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Observational theories are a generalization of first-order theories where two objects are observationally equal if they
cannot be distinguished by experiments with observable results. Such experiments, called contexts, are usually in-
finite. Therefore, we consider a special finite set of contexts, called cover-contexts, “covering” all the observable
contexts. Then, we show that to prove that two objects are observationally equal, it is sufficient to prove that they
are equal (in the classical sense) under these cover-contexts. We give methods based on rewriting techniques, for
constructing such cover-contexts for interesting classes of observational specifications.
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1 Introduction
A fundamental aim of formal specifications is to provide a rigorous basis to establish software correctness.
Intuitively, a program is correct w.r.t its initial specification if it satisfies all the properties required by this
specification.Behaviouralabstraction provides a suitable basis for a more adequate notion of correctness.
In a behavioural or observational theory, two objects are viewed as being identical if they cannot be
ditinguished by observable experiments. Thus, for proving the correctness of a program, behavioural (or
observational) concepts allow to abstract away from internal implementation details, and to focus only on
its observable behaviour.

For instance, in the field of object-oriented programming, an observable experiment consists of an ap-
plication of amethodthat returns certain visible attributes of that object. The actual implementation of the
object is not crucial as long as the visible attributes returned by certain methods (and the iterative applica-
tion of these methods) satisfy the program specification. When formalized using algebraic specifications,
method names map to a sorted signature and the observable experiments map to contexts (terms over the
signature with a “hole” for the invisible object) with visible sorts.

The idea that the semantics of a specification must describe the behaviour of an abstract datatype is
due to [Gut75]. A lot of work has been devoted to the semantical aspects of observability and provability
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of observational equivalence, see for example [BBK94, Rei95, JR97, HB99, GM99]. In the framework of
algebraic specifications, experiments with observable results are represented by particular terms called
observable contexts. The main difficulty when dealing with proofs of observational properties is that the
number of observable contexts is often infinite, and it had been shown in [Sch92] that there is no finite
axiomatization of the behavioural equality in first-order logic.

In the framework of initial algebras, an algorithm was given in [BBR98] for constructing a finite set
of contexts, that allows to describe the whole set of observable contexts. It applies to specifications
represented by a left-linear system. We consider this construction in a more general framework (the
semantic we use is not limited to only initial algebra), give more intuitions about it, and show that it
can be used by any first order theorem prover for proving observational properties. We call the contexts
obtainedcover-contexts. Then, to prove that two terms are observationally equal, it is sufficient to prove
that they are equal (in the classical sense) under these cover-contexts. We also show that the algorithm
applies to an interesting class of non left-linear (equational) specifications with observable sorts. Finally,
we consider the general case of non left-linear rewriting systems, we propose a procedure which outputs
a cover-context set when it terminates.

2 Related work
Hennicker [Hen91] has proposed an induction principle, calledcontext induction, which is a proof prin-
ciple for behavioural abstractions. A contextc is viewed as a particular term containing exactly one
variable; therefore, the subterm ordering defines a Noetherian relation on the set of observable contexts.
Consequently, the principle of structural induction induces a proof principle for properties of contexts of
observable sort, which is calledcontext induction. This approach provides a uniform proof method for the
verification of behavioural properties. It has been implemented in the system ISAR [BH93]. However in
concrete examples, this verification is a non trivial task and requires human guidance: the system often
needs a generalization of the current induction assertion before each nested context induction, so as to
achieve the proof.

Malcolm and Goguen [GM00] suggested doing coinduction proofs by first defining a relation, show-
ing it is a behavioural or hidden congruence, and then showing behavioural equivalence of two terms
by showing that they are congruent. This technique, which they call “hidden coinduction,” is easily au-
tomated only in certain cases where the specification satisfies additional strong restrictions. Note that
checking if a relation is a hidden congruence involves establishing observational equivalence. Moreover,
if the candidate relation is not a hidden congruence, then users have to find another candidate to complete
the proof. The same problems appear in the approach of Bidoit and Hennicker [BH96] where users have
to provide partial congruences.

Several other proof tools have been developed to aid coinductive proofs, but all of them require the
user to supply an appropriate relation which the system can then prove to be a bisimulation. In the work
of [DBG96], an automatic method is given to construct a bisimulation relation, however it uses heuristics
and can fail on some examples.

In [MF98], an algorithm is proposed to generate the contextual equality, which coincides with the
behavioural equivalence, by eliminating the redundant observational contexts using rewriting techniques.
However, this algorithm applies to specifications with only one hidden sort.
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3 Basic notions
We assume that the reader is familiar with the basic concepts of algebraic specifications [Wir90], term
rewriting and equational reasoning. A many sorted signatureΣ is a pair(S,F) whereS is a set of sorts
andF is a set of function symbols. We assume a partition ofF into two subsetsC andD of constructors
symbolsanddefined function symbols. Let X be a family of sorted variables and letT(F,X) be the set
of sorted terms. Letvar(t) denote the set of variables appearing int. A term is linear if all its variables
occur only once. Ifvar(t) is empty thent is a ground term. The set of all ground terms is also denoted
by T(F). A term in T(C,X) is called aconstructor term. Let A be an arbitrary non empty set, and let
FA = { fA| f ∈ F} such that if f is of arity n, then fA is a function fromAn to A. The pair(A,FA) is
called aΣ-algebra, andA is the carrier of the algebra. For sake of simplicity, we will writeA to denote
theΣ-algebra whenF andFA are non ambiguous. A substitutionη assigns terms of appropriate sorts to
variables. The domain ofη is denoted bydom(η). If t is a term, thentη denotes the application ofη
to t. If η replaces every variable by a ground term, thenη is a ground substitution. We denote by≡ the
syntactic equivalence between objects.

Let N∗ be the set of finite sequences of positive integers. For any termt, Pos(t) ⊆ N∗ denotes the set of
positions oft, and the expressiont/u denotes the subterm oft at positionu. The root position is denoted
by ε. The depth of a positionu, denoted by|u|, is the length of the corresponding sequence. We denote
by t(u) the symbol oft at positionu. A positionu in a termt is said to be a strict position ift(u) ∈ F . Let
u andv two positions, if there exists a positionw such that uw=v thenu ≺ v. We writet[s]u to indicate
that s is a subterm oft at positionu. We use also the notationt[s1, . . . ,sn] to indicate that the termt
contains the subtermss1, . . . ,sn. The depth of a termt is defined as follows:|t| = 0 if t is a constant or
a variable, otherwise,| f (t1, . . . , tn)| = 1+ maxi |ti |. An equation is a formula of the forml = r. It will
be called a rewrite rule and writtenl → r if interest is in the left to right use of this equation. The term
l is the left-hand side of the rule. A rewrite rulel → r is left-linear if l is linear. A rewrite system is a
set of rewriting rules. Lett be a term andu a position int. We write: t →R s if there exists a rulel → r
in R and a substitutionσ such thatt/u = lσ,s/u = rσ andt/v = s/v for any positionv such thatu 6≺ v.
A term t is irreducible (or in normal form) if there is no terms such thatt →R s. A rewrite systemR is
said to be terminating if there is no infinite derivationt1 →R t2 →R · · · starting from any termt1. If ≻ is a
reduction ordering† on terms such thatl ≻ r for everyl → r ∈ R, thenR is terminating. A termt is ground
reducible if all its ground instances are reducible. A valid propertyt1 = t2 in R, is denoted byR |= t1 = t2.
A theoremt1 = t2 of R, is denoted byR⊢ t1 = t2. An operatorf ∈ D is sufficiently completeiff for all
t1, . . . , tn ∈ T(C), there existst ∈ T(C) such thatf (t1, . . . , tn)

∗
→ t. A rewriting systemR is sufficiently

complete if eachf ∈ D is sufficiently complete.

4 Observational Semantics
The notion of observations has been introduced as a means for describing what is observed in a given
algebra. Various techniques have been proposed: observations based on sorts, operators, terms or formula
(see [BBK94] for a survey). The semantics we choose is based on a relaxing of the satisfaction relation.
The notion of context is fundamental in all approaches based on such observational semantics. An obser-
vational property is obtained by taking into account only observable information. To show that it is valid,
one has to show its validity in all observable contexts.

† A reduction ordering is a well-founded ordering that is closed under contexts and substitutions.
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specification: STACK
sorts: nat, stack
observable sorts:nat
constructors:
0: →nat
s: nat→ nat
Nil: → stack
push: nat× stack→ stack
defined operators
top: stack→ nat
pop: stack→ stack
axioms:
top(push(x,y))=x
pop(push(x,y))=y

Fig. 1: Stack specification

Definition 1 (Context) Let T(F,X) be a term algebra and(S,F) be its signature.

• a context over F is a non ground term c∈ T(F,X) with one distinguished occurrence of a variable
called the contextual variable of c. To indicate the contextual variable zs occurring in c, we often
write c[zs] instead of c, where s is the sort of zs.

• a context reduced to a variable zs of sort s is called an empty context variable of sort s.

• the application of a context c[zs] to a term t∈ T(F,X) of sort s, denoted by c[t], is defined by the
substitution of zs by t in c[zs]. In this case, the context c is said to be applicable to t.

• by assumption, var(c) will denote the set of variables occurring in c except the contextual variable
of c. A context c is ground if var(c) = /0. We denote by|c| the depth of c.

• a subcontext (resp. strict subcontext) of c, is a context which is a subterm (resp. strict subterm) of
c, having the same contextual variable as c.

Notations Let c[zs] andc′[z′s′ ] be contexts such thatc′ is of sorts, let t be a term andσ be a substitution
such thatzs 6∈ dom(σ). We use the following notations:

• c[(c′[t])] = (c[c′])[t] = c[c′[t]]

• (c[t])σ = (cσ)[tσ] = c[t]σ

Definition 2 (Specification, Observable specification) A specification (or equational specification) SP is
a triple (S,F,E) where(S,F) is a signature and E is a set of equations. An observational specification
SPobs is a couple(SP,Sobs) such that SP= (S,F,E) is a specification and Sobs⊆ S is the set of observable
sorts.

In the following we denote bySPobs= (SP,Sobs) an observational specification, whereSP= (S,F,E).
We denote byR the rewriting system associated withSP.



Towards automated proofs of observational properties 147

Example 1 The Stack specification in Figure 1 is an observational specification where Sobs= {nat}.

Definition 3 (Observable context) An observable context is a context whose sort belongs to Sobs. The set
of observable contexts is denoted by Cobs.

Example 2 Consider the specification in Figure 1, there are infinitely many observable contexts:

• top(zstack),

• top(pop(zstack)), . . . ,

• top(pop(. . .(pop(zstack)) . . .)), . . . ,

• top(push(i,zstack)),

• top(push(i, pop(zstack))), . . . .

The notion of observational validity is based on the idea that two objects are equal if they cannot be
distinguished by observable contexts.

Definition 4 (Observational validity) Let t1, t2 be two terms. We say that t1 = t2 is observationally valid,
and denote it by E|=obs t1 = t2, iff for all ground cobs∈Cobs,E |= cobs[t1] = cobs[t2]. We say that t1 and t2
are observationally equal and denote it by t1 =obst2, iff E |=obst1 = t2.

Note that ifE |= t1 = t2 thenE |=obs t1 = t2, but the converse may not be true. Observational theories
generalize first-order theories: ifSobs= S then the satisfaction relation|=obs is equal to|=.

Example 3 Consider the Stack specification in Figure 1. It is easy to see that push(top(s), pop(s)) = s
is not satisfied (in the classical sense), because push(top(Nil), pop(Nil)) = Nil is not valid. However, it
is observationally satisfied if we just observe the elements of the sequences push(top(s), pop(s)) and s.
This can be formally shown by considering all observable ground contexts.

5 Cover-contexts
The main problem of proving observational properties is that the number of observable ground contexts
is often infinite. We introduce in this section the notion ofcover-contextswhich allow to describe finitely
the often infinite set of observable ground contexts.

Definition 5 (Cover-tree) A cover-tree Ts is a tree such that:

• The root is a contextual variable zs with s 6∈ Sobs

• The successors of a node which is a non observable context c[zs] of sort si , are all the contexts of
the form f(x1, . . . ,xi−1,c,xi+1, . . . ,xn), where:

– f ∈ F, f : s1× . . .×si−1×si ×si+1× . . .×sn → s′

– c is of sort si ,(si 6∈ Sobs).

– x1, . . . ,xi−1,xi+1, . . . ,xn are new variables not occuring in c[zs].

A path from a node n1 to a node np is a sequence of contexts(n1,n2, . . . ,np) such that each ni is a successor
of ni−1, for 2≤ i ≤ p. The depth of T, denoted by depth(T) is the length of the longest path of T .
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pop(pop(zstack))top(pop(zstack)) push(x, pop(zstack))

top(zstack) pop(zstack) push(x,zstack)

zstack

Fig. 2: A cover-tree for the stack specification

Example 4 A cover-tree Tstack for the stack specification is given in Figure 2.

Note that such cover-tree is often infinite. Each node is a context embedding its predecessor con-
texts in the same branch, and each leaf is an observable context. An interesting point is that, for prov-
ing thata =obs b wherea andb have a sorts 6∈ Sobs, it is sufficient to consider a finite set of contexts
{c1,c2, . . . ,cn} such that at least one contextci occurs in each path starting from the rootzs. In fact,
if we haveci [a] = ci [b] for eachci ,1 ≤ i ≤ n, then we can deducecobs[a] = cobs[b] for each observ-
able contextcobs, since by construction ofTs, the contextsci(1 ≤ i ≤ n) are subcontexts of all possible
observable contexts. For example, ift1 and t2 are terms of sortstack, we can show ift1 =obs t2 by
considering only the set of contexts{top(zstack), pop(zstack), push(x,zstack)}. We can also consider the
set{top(zstack), top(pop(zstack)), pop(pop(zstack)), push(x, pop(zstack)), push(x,zstack)}. Note that there
usually are infinitely many possibilities for choosing a set of contexts like{c1,c2, . . . ,cn}. An interesting
refinement is to consider inTs, not the whole set of contextsc[zs], but only contexts that can be embedded
in an observable ground irreducible context. We call such contextscover-contexts. In other terms, instead
of reasoning on the set of all observable contexts, we consider just an equivalent subset which is the set
of ground observable and irreducible contexts.

Definition 6 (Quasi ground reducibility) A context c is quasi ground reducible if for all ground substitu-
tionsτ such that dom(τ) = var(c), cτ is reducible.

Example 5 The context top(push(x,zstack)) is quasi ground reducible. But the context top(zstack) is not
quasi ground reducible.

Definition 7 (Cover-context set) A cover-context set is a finite set of contexts CC= {c1,c2, . . . ,cn} such
that:

i/ for each ci ∈ CC, there exists an observable context cobs such that cobs[ci ] is not quasi ground re-
ducible.
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ii/ for each ground irreducible observable context cobs, there exists ci ∈ CC,c′obs∈ Cobs and a ground
substitutionτ, such that cobs= c′obs[ci ]τ.

Property i expresses the minimality ofCC: only contexts that can be embedded in an observable ground
irreducible context are retained. Property ii expresses the completeness ofCC: each ground observable
context is ”covered”, in some sense, by a contextc of CC.

The following lemma shows that cover-contexts are sufficient for proving an observational property in
first-order logic.

Lemma 1 Let R be a terminating rewriting system such that var(r)⊆ var(l) for each rule l→ r in R, and
let Sobs denotes the observable sorts.

Then, R|=obst1 = t2 if R |= c[t1] = c[t2] for all c ∈CC.

Proof:
Let cobs be an observable ground context. Ifcobs is irreducible, then there exists a contextc ∈ CC, a

contextc′obs∈ Cobs and a ground substitutionτ such thatcobs = c′obs[c]τ (by second property of a cover-
context set). We haveR |= c[t1] = c[t2] (by hypothesis), and therefore,R |= (c′obs[c]τ)[t1] = (c′obs[c]τ)[t2].
Thus,R |= cobs[t1] = cobs[t2]. If cobs is reducible, then there exists an irreducible termt such thatR |=
cobs[z] = t (sinceR is terminating). There are three cases here:

(i) If the variablez does not occur int, then clearlyR |= cobs[t1] = t andR |= cobs[t2] = t, and hence
R |= cobs[t1] = cobs[t2].

(ii) If the variablez occurs exactly once int, thent = c′obs[z], wherec′obs is an observable irreducible
ground context. In this case, the argument given above shows thatR |= c′obs[t1] = c′obs[t2], and hence
R |= cobs[t1] = cobs[t2].

(iii) Finally, if the variablez occurs more than once int, then we consider the contextt1 obtained by
replacing all but one occurrences ofz by t1. Then we have:cobs[t1] →∗

R t1[t1]. If t1 is reducible,
we normalize it byR to t ′ and if z occurs more than once int ′, we consider the termt2 obtained by
replacing all but one occurrences ofzby t1. We repeat the process. If this process does not terminate,
then we have an infinite derivationcobs[t1] →∗

R t1[t1] →∗
R t2[t1] →∗

R · · ·, which is impossible sinceR
is terminating. Therefore, the above process terminates with an irreducible termu which contains at
most one occurrence ofz. Thus, this reduces to either case i or case ii above.

✷

6 Computation of cover-context sets for left-linear systems
Let us first introduce some useful definitions. We definesdepth(R) as the maximal depth of strict positions
in left-hand sides ofR. We definedepth(R) as the maximal depth of positions in left-hand sides ofR.

The idea of the computation is the following: for all non observable sortss, we construct a cover-treeTs

of depth equal tosdepth(R). Then we consider the setL of all the leaves of allTs. Starting from the non
quasi ground reducible observable contexts ofL, we add all contexts ofL that can be embedded in one of
those observable contexts, to give a non quasi ground reducible and observable context. The algorithm is
given in Figure 3. This computation terminates since the treesTs are finite, for alls 6∈ Sobs.
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Since the depth of the cover-treesTs is sdepth(R), the cover-contexts constructed will have a depth
smaller than or equal tosdepth(R). However, we can reduce the number of cover-contexts by considering
only subcontexts (for example of depth smaller than or equal to 1) of the constructed cover-contexts.
Example 7 illustrates this idea.

The Ground reducibility is decidable for equational rewriting systems [Pla85]. The test of ground
reducibility relies on a special finite set of terms calledtest set. A test set is defined as a finite setTS(R)
of irreducible terms, such that a term is ground reducibleiff all its instances by substitutions inTS(R)
are reducible. Several algorithms have been proposed for computing a test set, for left-linear rewrite
systems (for example see [JK89, SF95]). For non left-linear systems, the computation is more complex
than the left-linear case but applies to any rewrite system (for example see [KNZ86, Kou92, SF95]). The
constructed test set verifies some important properties (see [Kou92]):

1/ (finiteness):TS(R) is a finite set.

2/ (minimality): For any termt in TS(R), there exists a ground substitutionτ such thattτ is ground and
irreducible.

3/ (completeness): For any ground irreducible terms, there exists a termt in TS(R) and a ground substi-
tution τ such thats= tτ.

4/ (transnormality): Every non ground term inTS(R) has an infinite number of ground irreducible in-
stances.

5/ (coverage): Any non ground termt in TS(R) is of depth equal or greater thandepth(R).

In the case of a left-linear rewrite system, only conditions 1, 2, 3 and 5 are necessary, besides condition 5
is simplified as follows: Any non ground termt in TS(R) is of depth equal tosdepth(R).

Test substitutionsallow to instantiate variables of a contextc (or a termt) by elements of the test set
whose variables are renamed in order to check the existence of a ground irreducible instance of the context
c (or the termt).

Definition 8 (Test substitution) A test substitution for a context c (resp. a term t) is a substitution that
instantiates all the variables in var(c) (resp. the variables in var(t)) by terms taken from the test set
(whose variables have been renamed).

Test sets are used to test ground reduciblity, this property can be expressed as follows: Lett be a term
andσ be a test substitution such thattσ is irreducible, then there exists a ground substitutionρ such that
tσρ is ground and irreducible. The proof of this property in the left-linear case is based on the fact that for
all variablex in t, |xσ| = sdepth(R), so, no subterm oftσρ can match a left-hand-side of a rule inR. In
the non left-linear case, the proof uses the transnormality property to build an irreducible instanceρ such
thattσρ is ground and irreducible (see for example [Kou92]).

The Quasi ground reducibility is decidable for equational rewriting systems [KC86]. To test whether
a contextc[zs] is quasi ground reducible, we apply all test substitutions toc[zs] and show that they are
reducible.

Lemma 2 A context c[zs] is quasi ground reducible iff for all test substitutionsσ such that dom(σ) =
var(c), c[zs]σ is reducible.
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for eachnon observable sort s, construct a cover-treeTs of depthsdepth(R).

let LV be the set of leaves of all cover-treesTs.

L :=
S

c∈LV expand(c) whereexpand(c) is c if c is observable, otherwiseexpand(c) is obtained from
c by instantiating its variables (except the contextual variable) in all possible ways by terms,
such that the new obtained contexts have all their variables at the same depthsdepth(R).

CC0 := {c∈ L|c is observable and not quasi ground reducible}∪{zs| s is observable}
L0 := {c∈ L|c is not observable}

repeat
CCi+1 := CCi ∪{c∈ Li |∃ci ∈CCi such thatci [c] is not quasi ground reducible}
Li+1 := Li \CCi+1

until CCi+1 = CCi

output CCi

Fig. 3: Computation of cover-contexts for a left-linear system

Proof:
⇐

Suppose for all test substitutionsσ, c[zs]σ is reducible. By property of test sets, we deduce that for
all ground substitutionsτ such that for allx ∈ var(c),xτ is ground and irreducible: there exists a
ground substitutionρ such that for allx ∈ var(c),xσρ is ground and irreducible. Then,c[zs]σρ is
reducible. Thus, for all ground substitutionsτ such thatdom(τ) = var(c), c[zs]τ is reducible.

⇒
Suppose that there exists a test substitutionσ such thatc[zs]σ is irreducible. We have to show that we
can build a ground substitutionρ such that∀x∈ var(c),xσρ is ground and irreducible, andc[zs]σρ
is irreducible, and Thus,c[zs] is not quasi ground reducible. The proof uses the same arguments
than for showing that test sets allow to test for ground reducibility. Let us detail the linear case:

From condition 2/ of test sets, there exists a ground substitutionρ such thatσρ is ground and
irreducible. Suppose thatc[zs]σρ is reducible. Then there exists a strict positionu, a ruleg→ d and
a substitutionθ such thatc[zs]σρ/u = gθ. Note that the positionu necessarily occurs inc[zs] since
σρ is irreducible. Sinceg is linear and for allx in c[zs] |xσ|= sdepth(R), we can build a substitution
α such that for all variablex occuring at a positionv of g, xα = c[zs]σ/uv. Then,c[zs]σ/u = gα.
Thus,c[zs]σ is reducible, contradiction.

✷

Theorem 1 Let R be a left-linear rewriting system. Then, the set of contexts CC output by the computation
described in Figure 3 is a cover-context set.
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Proof: We have to show thatCC is a cover-context set w.r.t Definition 7

i/ Let c∈CC. Then there existsi such thatc∈CCi . Let us show that there exists an observable context
cobs such thatcobs[c] is not quasi ground reducible. The proof is by induction oni:

i = 0: in this casec∈CC0. We setcobs= zs wheres is the sort ofc.

i > 0: there existsci−1 ∈CCi−1 such thatci−1[c] is not quasi ground reducible. Ifci−1 ∈Cobs, then
we setcobs = ci−1. Otherwise,|ci−1| = sdepth(R). By induction hypothesis, there exists an
observable contextcobs such thatcobs[ci−1] is not quasi ground reducible. Let us show that
cobs[ci−1[c]] is not quasi ground reducible.

cobs[ci−1] is not quasi ground reducible, therefore, there exists a test substitutionσ such thatdom(σ) =
var(cobs[ci−1]) and (cobs[ci−1])σ is irreducible (by Lemma 2). Letσ1 be the restriction ofσ to
var(cobs), then(cobsσ1)[ci−1] is still irreducible.
ci−1[c] is not quasi ground reducible, therefore, there exists a test substitutionσ2 such thatdom(σ2) =
var(ci−1)∪var(c) andci−1[c]σ2 is irreducible (by Lemma 2).
Let us show thatcobs[ci−1[c]]σ1σ2 is irreducible. We can then deduce, by property of test sets, a
ground substitutionτ such thatcobs[ci−1[c]]σ1σ2τ is ground and irreducible.
Suppose thatcobs[ci−1[c]]σ1σ2 is reducible, then there exists a ruleg→ d, a substitutionθ and a po-
sition u such thatcobs[ci−1[c]]σ1σ2/u = gθ. The positionu cannot occur inci−1, otherwiseci−1[c]σ2

would be reducible. Then, necessarily,u occurs incobs. Sinceg is linear, we can build a substitu-
tion α such that for each variablex appearing at a positionw of g, xα = (cobsσ1)[ci−1]/uw. Then
(cobsσ1)[ci−1]/u = gα, which contradicts the fact that(cobsσ1)[ci−1] is irreducible

ii/ Suppose that there exists an observable ground irreducible contextco such that there does not exist
c∈CC and a ground substitutionτ such thatcτ is a subcontext ofco. Let us first define thetop of a
termt as follows:

• top(t,d) = t, if |t| ≤ d

• top( f (t1, . . . , tn),0) = f (x1, . . . ,xn), wherexi(i ∈ [1..n]) are fresh variables.

• top( f (t1, . . . , tn),d) = f (top(t1,d−1), . . . , top(tn,d−1)) otherwise.

Let d be the depth of the position of the contextual variable ofco. Let us chooseco such thatd is
minimal. Letcobs= top(co,d). If d ≤ sdepth(R) thencobs∈CC, contradiction. Otherwise, letc be a
subcontext ofcobs of depthsdepth(R), and letc′obs be an observable context such thatcobs= c′obs[c].
Note thatc′obs[c] is not quasi ground reducible. By hypothesis,c 6∈ CC. Let d′ be the depth of
the contextual variable ofc′obs. We have,d′ < d, necessarily there existsc′ ∈ CC,τ′,c′′obs such that
c′obs= c′′obs[c

′]τ′. In this case,c′ ∈CC sincec′[c] is not quasi ground reducible, contradiction.

✷

Example 6 Consider the specification in Figure 1. We have: sdepth(R) = 1. A test set for R is:

{0,s(x),Nil , push(x,y)}.
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Applying the computation principle described in Figure 3, we get:

CC0 = {znat, top(zstack)}

L0 = {pop(zstack), push(i,zstack)}

In the next iteration, we add the context pop(zstack) since top(pop(zstack)) is ground and irreducible.

CC1 = {znat, top(zstack)}∪{pop(zstack)}

L1 = {push(i,zstack)}

CC2 = CC1 is a cover-context set for R.

Definition 9 Let f ∈ D. We say that f is strongly complete if f(t1, . . . , tn)
∗
→ t and t∈ T(C,X), for all

ti(i ∈ [1..n]) ∈ (T(C,X) \X). A rewriting system R is strongly complete if for all f∈ D, f is strongly
complete.

Note that: if f is strongly complete, thenf is sufficiently complete. The converse may not be true. The
following theorem states that we can compute a cover-context based on the algorithm given in Figure 3,
for a non left-linear rewriting systems provided that it is strongly complete and that the relations between
defined functions are left-linear.

Theorem 2 Let R be a rewriting system strongly complete, such that relations between defined functions
are left-linear. We also assume that if a constructor cons: s1×s2 . . .sn → s is such that if s is observable
then s1,s2 . . .sn are also observable. Then, the set of contexts CC output by the computation described in
Figure 3 is a cover-context set.

Proof:
i/ Let c∈CC. Then there existsi such thatc∈CCi . Let us show that there exists an observable context

cobs such thatcobs[c] is not quasi ground reducible. The proof is by induction oni:

i = 0: in this casec∈CC0. We setcobs= zs wheres is the sort ofc.

i > 0: there existsci−1 ∈ CCi−1 such thatci−1[c] is not quasi ground reducible. Ifci−1 ∈ Cobs,
then we setcobs= ci−1. Otherwise,|ci−1| = sdepth(R). By induction hypothesis, there exists
an observable contextcobs such thatcobs[ci−1] is not quasi ground reducible. Thanks to the
assumptions on constructors, we can choosecobs such thatcobs(ε) ∈ D or cobs(ε) ∈ X. If
cobs(ε)∈X (empty context), then we havecobs[ci−1[c]] not quasi ground reducible. Otherwise,
we havecobs(ε) ∈ D. Let us show then, thatcobs[ci−1[c]] is not quasi ground reducible.

cobs[ci−1] is not quasi ground reducible, therefore, there exists a test substitutionσ1 such that
dom(σ1) = var(cobs) and(cobsσ1)[ci−1] is irreducible.

ci−1[c] is not quasi ground reducible, therefore, there exists a test substitutionσ2 such thatdom(σ2)=
var(ci−1)∪var(c) andci−1[c]σ2 is irreducible.

Consider all subcontextsf (t1, . . . , tk−1,c′[zs], tk+1, . . . , tn) of cobs[ci−1]σ1σ2, wheret j is a term for
all j ∈ {1, . . . ,k−1,k+ 1, . . . ,n}, andc′ is a context. Since(cobsσ1)[ci−1] is irreducible andR is
strongly complete, thent j ∈ T(C,X). Besidescobs(ε) ∈ D.
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specification: STACK
sorts: nat, stack
observable sorts:nat
constructors:
0: →nat
s: nat→ nat
Nil: → stack
push: nat× stack→ stack
defined operators
top: stack→ nat
pop: stack→ stack
axioms:
push(x,push(x,Nil))=push(x,Nil)
top(Nil)=0
top(push(x,y))=x
pop(Nil)=Nil
pop(push(x,y))=y

Fig. 4: A non left-linear specification

Let uz be the position ofzs in (cobsσ1)[ci−1[zs]], andu be a position in(cobsσ1)[ci−1[zs]] such that
u≺ uz. Necessarily,(cobsσ1)[ci−1](u) ∈ D, otherwise(cobsσ1)[ci−1] would be reducible sinceR is
strongly complete.

Now, let us show thatcobs[ci−1[c]]σ1σ2 is irreducible. We can then deduce, by property of test
sets, a ground substitutionτ such thatcobs[ci−1[c]]σ1σ2τ is ground and irreducible. Suppose that
cobs[ci−1[c]]σ1σ2 is reducible, then there exists a ruleg→ d, a substitutionθ and a positionu such
thatcobs[ci−1[c]]σ1σ2/u = gθ. The positionu cannot occur inci−1, otherwiseci−1[c]σ2 would be
reducible. Then, necessarily,u occurs incobs.

u 6≺ uz, then(cobsσ1)[ci−1] would be reducible. Contradiction.

u≺ uz thencobs(u) ∈ D. In this case,g is linear since the relations between defined symbols are
left-linear. Then, we can build a substitutionα such that for each variablex appearing at a
positionw of g, xα = (cobsσ1)[ci−1]/uw. Then(cobsσ1)[ci−1]/uw= gα, which contradicts the
fact that(cobsσ1)[ci−1] is irreducible.

ii/ The proof of the second property of cover-contexts is similar to the case whereR is left-linear.

✷

Example 7 Consider an example of a non left-linear rewriting system given in Figure 4. The rewriting
system is strongly complete and the relations between defined operators (top and pop) are left-linear. We
have sdepth(R) = 2. A test set for R is:

{0,s(0),s(s(x)),Nil , push(0,Nil), push(s(x),Nil), push(0, push(x,y)), push(s(x), push(x,y))}
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Applying the computation principle described in Figure 3, we get:

CC0 = {znat, top(zstack), top(pop(zstack))}

L0 = {pop(pop(zstack)), push(0, pop(zstack), push(s(x), pop(zstack),

push(0, push(x,z)), push(s(y), push(x,z))}

In the next iteration, we add the context pop(pop(zstack)) since top(pop(pop(zstack))) is ground and
irreducible.

CC1 = {znat, top(zstack), top(pop(zstack))}∪{pop(pop(zstack))}

L1 = {push(0, pop(zstack), push(s(x), pop(zstack), push(0, push(x,z)),

push(s(y), push(x,z))}

CC2 = CC1 is a cover-context set for R.
We can refine CC1 by considering only subcontexts of depth smaller than or equal to1. This leads to

the cover-context set{znat, top(zstack), pop(zstack)}.

7 Computation of cover-context sets for non left-linear systems
The algorithm for computing a cover-context set for left-linear rewriting systems does not work for the
non-linear case. For example, consider the following rewrite systemR:

g(g(x)) → x

f (g(x),x) → x

f (x,g(x)) → x

f (x,x) → x

f (x, f (x,z)) → x

f (g(x), f (x,z)) → x

A test set forR is TS(R) = {a,g(a)}. Consider the contextsc1 = f (x1,z),c2 = f (x2,z),c3 = f (x3,z). The
contextc1[c2] has an irreducible ground instance which isf (a, f (g(a),z)). The contextc2[c3] has also an
irreducible ground instance which isf (a, f (g(a),z)). However, the context

c1[c2[c3]] = f (x1, f (x2, f (x3,z)))

has not an irreducible ground instance. Therefore, the cover-contexts computation for left-linear systems
(see Figure 3), does not hold for non left-linear systems, since it is based on the idea that: if there exists
ci ∈CCi such thatci [c] is a non quasi ground reducible context, thenc can be embedded in an observable
ground irreducible context. For non left-linear systems, we use a stronger condition; we show that if there
existsci ∈ CCi such thatci [c] has an infinite number of irreducible instances, thenc can be embedded
in an observable ground irreducible context. We present in this section a procedure for computing a
cover-context set for non left-linear rewriting systems, but which can diverge in some cases. Let us first
introduce some useful definitions.
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for eachnon observable sort s, construct a cover-treeTs of depthdepth(R).

let LV be the set of leaves of all cover-treesTs.

L :=
S

c∈LV expand(c) whereexpand(c) is c if c is observable, otherwiseexpand(c) is obtained from
c by instantiating its variables (except the contextual variable) in all possible ways by terms,
such that the new obtained contexts have all their variables at the same depthdepth(R).

CC0 := {c∈ L | c is observable and not quasi ground reducible}∪{zs | s is observable}
L0 := {c∈ L | c is not observable}

repeat
for eachc∈ Li do

if there existsci ∈CCi such thatci [c] is observable
and not quasi ground reducible

then CCi+1 := CCi ∪{c}
Li+1 := Li \{c}

else ifthere existsci ∈CCi such thatci [c] is quasi infinitary
or ground and irreducible

then CCi+1 := CCi ∪{c}
Li+1 := Li \{c}

else for eachci ∈CCi such thatci [c] is not quasi ground reducible
and not quasi infinitarydo
extendci [c] by all possible ground substitutionsρ j

such thatci [c]ρ j is either ground irreducible or quasi infinitary
Li+1 := (Li \{c})∪ (∪ jci [c]ρ j)

until Li+1 = Li and CCi+1 = CCi

output CC= CCi

Fig. 5: Computation of cover-contexts for a non left-linear system

Definition 10 (Quasi infinitary) A context c[zs] is quasi infinitary iff there exists a test substitutionσ such
that dom(σ) = var(c), for all x ∈ dom(σ), xσ is not ground, and c[zs]σ is irreducible.

If c is a quasi infinitary context, thenc has an infinite number of irreducible instances, thanks to the test
set properties (transnormality).

Example 8 Consider the specification in Figure 4. The context push(x,zs) is quasi-infinitary since
push(s(y),z) is irreducible for all y.

Theorem 3 Let R be a non left-linear rewriting system. Then, if the computation described in Figure 5
terminates, the set of contexts CC output is a cover-context set.

Proof: We have to show thatCC is a cover-context set w.r.t Definition 7.
Let c∈CC. Then there existsi such thatc∈CCi . Let us show that there exists an observable context

cobs such thatcobs[c] is not quasi ground reducible. The proof is by induction oni:
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i = 0: in this casec∈CC0. We setcobs= zs wheres is the sort ofc.

i > 0: there existsci−1 ∈CCi−1 such thatci−1[c] is not quasi ground reducible. Ifci−1 ∈Cobs, then we set
cobs= ci−1. Otherwise,|ci−1|= depth(R). By induction hypothesis, there exists an observable con-
text cobs such thatcobs[ci−1] is quasi infinitary or ground irreducible. Let us show thatcobs[ci−1[c]]
is not quasi ground reducible.

cobs[ci−1] is not quasi ground reducible, therefore, there exists a ground substitutionτ1 such thatdom(τ1)=
var(cobs) and(cobsτ1)[ci−1] is irreducible.

Supposeci−1[c] is quasi infinitary (the proof of the case where it is ground and irreducible is a sub-
case), therefore, there exists a ground substitutionτ2 such thatdom(τ2) = var(ci−1)∪var(c), ci−1[c]τ2 is
irreducible and for allx,y∈ var(ci−1[c]):

|xτ2| > |cobs[ci−1]τ1|
∣

∣|xτ2|− |yτ2|
∣

∣ > |cobs[ci−1]τ1|

Let us show thatcobs[ci−1[c]]τ1τ2 is irreducible.
Suppose thatcobs[ci−1[c]]τ1τ2 is reducible, then there exists a ruleg→ d, a substitutionθ and a position

u such thatcobs[ci−1[c]]τ1τ2/u = gθ. The positionu cannot occur inci−1, otherwiseci−1[c]τ2 would be
reducible. Then, necessarily,u occurs incobs.

• If g is linear, we can build a substitutionα such that for each variablex appearing at a positionw of g,
xα = (cobsτ1)[ci−1]/uw. Then(cobsτ1)[ci−1]/uw= gα, which contradicts the fact that(cobsτ1)[ci−1]
is irreducible.

• If g is not linear, suppose there exists two positionsu1 andu2 corresponding to a variablex in g
such that

cobs[ci−1]τ1/uu1 6= cobs[ci−1]τ1/uu2.

but
cobs[ci−1[c]]τ1τ2/uu1 = cobs[ci−1[c]]τ1τ2/uu2

Let uz be the postion of the contextual variable ofci−1 in cobs[ci−1].

case 1: u1 occurs incobsτ1. u2 occurs inci−1.

case 1.1:u2 ≺ uz andu1 6≺ uz. In this case:cobs[ci−1[c]]τ1τ2/uu2 is not ground, but

cobs[ci−1[c]]τ1τ2/uu1

is ground, contradiction.

case 1.2:u2 ≺ uz andu1 ≺ uz. In this case:

|cobs[ci−1[c]]τ1τ2/uu1| 6= |cobs[ci−1[c]]τ1τ2/uu1|,

contradiction.

case 1.3:u1 6≺ uz andu2 6≺ uz.
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– if cobs[ci−1]/uu2 is ground, thencobs[ci−1[c]]τ1τ2/uu2 = cobs[ci−1]τ1/uu2.
Besides:

cobs[ci−1[c]]τ1τ2/uu2 = cobs[ci−1[c]]τ1τ2/uu1.

Therefore

cobs[ci−1]τ1/uu2 = cobs[ci−1[c]]τ1τ2/uu1 = cobs[ci−1]τ1/uu1,

contradiction.

– if cobs[ci−1]/uu2 is not ground. Letx be a variable occuring incobs[ci−1]/uu2. We have:

|xτ2| > |cobs[ci−1]τ1|.

Therefore:

|cobs[ci−1[c]]τ1τ2/uu1|= |cobs[ci−1]τ1/uu1|< |cobs[ci−1]τ1τ2/uu2|= |cobs[ci−1]τ1τ2/uu1|,

contradiction.

case 2: u1 occurs inci−1. u2 occurs inci−1.

case 2.1:u2 ≺ uz andu1 6≺ uz In this casecobs[ci−1[c]]τ1τ2/uu2 is not ground
andcobs[ci−1[c]]τ1τ2/uu1 is ground, contradiction.

case 2.2:u2 ≺ uz andu1 ≺ uz. Similar tocase 1.2

case 2.3:u2 6≺ uz andu1 6≺ uz.

– if cobs[ci−1]/uu1 is ground andcobs[ci−1]/uu2 is ground. In this case

cobs[ci−1[c]]τ1τ2/uu1 = cobs[ci−1]τ1/uu1

and
cobs[ci−1[c]]τ1τ2/uu2 = cobs[ci−1]τ1/uu2.

Therefore:
cobs[ci−1]τ1/uu1 = cobs[ci−1]τ1/uu2,

contradiction

– if cobs[ci−1]/uu1 is ground andcobs[ci−1]/uu2 is not ground. Letx be a variable occuring
in cobs[ci−1]/uu2. We have

|xτ2| > |cobs[ci−1]τ1| ≥ |cobs[ci−1]τ1/uu1|.

Therefore:
|cobs[ci−1[c]]τ1τ2/uu2| > |cobs[ci−1[c]]τ1τ2/uu1|,

contradiction.
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– if cobs[ci−1]/uu1 is not ground andcobs[ci−1]/uu2 is not ground. Letx be a variable in
cobs[ci−1]/uu1 such that

|xτ1| = maxxi∈cobs[ci−1]/uu1
|xiτ2|.

Let y be a variable incobs[ci−1]/uu2 such that

|yτ2| = maxyi∈cobs[ci−1]/uu2
|yiτ2|.

Suppose that|xτ2| > |yτ2|+ |cobs[ci−1]τ1|. Therefore:

|cobs[ci−1[c]]τ1τ2/uu1| > |cobs[ci−1[c]]τ1τ2/uu2|,

contradiction.

The second part of the proof is similar to that of Theorem 1. ✷

8 Conclusion
We have presented an algorithm for computing acover-context setwhich is a finite description of the often
infinite set of observable contexts. We have shown that this computation applies to left-linear rewriting
systems as well as an interesting class of non left-linear rewriting system, with any number of observable
sorts. In the general case of a non left-linear system, we have proposed a procedure for computing a cover-
context set. Once a cover-context set is computed, it is possible to use any first order theorem prover to
prove observational properties, provided we use thecontext induction rulegiven below:

∀c[zs] ∈CC, c[t1] = c[t2]
t1 = t2

wheret1, t2 are terms of non observable sort.s

We plan to extend the computation of cover-context sets for a more general class of conditional speci-
fications, and to use more refined observations based on operators or terms.
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