp(z,v) in a neighbourhood ofv = 1 around the dominant singularityz= ρ.
This is given in the next lemma.

Lemma 10. The functions Gp(z,v) have for for p≥ 1 and |1− v| ≤ σ, σ small enough, the following
local expansions around the dominant singularity z= ρ:

Gp(z,v) = αp(v)
(

1− z
ρ

)−pdδv+(p−1)δ
+O

(

(

1− z
ρ

)−pdδ+pδ−(3p−2)dδσ
)

, (23)

and for p= 0:

G0(z,v) = α0(v)
(

1− z
ρ

)−δ
+O (1) .

The auxiliary functions NuDp
uϕ(L)

(

G(z,u,v)
)

have for p≥ 1, 0 ≤ L ≤ d− 1 and |1− v| ≤ σ, σ small
enough, the following local expansions around the dominant singularity z= ρ:

NuDp
uϕ(L)

(

G(z,u,v)
)

= βp,L(v)
(

1− z
ρ

)−pdδv−(d−L−p)δ
+O

(

(

1− z
ρ

)−pdδ−(d−1−L−p)δ−(3p−2)dδσ
)

,

and for p= 0:

Nuϕ(L)
(

G(z,u,v)
)

= β0,L(v)
(

1− z
ρ

)−(d−L)δ
+O

(

(

1− z
ρ

)−(d−1−L)δ
)

.

Moreover we have
NuDp

uϕ(d)
(

G(z,u,v)
)

= βp,d(v).
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The coefficientsαp(v) resp.βp,L(v) are for |1−v| ≤ σ analytic functions which are given by the following
system of recurrences:

αp(v) =
vρ

(p−1)dδv− (p−1)δ

p−1

∑
l=1

(

p−1
l

)

βl ,1(v)αp−l (v), for p≥ 2,

βp,L(v) =
p−1

∑
l=0

(

p−1
l

)

βl ,L+1(v)αp−l (v), for 0≤ L ≤ d−1 and p≥ 1,

(24)

where the initial values are given by

βp,d(v) =

{

ϕdd!, p = 0,

0, p≥ 1,
β0,L(v) =

ϕddL

ηd−L , for 0≤ L ≤ d−1,

α0(v) =
1
η

, α1(v) = v
( δ

ρη

)v Z ρ

t=0

(

T ′(t)
)1−v

dt.

(25)

Proof. First we will treat the special cases. SinceG0(z,v) = T(z) resp.
Nuϕ(L)

(

G(z,u,v)
)

= ϕ(L)(T(z)), we get from Theorem 5

G0(z,v) =
1

∆(z)
H(∆(z)) =

1
η

H(∆(z))
(

1− z
ρ

)−δ
=

1
η

(

1− z
ρ

)−δ
+O (1) ,

and for 0≤ L ≤ d−1,

Nuϕ(L)(G(z,u,v)) = ϕ(L)(T(z)) =
d

∑
k=L

ϕkk
L Tk−L(z)

=
d

∑
k=L

ϕkk
L 1

ηk−L H(∆(z))k−L
(

1− z
ρ

)−δ(k−L)

=
ϕddL

ηd−L

(

1− z
ρ

)−δ(d−L)
+O

(

(

1− z
ρ

)−δ(d−1−L)
)

.

Further it follows forL = d that

NuDp
uϕ(d)

(

G(z,u,v)
)

= NuDp
uϕdd! =

{

ϕdd!, p = 0,

0, p≥ 1.

This gives the initial values

α0(v) =
1
η

, β0,L(v) =
ϕddL

ηd−L for 0≤ L ≤ d−1, βp,d(v) =

{

ϕdd!, p = 0,

0, p≥ 1.

Of course these functions are constants and therefore analytic.
Further it follows from Lemma 9 that the stated expansion holds forG1(z,v). We only use the fact that

for v with |1−v| ≤ σ andσ small enough, it holds in a neighbourhood ofz= ρ:
(

1− z
ρ

)av
= O

(

(

1− z
ρ

)a(1−σ)
)

for a > 0, resp.
(

1− z
ρ

)av
= O

(

(

1− z
ρ

)a(1+σ)
)

for a < 0.
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This gives

G1(z,v) = α1(v)
(

1− z
ρ

)−dδv
+O

(

(

1− z
ρ

)−pdδ+pδ−dδσ
)

,

with α1(v) = v
( δ

ρη
)v R ρ

t=0(T
′(t))1−vdt. It was proven in Lemma 9 thatα1(v) is analytic for|1−v| ≤ σ.

Since
NuDuϕ(L)

(

G(z,u,v)
)

= ϕ(L+1)
(

T(z)
)

G1(z,v),

we obtain for 0≤ L ≤ d−1:

NuDuϕ(L)
(

G(z,u,v)
)

= β1,L(v)
(

1− z
ρ

)−dδv−(d−1−L)δ
+O

(

(

1− z
ρ

)−dδ−(d−2−L)δ−dδσ
)

,

with β1,L(v) = β0,L+1(v)α1(v). Therefore the functionsβ1,L(v) are also analytic for|1− v| ≤ σ, and the
lemma holds forp = 1.

In the following we will use the expansions

(

T ′(z)
)−v

=
( δ

ρη

)−v(

1− z
ρ

)dδv
+O

(

(

1− z
ρ

)(d+1)δ−dδσ
)

and

(

T ′(z)
)v

=
( δ

ρη

)v(

1− z
ρ

)−dδv
+O

(

(

1− z
ρ

)−(d−1)δ+dδσ
)

,

which follow from (21).
We will now use induction to show the lemma for generalp, where we assume that the lemma is already

proven for 0≤ l < p with p≥ 2. To do this, we have to examine first the integrand

I(t,v) :=

[

NuDp−1
u ϕ

(

G(t,u,v)
)

+
p−1

∑
l=1

(

p−1
l

)

NuDl
u

(

ϕ′(G(t,u,v))
)

Gp−l (t,v)

]

(

T ′(t)
)−v

near the dominant singularityt = ρ in the integral representation given by equation (17). By using the
induction hypothesis, we obtain then for|1−v| ≤ σ in a neighbourhood oft = ρ the expansion

I(t,v) =
( δ

ρη

)−v p−1

∑
l=1

(

p−1
l

)

βl ,1(v)αp−l (v)
(

1− t
ρ

)−(p−1)dδv+(p−d)δ

+O

(

(

1− t
ρ

)−pdδ+(p+1)δ−(3p−3)dδσ
)

. (26)

To obtain a suitable bound for the remainder term of the integral, we will use the following fact. Given
an analytic functionf (z) with its only dominant singularity atz= ρ, which satisfies forα < −1 in the
indented diskD(φ0,τ) := {z : |z− ρ| ≤ τ, |Arg(z− ρ)| ≥ φ0} for τ > 0 and 0< φ0 < π/2 the bound
f (z) = O

((

1− z
ρ
)α)

. Then forz∈ D(φ0,τ) the bound

Z

γ
f (t)dt = O

(

(

1− z
ρ

)α+1
)

,
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holds, where the contourγ is for z∈ D(φ0,τ) with |z−ρ|= r ≤ τ and Arg(z−ρ) = φwith |φ| ≥ φ0 defined
by γ := γ1 + γ2, γ1 := [ρ− τ,ρ− r], and whereγ2 := {t : |t| = r, Arg(t −ρ) ∈ [−π,φ]} for φ≤ 0, resp.
γ2 := {t : |t| = r, −Arg(t −ρ) ∈ [−π,−φ]} for φ> 0.

Next we consider the integral
R z

t=0 I(t,v)dt, where we split the integration path into parts as described
below. The quantityτ is chosen small enough such that above expansion (26) for the integrandI(t,v)
holds. We obtain

Z z

t=0
I(t,v)dt =

Z ρ(1−τ)

t=0
I(t,v)dt

+
( δ

ρη

)−v p−1

∑
l=1

(

p−1
l

)

βl ,1(v)αp−l (v)
Z z

t=ρ(1−τ)

(

1− t
ρ

)−(p−1)dδv+(p−d)δ
dt

+
Z

γ
O

(

(

1− t
ρ

)−pdδ+(p+1)δ−(3p−3)dδσ
)

dt

=
( δ

ρη

)−v p−1

∑
l=1

(

p−1
l

)

ρβl ,1(v)αp−l (v)

(p−1)dδv− (p−d)δ−1

(

1− z
ρ

)−(p−1)dδv+(p−d)δ+1

+Ĉ(v)+O

(

(

1− z
ρ

)−pdδ+(p+1)δ−(3p−3)dδσ+1
)

,

whereĈ(v) subsumes the contributions

Z ρ(1−τ)

t=0
I(t,v)dt

−
( δ

ρη

)−v p−1

∑
l=1

(

p−1
l

)

ρβl ,1(v)αp−l (v)

(p−1)dδv− (p−d)δ−1

(

1− ρ(1− τ)
ρ

)−(p−1)dδv+(p−d)δ+1
.

Furthermore,Ĉ(v) is uniformly bounded for|1−v| ≤ σ, σ small enough.
This leads thus to the expansion

Gp(z,v) = v
(

T ′(z)
)v

Z z

t=0
I(t,v)dt

=

[

v
( δ

ρη

)v(

1− z
ρ

)−dδv
+O

(

(

1− z
ρ

)−(d−1)δ−dδσ
)]

Z z

t=0
I(t,v)dt

= αp(v)
(

1− z
ρ

)−pdδv+(p−1)δ
+O

(

(

1− z
ρ

)−pdδ+pδ−(3p−2)dδσ
)

,

with

αp(v) =
vρ

(p−1)dδv− (p−1)δ

p−1

∑
l=1

(

p−1
l

)

βl ,1(v)αp−l (v), for p≥ 2.

Since it follows from the induction hypothesis that the appearing functionsβl ,1(v), αp−l (v) are analytic
for |1−v| ≤ σ, and there the denominator(p−1)dδv− (p−1)δ does not vanish, we obtain thatαp(v) is
also analytic.
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Once the expansion is proven forGp(z,v), we can use equation (15) to obtain the corresponding results
for NuDp

u
(

ϕ(L)(G(z,u,v))
)

. We obtain for 0≤ L ≤ d−1 andp≥ 2 (but it turns out that it holds also for
p = 1):

NuDp
u

(

ϕ(L)(G(z,u,v))
)

= βp,L(v)
(

1− z
ρ

)−pdδv−(d−L−p)δ
+O

(

(

1− z
ρ

)−pdδ−(d−1−L−p)δ−(3p−2)dδσ
)

,

where

βp,L(v) =
p−1

∑
l=0

(

p−1
l

)

βl ,L+1(v)αp−l (v).

Therefore the functionsβp,L(v) are also analytic and the lemma is proven.

3.5 Applying the quasi power theorem
From this local expansion of the generating functionsGp(z,v) around the dominant singularityz= ρ, as
given by (23), we obtain immediately via singularity analysis (see [6]) the expansion for the coefficients:

[zn]Gp(z,v) = ∑
m≥0

P{Xn,p = m} Tn

n!
npvm

=
qαp(v)npdδv−(p−1)δ−1

Γ(pdδv− (p−1)δ)ρn +O
(

npdδ−pδ−1+(3p−2)dδσ
)

.

(27)

The remainder term holds uniformly for|1− v| ≤ σ, σ small enough. As remarked in the description of
Theorem 6, one has to add in the periodic caseq ≥ 2 the contributions of theq dominant singularities,
which leads to the factorq in formula (27).

Using the asymptotic behaviour of the numbersTn as given by equation (9), we obtain by choosingσ
small enough the expansion

∑
m≥0

P{Xn,p = m}vm =
αp(v)ηΓ(δ)

Γ(pdδv− (p−1)δ)
npdδ(v−1)

(

1+O
(

n−δ(1−ε))
)

,

resp. for the moment generating function for|s| small enough,

∑
m≥0

P{Xn,p = m}ems= eUp(s) logn+Vp(s)
(

1+O
(

n−δ(1−ε))
)

, (28)

with

Up(s) = pdδ(es−1) and Vp(s) = log

(

αp(es)ηΓ(δ)

Γ(pdδes− (p−1)δ)

)

. (29)

We obtain
U ′

p(0) = pdδ and U ′′
p(0) = pdδ,

and get by applying the quasi power theorem (Theorem 7) the stated normal convergence result, Theo-
rem 1. The proof thatVp(s) is actually an analytic function in a neighbourhood ofs= 0, which is necessary
to apply the quasi power theorem, will follow in Subsection 4.1, when we examine the leading coefficients
αp(v). We will show thatαp(1) > 0 for p≥ 1 (see equation 36), and sinceαp(v) is analytic aroundv= 1,
this is sufficient for the analyticity ofVp(s) arounds= 0.
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3.6 Examining the leading coefficients in the expansion of Gp(z,v)

From the quasi power theorem follows also that the constantscp resp.dp, which denote the second order
terms in the expansion of the expectationE(Xn,p) resp. the varianceV(Xn,p) in Theorem 1, are given by

cp = V ′
p(0) and dp = V ′′

p (0). (30)

Equation (29) shows then, that it is (apart fromαp(1)) necessary to computeα′
p(1) to obtaincp, resp.

α′
p(1) andα′′

p(1) to obtaindp. Since the recurrence (24) for theαp(v) is quite involved, we will describe
in the next lemma how to find the leading coefficientsαp(v) by means of generating functions.

Lemma 11. The generating functions A(x,v) := ∑p≥0αp(v) xp

p! of the leading coefficientsαp(v), that are
given by(24), satisfy the differential equation

x
∂
∂x

A(x,v) =
1

(dv−1)η

(

vηdAd(x,v)−ηA(x,v)− (v−1)
)

, with A(0) =
1
η

. (31)

Proof. To prove this lemma, we also define for 0≤ L ≤ d the auxiliary functionsBL(x,v) :=
∑p≥0βp,L(v) xp

p! of the leading coefficientsβp,L(v). We can then translate the recurrences (24) and ini-
tial values (25) into the following system of differential equations:

x
∂2

∂x2 A(x,v) =
vρ

(dv−1)δ
(

B1(x,v)−B1(0,v)
) ∂

∂x
A(x,v),

∂
∂x

BL(x,v) = BL+1(x,v)
∂
∂x

A(x,v), for 0≤ L ≤ d−1,

Bd(x,v) = ϕdd!, A(0,v) =
1
η

,
∂
∂x

A(x,v)
∣

∣

∣

v=1
= α1(v), BL(0,v) =

ϕddL

ηd−L , for 0≤ L ≤ d.

Next we want to show by induction that

Bd−k(x,v) =
ϕdd!

k!
Ak(x,v) for 0≤ k≤ d−1. (32)

Fork = 0 the statement is satisfied. If we assume that it is already proven for allBd−l (x,v) with 0≤ l < k
andk > 0, we obtain

∂
∂x

Bd−k(x,v) =
ϕdd!

(k−1)!
Ak−1(x,v)

∂
∂x

A(x,v) =
ϕdd!

k!
∂
∂x

(

Ak(x,v)
)

,

and thus

Bd−k(x,v) =
ϕdd!

k!
Ak(x,v)+κ(v).

But plugging in the initial values forx = 0, we obtain

κ(v) = Bd−k(0,v)− ϕdd!
k!

Ak(0,v) =
ϕddd−k

ηk − ϕdd!
k!ηk = 0,

and (32) is proven.
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We thus obtain

x
∂2

∂x2 A(x,v) =
vρ

(dv−1)δ

(

ϕdd!
(d−1)!

Ad−1(x,v)− ϕdd
ηd−1

)

∂
∂x

A(x,v)

=
v

dv−1
ϕdρ

δ

(

∂
∂x

(

Ad(x,v)
)

− d
ηd−1

∂
∂x

A(x,v)

)

=
v

dv−1

(

ηd−1 ∂
∂x

(

Ad(x,v)
)

−d
∂
∂x

A(x,v)

)

,

where we used the definition ofη. By integration we obtain

x
∂
∂x

A(x,v)−A(x,v) =
v

dv−1

(

ηd−1Ad(x,v)−dA(x,v)
)

+κ(v). (33)

Settingx = 0 and taking the initial values into consideration, we obtain from this

κ(v) = − 1
η
− v

dv−1

(

ηd−1

ηd − d
η

)

=
−v+1

η(dv−1)
. (34)

Combining equations (33) and (34), we obtain the first-order differential equation stated in the lemma.

It is easy to verify (but also clear from prior considerations) that

A(x,1) =
1

η(1−x)δ , (35)

and thus

αp(1) = p![xp]A(x,1) =
δp

η
=

p!
η

(

p−1+δ
p

)

. (36)

For generald, we cannot expect to get a simple formula forA(x,v). But for the special cased = 2
(which covers e. g., binary increasing trees), we obtain

A(x,v) =
1
η

1− α1(v)ηz(1−v)
2v−1

1− α1(v)ηzv
2v−1

,

and further forp≥ 1

αp(v) = p!
(2v−1)δ

vϕ2ρ

(

vρϕ2

(2v−1)δ
α1(v)

)p

.

For binary increasing trees, we get withϕ(t) = (1+ t)2 eventually

αp(v) = p!
( v

2v−1

)2p−1
,

which was already computed in [15], to obtain the second order terms ofE(Xn,p) andV(Xn,p) for binary
search trees. Recall that binary search trees and binary increasing trees are isomorphic.
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3.7 Computing the second order term for E(Xn,p)

Although in general we will not be able to obtain a simple formula forA(x,v) as defined in Lemma 11, we
can use the differential equation (31) to computeα′

p(1) (in principle also forα′′
p(1), but this is not carried

out here), and thuscp in Theorem 1.

Lemma 12. The derivativesα′
p(1) of theαp(v) as defined by(24)are for p≥ 2 given by

α′
p(1) =

p!δ(1+δ)

η

(

p−1+δ
p−1

)

(Hp−1+δ−Hδ−Hp−1+1)− p!δ
η

(

p+δ
p

)

+ p!

(

p−1+δ
p−1

)

α′
1(1), (37)

with

α′
1(1) =

δ
η

+
δ
η

log
( δ

ρη

)

− δ
ρη

Z ∞

t=0

log(ϕ(t))
ϕ(t)

dt. (38)

Proof. We defineE1(x) := η ∂
∂xA(x,v)

∣

∣

∣

v=1
andE0(x) := ηA(x,1) = 1

(1−x)δ . We obtain then from equation

(31) the differential equation

(d−1)xE′
1(x) = (dEd−1

0 (x)−1)E1(x)+Ed
0 (x)−1−dxE′

0(x),

or

(d−1)xE′
1(x) =

d−1+x
1−x

E1(x)+
1

(1−x)1+δ −1− (1+δ)x

(1−x)1+δ , (39)

with E1(0) = 0 andE′
1(0) = ηα ′

1(1).
Solving (39) and plugging in the initial values, we obtain as solution

E1(x) =
x

(1−x)1+δ(d−1)

Z x

t=0

1− (1+δ)t − (1− t)1+δ

t2 dt+
ηα ′

1(1)x

(1−x)1+δ . (40)

Extracting coefficients leads forp≥ 2 to

[xp]
x

(1−x)1+δ(d−1)

Z x

t=0

1− (1+δ)t − (1− t)1+δ

t2 dt =
(−1)p−1

d−1

p−1

∑
l=1

(

1+δ
l +1

)( −1−δ
p−1− l

)

1
l
,

[xp]
ηα ′

1(1)x

(1−x)1+δ =

(

p+δ−1
p−1

)

ηα ′
1(1).

One can simplify the sum e. g. by establishing a recurrence, where one uses the Chu-Vandermonde
identity, and obtains forp≥ 2

p−1

∑
l=1

(

1+δ
l +1

)( −1−δ
p−1− l

)

1
l

= δ(1+δ)

(

p−1+δ
p−1

)

(Hp−1+δ−Hδ−Hp−1 +1)−δ
(

p+δ
p

)

.

This leads forp≥ 2 to the formula

α′
p(1) =

p!
η

[xp]E1(x)

=
p!δ(1+δ)

η

(

p−1+δ
p−1

)

(Hp−1+δ−Hδ−Hp−1 +1)− p!δ
η

(

p+δ
p

)

+ p!

(

p−1+δ
p−1

)

α′
1(1).
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SinceC(v) =
R ρ

t=0(T
′(t))1−vdt =

R ∞
T=0

(

ϕ(T)
)−v

dT, and thus

C′(v) = −
Z ∞

T=0

log(ϕ(T))

(ϕ(T))v dT,

we also obtain the stated formula forα′
1(1).

From (29) we get then immediately that the constantscp in Theorem 1 are given by

cp = V ′
p(0) =

α′
p(1)

αp(1)
− pdδΨ(p+δ), (41)

whereΨ(x) := (logΓ(x))′ denotes the digamma-function. With Lemma 12, Equation (36) and using

Ψ(p+δ) = Ψ(δ)+Hp−1+δ−Hδ +
1
δ
,

we obtain the following theorem.

Theorem 13. The second-order terms cp in the asymptotic expansion of the expectationsE(Xn,p) as stated
by Theorem 1 are for p≥ 1 given by

cp = p

(

log

(

δ
ρη

)

− 1
δ

Z ∞

t=0

log
(

ϕ(t)
)

ϕ(t)
dt

)

− pdδ
(

Ψ(δ)+Hp−1
)

+1− pd. (42)

4 The Steiner distance
4.1 Singular behaviour of the generating functions Fp(z,v)

Since the differential equation (13) connects the generating functionsF(z,u,v) andG(z,u,v), we obtain
also for

Fp(z,v) := NuDp
uF(z,u,v) = p![up]F(z,u,v)

a differential equation that linksFp(z,v) to theGp(z,v)’s, which were analysed in Section 3. Forp≥ 1,

∂
∂z

Fp(z,v) = ϕ′(T(z)
)

Fp(z,v)+
∂
∂z

Gp(z,v)−vϕ′(T(z)
)

Gp(z,v) (43)

holds. This differential equation has the solution

Fp(z,v) = T ′(z)
Z z

t=0

[

∂
∂t

Gp(t,v)−vϕ′(T(t)
)

Gp(t,v)

]

(

T ′(t)
)−1

dt. (44)

In order to use the asymptotic expansions forGp(z,v) as given by (23), we will integrate by parts and
use (3). We then get

Fp(z,v) = Gp(z,v)+(1−v)
Z z

t=0
Gp(t,v)

ϕ′(T(t))
ϕ(T(t))

dt. (45)

Now we can use (23) and obtain finally forp≥ 2 the asymptotic expansion

Fp(z,v) = αp(v)
(p−1)δ(dv−1)

pdδv− pδ−1

(

1− z
ρ

)−pdδv+(p−1)δ
+O

(

(

1− z
ρ

)−pdδ+pδ−(3p−2)dδσ
)

. (46)
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4.2 Applying the quasi power theorem

From the singular expansion (46) ofFp(z,v) we obtain again by using singularity analysis the following
asymptotic expansion for the coefficients:

∑
m≥0

P{Yn,p = m}vm =
γp(v)ηΓ(δ)

Γ(pdδv− (p−1)δ)
npdδ(v−1)

(

1+O
(

n−δ(1−ε))
)

, (47)

with

γp(v) = αp(v)
(p−1)δ(dv−1)

pdδv− pδ−1
, (48)

and whereαp(v) is the leading coefficient in the expansion ofGp(z,v) aroundz= ρ as defined in Section 3.
Since theαp(v) are for|1−v| ≤ σ, σ small enough, analytic functions (Lemma 10), and the denominator
pdδv− pδ−1 does not vanish forp≥ 2, it follows that theγp(v) are also analytic there.

This leads for|s| small enough to the following asymptotic expansion of the moment generating func-
tion of Yn,p:

∑
m≥0

P{Yn,p = m}ems= eŨp(s) logn+Ṽp(s)
(

1+O
(

n−δ(1−ε))
)

, (49)

with

Ũp(s) = pdδ(es−1) and Ṽp(s) = log

(

γp(es)ηΓ(δ)

Γ(pdδes− (p−1)δ)

)

, (50)

and whereγp(v) is given by (48).
By another application of the quasi power theorem, the normal convergence theorem (Theorem 2)

follows, since

Ũ ′
p(0) = Ũ ′′

p(0) = pdδ.

4.3 Computing the second order term for E(Yn,p)

To obtain the constants ˜cp = Ṽ ′
p(0) in the expansion of the expectationE(Yn,p) in Theorem 2, we use

equations (29) and (50) and get

Ṽp(s) = Vp(s)+ log

(

(p−1)δ(des−1)

pdδes− pδ−1

)

. (51)

Differentiating (51), we obtain the following corollary.

Corollary 14. The second-order terms̃cp in the asymptotic expansion of the expectationsE(Yn,p) as
stated by Theorem 2 are for p≥ 2 given by

c̃p = cp +
d

d−1
− pdδ

p−1
, (52)

where the formula for cp is given in Theorem 13.
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