The b-chromatic number of some power graphs

Brice Effantin ${ }^{1}$ and Hamamache Kheddouci ${ }^{2}$
LE2I FRE-CNRS 2309, Université de Bourgogne, B.P. 47870, 21078 Dijon Cedex, France
${ }^{1}$ brice.effantin@u-bourgogne.fr
${ }^{2}$ kheddouc@u-bourgogne.fr

received Jul 19, 2002, revised Oct 29, 2002, accepted Apr 22, 2003.

Let G be a graph on vertices $v_{1}, v_{2}, \ldots, v_{n}$. The b-chromatic number of G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with $1 \leq i \leq k$, has at least one representant x_{i} adjacent to a vertex of every color $j, 1 \leq j \neq i \leq k$. In this paper, we give the exact value for the b-chromatic number of power graphs of a path and we determine bounds for the b-chromatic number of power graphs of a cycle.

Keywords: b-chromatic number, coloring, cycle, path, power graphs

1 Introduction

We consider graphs without loops or multiple edges. Let G be a graph with a vertex set V and an edge set E. We denote by $d(x)$ the degree of the vertex x in G, and by $\operatorname{dist}_{G}(x, y)$ the distance between two vertices x and y in G. The p-th power graph G^{p} is a graph obtained from G by adding an edge between every pair of vertices at distance p or less, with $p \geq 1$. It is easy to see that $G^{1}=G$. In the literature, power graphs of several classes have been investigated [$2, \underline{3}, 8]$. In this note we study a vertex coloring of power graphs. The power graph of a path and the power graph of a cycle can be also considered as respectively subclasses of distance graphs and circulant graphs. The distance graph $G(D)$ with distance set $D=\left\{d_{1}, d_{2}, \ldots\right\}$ has the set Z of integers as vertex set, with two vertices $i, j \in Z$ adjacent if and only if $|i-j| \in D$. The circulant graph can be defined as follows. Let n be a natural number and let $S=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$ with $k_{1}<k_{2}<\ldots<k_{r} \leq n / 2$. Then the vertex set of the circulant graph $G(n, S)$ is $\{0,1, \ldots, n-1\}$ and the set of neighbors of the vertex i is $\left\{\left(i \pm k_{j}\right) \bmod n \mid j=1,2 \ldots, r\right\}$.

The study of distance graphs was initiated by Eggleton and al. [4]. Recently, the problem of coloring of this class of graphs has attracted considerable attention, see e.g. [112, [13]. Circulant graphs have been extensively studied and have a vast number of applications to multicomputer networks and distributed computation (see [II, [10]). The special cases we consider are the distance graph $G(D)$ with finite distance set $D=\{1,2, \ldots, p\}$ which is isomorphic to the p-th power graph of a path and the circulant graph $G(n, S)$ with $S=\{1,2, \ldots, p\}$ which is isomorphic to the p-th power graph of a cycle.

A k-coloring of G is defined as a function c on $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ into a set of colors $C=$ $\{1,2, \ldots, k\}$ such that for each vertex v_{i}, with $1 \leq i \leq n$, we have $c_{v_{i}} \in C$. A proper k-coloring is a k coloring satisfying the condition $c_{x} \neq c_{y}$ for each pair of adjacent vertices $x, y \in V(G)$. A dominating proper k-coloring is a proper k-coloring satisfying the following property P : for each $i, 1 \leq i \leq k$, there exists a vertex x_{i} of color i such that, for each j, with $1 \leq j \neq i \leq k$, there exists a vertex y_{j} of color j adjacent to x_{i}. A set of vertices satisfying the property P is called a dominating system. Each vertex of a dominating system is called a dominating vertex. The b-chromatic number $\varphi(G)$ of a graph G is defined as the maximum k such that G admits a dominating proper k-coloring.
The b-chromatic number was introduced in [7]. The motivation, similarly as for the previously studied achromatic number (cf. e.g. [5, 6]), comes from algorithmic graph theory. The achromatic number $\psi(G)$ of a graph G is the largest number of colors which can be assigned to the vertices of G such that the coloring is proper and every pair of distinct colors appears on an edge. A proper coloring of a graph G using $k>\chi(G)$ colors could be improved if the vertices of two color classes could be recolored by a single color so as to obtain a proper coloring. The largest number of colors for which such a recoloring strategy is not possible is given by the achromatic number. A more versatile form of recoloring strategy would be to allow the vertices of a single color class to be redistributed among the colors of the remaining classes, so as to obtain a proper coloring. The largest number of colors for which such a recoloring strategy is not possible is given by $\varphi(G)$ (these recolorings are discussed in [四] and [I]). Thus $\varphi(G) \leq \psi(G)$ (also given in [7]). From this point of view, both complexity results and tight bounds for the b-chromatic number are interesting. The following bounds of b-chromatic number are already presented in [团].
Proposition 1 Assume that the vertices $x_{1}, x_{2}, \ldots, x_{n}$ of G are ordered such that $d\left(x_{1}\right) \geq d\left(x_{2}\right) \geq \ldots \geq$ $d\left(x_{n}\right)$. Then $\varphi(G) \leq m(G) \leq \Delta(G)+1$, where $m(G)=\max \left\{1 \leq i \leq n: d\left(x_{i}\right) \geq i-1\right\}$ and $\Delta(G)$ is the maximum degree of G.
R. W. Irving and D. F. Manlove [7] proved that finding the b-chromatic number of any graph is a NP-hard problem, and they gave a polynomial-time algorithm for finding the b-chromatic number of trees. Kouider and Mahéo [8] gave some lower and upper bounds for the b-chromatic number of the cartesian product of two graphs. They gave, in particular, a lower bound for the b-chromatic number of the cartesian product of two graphs where each one has a stable dominating system. More recently in [1]], the authors characterized bipartite graphs for which the lower bound on the b-chromatic number is attained and proved the NP-completeness of the problem to decide whether there is a dominating proper k-coloring even for connected bipartite graphs and $k=\Delta(G)+1$. They also determine the asymptotic behavior for the b -chromatic number of random graphs.

In this paper, we present several exact values and determine bounds for the b-chromatic number of power graphs of paths and cycles.

Let $\operatorname{Diam}(G)$ be the diameter of a graph G, defined as the maximum distance between any pair of vertices of G. Let us begin with the following observation.

Fact 2 For any graph G of order n, if $\operatorname{Diam}(G) \leq p$, then $\varphi\left(G^{p}\right)=n$, with $p \geq 2$.
Proof. If $\operatorname{Diam}(G) \leq p$, it is trivial to see that G^{p} is a complete graph. So $\varphi\left(G^{p}\right)=n$.
Let G be a path or a cycle on vertices $x_{1}, x_{2}, \ldots, x_{n}$. We fix an orientation of G (left to right if G is a path and clockwise if G is a cycle). For each $1 \leq i \leq n$, we denote by x_{i}^{+}(resp. x_{i}^{-}) the successor (resp.
predecessor) of x_{i} in G (if any). For $1 \leq i \neq j \leq n$, we define $\left[x_{i}, x_{j}\right]_{G},\left[x_{i}, x_{j}\right)_{G}$ and $\left(x_{i}, x_{j}\right)_{G}$ as the set of consecutive vertices on G from respectively x_{i} to x_{j}, x_{i} to x_{j}^{-}and x_{i}^{+}to x_{j}^{-}, following the fixed orientation of G. If there is no ambiguity, we denote $\left[x_{i}, x_{j}\right]_{G},\left[x_{i}, x_{j}\right)_{G}$ and $\left(x_{i}, x_{j}\right)_{G}$ by respectively $\left[x_{i}, x_{j}\right],\left[x_{i}, x_{j}\right)$ and $\left(x_{i}, x_{j}\right)$.

In all figures, the graph G is represented with solid edges. Edges added in a p-th power graph G^{p} are represented with dashed edges. In some figures, vertices are surrounded and represent a dominating system of the coloring. In any coloring of a graph G, we will say that a vertex x of G is adjacent to a color i if there exists a neighbor of x which is colored by i.

2 Power Graph of a Path

In this section, we determine the b-chromatic number of a p-th power graph of a path, with $p \geq 1$. First we give a lemma used in the proof of Theorem $\boldsymbol{母}$. Then the b-chromatic number of a p-th power graph of a path is computed.

Lemma 3 For any $p \geq 1$, and for any $n \geq p+1$, let P_{n} be the path on vertices $x_{1}, x_{2}, \ldots, x_{n}$. For each integer k, with $p+1 \leq k \leq \min (2 p+1, n)$, there exists a proper k-coloring on P_{n}^{p}. Moreover each vertex x, such that $x \in\left\{x_{k-p}, x_{k-p+1}, \ldots, x_{n-k+p+1}\right\}$, is adjacent to each color j, with $1 \leq j \neq c_{x} \leq k$.
Proof. As $k \geq p+1$, it is easy to see that if we put the set of colors $\{1,2, \ldots, k\}$ cyclically on $V\left(P_{n}\right)$, then two adjacent vertices will not have the same color. The coloring is thus a proper k-coloring.
Let $S=\left\{x_{k-p}, x_{k-p+1}, \ldots, x_{n-k+p+1}\right\}$. First we show that each vertex of S is adjacent to at least $k-1$ vertices. Observe that the vertex x_{k-p} is adjacent to $(k-p-1)+p=k-1$ vertices. And the vertex $x_{n-k+p+1}$ is adjacent to $p+n-(n-k+p+1)=k-1$ vertices. Since each vertex x_{i}, with $k-p+1 \leq i \leq n-k+p$, has a degree $d\left(x_{i}\right) \geq d\left(x_{k-p}\right)$, then each vertex of S is adjacent to at least $k-1$ other vertices.
Next, we can see by the construction that all the colors $\{1,2, \ldots, k\} \backslash\left\{c_{x_{i}}\right\}$ appear between the first and the last neighbor of x_{i}. Therefore each vertex x_{i} of S is adjacent to each color j, with $1 \leq j \neq c_{x_{i}} \leq k$ and $k-p \leq i \leq n-k+p+1$.

The b-chromatic number of a p-th power graph of a path is given by:
Theorem 4 Let P_{n} be a path on vertices $x_{1}, x_{2}, \ldots, x_{n}$. The b-chromatic number of P_{n}^{p}, with $p \geq 1$, is given by:

$$
\varphi\left(P_{n}^{p}\right)=\left\{\begin{array}{l}
n \text { if } n \leq p+1 \tag{1}\\
p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor \text { if } p+2 \leq n \leq 4 p+1 \\
2 p+1 \text { if } n \geq 4 p+2
\end{array}\right.
$$

Proof.

1. If $n \leq p+1$, then $\operatorname{Diam}\left(P_{n}\right) \leq p$. So, by Fact $2, \varphi\left(P_{n}^{p}\right)=n$.
2. We prove first that $\varphi\left(P_{n}^{p}\right) \geq p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$ for $p+2 \leq n \leq 4 p+1$. Let $k=p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$. By Lemma 3, we give a proper k-coloring of P_{n}^{p}. For example, Figure 1 shows a dominating proper 5-coloring of P_{8}^{3}.

Fig. 1: Coloring of P_{8}^{3}

Let S^{\prime} be the set of vertices $\left\{x_{k-p}, x_{k-p+1}, \ldots, x_{2 k-p-1}\right\}$. Since $2 k-p-1 \leq n-k+p+1$, then $S^{\prime} \subseteq\left\{x_{k-p}, x_{k-p+1}, \ldots, x_{n-k+p+1}\right\}$. By Lemma B, S^{\prime} is a dominating system. As the coloring is proper and has a dominating system, we obtain a dominating proper k-coloring. So, $\varphi\left(P_{n}^{p}\right) \geq$ $p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$.
Next we prove that $\varphi\left(P_{n}^{p}\right) \leq p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$ for $p+2 \leq n \leq 4 p+1$. The proof is by contradiction.
Suppose that there exists a dominating proper k^{\prime}-coloring such that

$$
\begin{equation*}
k^{\prime}>p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor . \tag{1}
\end{equation*}
$$

Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k^{\prime}}\right\}$ be a dominating system of the coloring on P_{n}^{p} (following the orientation of P_{n}, we meet $w_{1}, w_{2}, \ldots, w_{k^{\prime}}$). The vertices w_{1} and $w_{k^{\prime}}$ are adjacent to, at most, p different colors in $\left[w_{1}, w_{k^{\prime}}\right]$. As w_{1} (respectively $w_{k^{\prime}}$) is a dominating vertex, it must be adjacent to at least $k^{\prime}-1$ different colors. Then, there are at least $k^{\prime}-p-1$ vertices on $\left[x_{1}, w_{1}\right)$ (respectively $\left(w_{k^{\prime}}, x_{n}\right]$). Therefore, $n-k^{\prime} \geq n-\left|\left[w_{1}, w_{k^{\prime}}\right]\right| \geq 2\left(k^{\prime}-p-1\right)$.
On the other hand by hypothesis $k^{\prime} \geq p+2+\left\lfloor\frac{n-p-1}{3}\right\rfloor$, so that $n-k^{\prime} \leq n-p-2-\left\lfloor\frac{n-p-1}{3}\right\rfloor$. These two results give the following inequality,

$$
\begin{align*}
2\left(k^{\prime}-p-1\right) & \leq n-k^{\prime} \leq n-p-2-\left\lfloor\frac{n-p-1}{3}\right\rfloor \\
k^{\prime} & \leq \frac{1}{2}\left(n+p-\left\lfloor\frac{n-p-1}{3}\right\rfloor\right) \tag{2}
\end{align*}
$$

By (II) and (2), we obtain,

$$
\begin{gathered}
\frac{1}{2}\left(n+p-\left\lfloor\frac{n-p-1}{3}\right\rfloor\right) \geq k^{\prime} \geq p+2+\left\lfloor\frac{n-p-1}{3}\right\rfloor \\
n-p-4 \geq 3\left\lfloor\frac{n-p-1}{3}\right\rfloor
\end{gathered}
$$

which is a contradiction. Hence such a coloring does not exist. Therefore, $\varphi\left(P_{n}^{p}\right) \leq p+1+$ $\left\lfloor\frac{n-p-1}{3}\right\rfloor$.
We deduce from these two parts that $\varphi\left(P_{n}^{p}\right)=p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$.
3. $\Delta\left(P_{n}^{p}\right)=2 p$, so by Proposition 1, $\varphi\left(P_{n}^{p}\right) \leq 2 p+1$. Lemma 3 gives a proper $(2 p+1)$-coloring and shows that each vertex x of the set $\left\{x_{p+1}, x_{p+2}, \ldots, x_{3 p+1}\right\}$ is adjacent to each color j with $1 \leq j \neq c_{x} \leq k$. So this set is a dominating system and $\varphi\left(P_{n}^{p}\right) \geq 2 p+1$. Therefore $\varphi\left(P_{n}^{p}\right)=2 p+1$. For example, Figure 2 gives a dominating proper 7 -coloring of P_{15}^{3}.

Fig. 2: Coloring of P_{15}^{3}

3 Power Graph of a Cycle

In this section, we study the b-chromatic number of a p-th power graph of a cycle, with $p \geq 1$. First we give two lemmas used in the proof of Theorem 7 . Then we bound the b -chromatic number of a p-th power graph of a cycle.
Lemma 5 Let C_{n}^{p} be a p-th power graph of a cycle C_{n}, with $p \geq 2$. For any $2 p+3 \leq n \leq 4 p$, let $k \geq$ $\min \left(n-p-1, p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right)$. Then $n \leq 2 k$.
Proof. The proof is by contradiction. Suppose $n \geq 2 k+1$. We consider two cases. Firstly, $k \geq n-p-1$. So,

$$
\begin{aligned}
n \geq 2 k+1 & \geq 2(n-p-1)+1 \\
n & \leq 2 p+1
\end{aligned}
$$

which is a contradiction. Secondly, $k \geq p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$. So,

$$
\begin{gathered}
n \geq 2 k+1 \geq 2\left(p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right)+1 \\
n-2 p-3 \geq 2\left\lfloor\frac{n-p-1}{3}\right\rfloor
\end{gathered}
$$

which is a contradiction too.
Lemma 6 For any $p \geq 2$, and for any $2 p+3 \leq n \leq 4 p$, let C_{n} be the cycle on vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let $k=\min \left(n-p-1, p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right)$. So there exists a proper k-coloring on C_{n}^{p}. Moreover each vertex x, such that $x \in\left\{x_{k-p}, x_{k-p+1}, \ldots, x_{2 k-p-1}\right\}$, is adjacent to each color j, with $1 \leq j \neq c_{x} \leq k$.

Proof. We put the set of colors $\{1,2, \ldots, k\}$ cyclically on $V\left(C_{n}\right)$. As $k \leq p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$ and $n \leq 4 p$, then $k \leq 2 p+1$. Moreover, by Lemma 5 we deduce that $2 k \geq n \geq 2 p+3 \geq k+2$. So, the full set of colors $\{1,2, \ldots, k\}$ appears consecutively at least once, and at most twice, in the cyclic coloring of C_{n}^{p}. As $2 k \geq n \geq 2 p+3$, we have $k \geq p+1$. Furthermore, by definition of k we have $n-k \geq p+1$. Thus, as $k \geq p+1$ and $n-k \geq p+1$, the coloring is proper.

Let P_{n} be the subpath of C_{n} induced by $x_{1}, x_{2}, \ldots, x_{n}$. Let $S=\left\{x_{k-p}, x_{k-p+1}, \ldots, x_{k+(k-p-1)}\right\}$. As $p+1 \leq$ $k \leq 2 p+1$ and $2 k-p-1 \leq n-k+p+1$, then by Lemma 3 each vertex x_{i} of S, with $k-p \leq i \leq 2 k-p-1$, is adjacent to each color q, with $1 \leq q \neq c_{x_{i}} \leq k$, on P_{n}^{p}. Therefore each vertex x_{i} of S is adjacent to each color q, with $1 \leq q \neq c_{x_{i}} \leq k$, on C_{n}^{p}.

Theorem 7 Let C_{n} be a cycle on vertices $x_{1}, x_{2}, \ldots, x_{n}$. The b-chromatic number of C_{n}^{p}, with $p \geq 1$, is

$$
\varphi\left(C_{n}^{p}\right)=\left\{\begin{array}{l}
n \text { if } n \leq 2 p+1 \tag{1}\\
p+1 \text { if } n=2 p+2 \\
(\geq) \min \left(n-p-1, p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right) \text { if } 2 p+3 \leq n \leq 3 p \\
p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor \text { if } 3 p+1 \leq n \leq 4 p \\
2 p+1 \text { if } n \geq 4 p+1
\end{array}\right.
$$

Proof.

1. If $n \leq 2 p+1$, then $\operatorname{Diam}\left(C_{n}\right) \leq p$. So, by Fact $\ell, \varphi\left(C_{n}^{p}\right)=n$.
2. To color the graph, we put the set of colors $\{1,2, \ldots, p+1\}$ cyclically twice. One can easily see that this coloring is a proper $(p+1)$-coloring. Let S be the set of vertices $\left\{x_{1}, x_{2}, \ldots, x_{p+1}\right\}$. Each vertex x_{i}, with $1 \leq i \leq p+1$, is adjacent to $n-2$ vertices. Since $n-2 \geq p+1$, then each vertex $x_{i}(1 \leq i \leq p+1)$ of S is adjacent to all colors other than $c_{x_{i}}$. So the set S is a dominating system. We now show that, in any dominating proper coloring, vertices x_{i} and x_{i+p+1} must have the same color. For the subgraph induced by vertices $x_{1}, x_{2}, \ldots, x_{p+1}$, we have a clique and we can assume without loss of generality that these vertices are colored by $1,2, \ldots, p+1$ respectively. If there exists a dominating vertex of color j, for some $j>p+1$, then this vertex is x_{p+1+i} for some i $(1 \leq i \leq p+1)$. Vertex x_{p+1+i} is not adjacent to x_{i}, but every other vertex is adjacent to x_{i}, so that x_{p+1+i} cannot be a dominating vertex, a contradiction. Therefore $\varphi\left(C_{n}^{p}\right)=p+1$ for $n=2 p+2$.
3. Let $k=\min \left(n-p-1, p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right)$.

By Lemma 6 there exists a dominating proper k-coloring for $2 p+3 \leq n \leq 3 p$. Therefore $\varphi\left(C_{n}^{p}\right) \geq$ $\min \left(n-p-1, p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right)$. For example, in Figure 3, we give a dominating proper 6-coloring of C_{11}^{4}.
4. Let $k=p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$.

For $3 p+1 \leq n \leq 4 p$, Lemma 6 gives a dominating proper k-coloring. This proves that $\varphi\left(C_{n}^{p}\right) \geq$ $\min \left(n-p-1, p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right)$. For example, Figure 4 shows a dominating proper 6-coloring of C_{11}^{3}.
Next, we prove that $\varphi\left(C_{n}^{p}\right) \leq k$. Suppose there exists a dominating proper k^{\prime}-coloring for C_{n}^{p}, with $k^{\prime} \geq p+2+\left\lfloor\frac{n-p-1}{3}\right\rfloor$, for the sake of contradiction. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k^{\prime}}\right\}$ be a set of dominating vertices on C_{n} (following the orientation of C_{n}, we meet $w_{1}, w_{2}, \ldots, w_{k^{\prime}}$). We distinguish two cases.

Fig. 3: Coloring of $C_{11}^{4}\left(n-p-1=6, p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor=7\right.$ and $\left.\varphi\left(C_{11}^{4}\right) \geq 6\right)$

Fig. 4: Coloring of C_{11}^{3}

Case 1: for each i, with $1 \leq i \leq k^{\prime},\left|\left(w_{i}, w_{i+1}\right)\right| \leq p-1$.
As $k^{\prime} \geq p+2+\left\lfloor\frac{n-p-1}{3}\right\rfloor$, by a straightforward modification of the proof of Lemma 5, we have $n<2 k^{\prime}$. So, there exists at least one color c not repeated in C_{n}^{p} (i.e. there are not two distinct vertices with the same color c). Without loss of generality, suppose that c appears on the vertex x, with $x \in V\left(C_{n}\right)$. Therefore x is a dominating vertex and each other dominating vertex is adjacent to x. Then, $\left|\left[w_{1}, x\right)\right| \leq p$ and $\left|\left[x, w_{k^{\prime}}\right)\right| \leq p$. As for each i, with $1 \leq i \leq k^{\prime}$, we have $\left|\left(w_{i}, w_{i+1}\right)\right| \leq p-1$ and since on the cycle the next dominating vertex from $w_{k^{\prime}}$ is w_{1}, then

$$
\left|\left(w_{k^{\prime}}, w_{1}\right)\right| \leq p-1
$$

where

$$
\left|\left(w_{k^{\prime}}, w_{1}\right)\right|=n-\left|\left[w_{1}, x\right)\right|-\left|\left[x, w_{k^{\prime}}\right)\right|-1
$$

Therefore, we have

$$
\begin{gathered}
n-\left|\left[w_{1}, x\right)\right|-\left|\left[x, w_{k^{\prime}}\right)\right|-1 \leq p-1 \\
n-2 p-1 \leq p-1 \\
n \leq 3 p
\end{gathered}
$$

which is a contradiction.
Case 2: There exists r, with $1 \leq r \leq k^{\prime}$ and r is taken modulo k^{\prime}, such that $\left|\left(w_{r}, w_{r+1}\right)\right| \geq p$.
Let X be the set of vertices of $\left[w_{r+1}, w_{r}\right]$ (see Figure 5). Let X_{C} be the set of colors appearing in X. Let $\Gamma_{X}\left(x_{i}\right)$ be the set of neighbors of x_{i} in X and $\Gamma_{X}^{c}\left(x_{i}\right)$ the set of colors appearing in $\Gamma_{X}\left(x_{i}\right)$, with $1 \leq i \leq n$. Let $A=X_{C} \backslash\left(\Gamma_{X}^{c}\left(w_{r}\right) \cup\left\{c_{w_{r}}\right\}\right)$. Let $B=X_{C} \backslash\left(\Gamma_{X}^{c}\left(w_{r+1}\right) \cup\left\{c_{w_{r+1}}\right\}\right)$. We discuss two subcases.

Fig. 5: A dominating system on C_{n}^{p} and the set X

Subcase 1: $|X| \leq 2 p+2$. Since all dominating vertices belong to X, we have $|X| \geq k^{\prime}$. Then, $\left|\left(w_{r}, w_{r+1}\right)\right| \leq n-k^{\prime}$ and $\left|X_{c}\right|=k^{\prime}$. As the vertices of $\Gamma_{X}\left(w_{r}\right)$ form a clique, then $\left|\Gamma_{X}^{c}\left(w_{r}\right)\right|=$ $\left|\Gamma_{X}\left(w_{r}\right)\right|=p$. So we have $|A|=\left|X_{C}\right|-\left|\Gamma_{X}^{c}\left(w_{r}\right)\right|-1=k^{\prime}-p-1$. In the same way, we deduce that $|B|=k^{\prime}-p-1$. As $|X| \leq 2 p+2$, we have $X \subseteq\left(\Gamma_{X}\left(w_{r}\right) \cup \Gamma_{X}\left(w_{r+1}\right) \cup\left\{w_{r}, w_{r+1}\right\}\right)$ (see Figure 6.a). So, $A \subseteq\left(\Gamma_{X}^{c}\left(w_{r+1}\right) \cup\left\{c_{w_{r+1}}\right\}\right)$ and $B \subseteq\left(\Gamma_{X}^{c}\left(w_{r}\right) \cup\left\{c_{w_{r}}\right\}\right)$. Let $q \in\left\{1,2, \ldots, k^{\prime}\right\}$. If $q \in A$ (resp. $q \in B$) then $q \notin\left(\Gamma_{X}^{c}\left(w_{r}\right) \cup\left\{c_{w_{r}}\right\}\right)$ (resp. $q \notin\left(\Gamma_{X}^{c}\left(w_{r+1}\right) \cup\left\{c_{w_{r+1}}\right\}\right)$) and so $q \notin B$ (resp. $q \notin A$). Therefore, $A \cap B=\emptyset$. As w_{r} (resp. w_{r+1}) is a dominating vertex and $\left|\left(w_{r}, w_{r+1}\right)\right| \geq p$, the colors of A (resp. B) must be repeated in $\left(w_{r}, w_{r+1}\right)$. Therefore,

$$
\begin{gathered}
|A|+|B| \leq\left|\left(w_{r}, w_{r+1}\right)\right|, \\
2\left(k^{\prime}-p-1\right) \leq n-k^{\prime}, \\
3 k^{\prime} \leq n+2 p+2, \\
3\left\lfloor\frac{n-p-1}{3}\right\rfloor \leq n-p-4,
\end{gathered}
$$

which is a contradiction.
Subcase 2: $|X| \geq 2 p+3$. As in Subcase 1, we have $|A|=k^{\prime}-p-1$ and $|B|=k^{\prime}-p-1$. Let $X^{\prime}=X \backslash\left(\Gamma_{X}\left(w_{r}\right) \cup \Gamma_{X}\left(w_{r+1}\right) \cup\left\{w_{r}, w_{r+1}\right\}\right.$) (see Figure 6.b). So $\left|X^{\prime}\right| \geq|A \cap B|$. Since w_{r} (resp. $\left.w_{r+1}\right)$ is a dominating vertex and $\left|\left(w_{r}, w_{r+1}\right)\right| \geq p$, the colors of A (resp. B) must be repeated in $\left(w_{r}, w_{r+1}\right)$. Then,

$$
\begin{gathered}
|A|+|B|-|A \cap B| \leq\left|\left(w_{r}, w_{r+1}\right)\right| \leq n-2 p-2-\left|X^{\prime}\right| \\
2\left(k^{\prime}-p-1\right)-|A \cap B| \leq n-2 p-2-|A \cap B| \\
2\left(p+2+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right) \leq n
\end{gathered}
$$

which is a contradiction. Therefore there does not exist a dominating proper k^{\prime}-coloring, with $k^{\prime} \geq p+2+\left\lfloor\frac{n-p-1}{3}\right\rfloor$.
This completes the proof of $\varphi\left(C_{n}^{p}\right)=p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor$.

Fig. 6: Neighborhoods of w_{r} and w_{r+1} on X when a) $|X| \leq 2 p+2$ and b) $|X| \geq 2 p+3$
5. As $\Delta=2 p$, by Proposition 1, $\varphi\left(C_{n}^{p}\right) \leq 2 p+1$.

We then give a proper $(2 p+1)$-coloring. It is constructed in two steps. First, we put $(2 p+1)$ different colors on the $(2 p+1)$ first vertices $\left(c_{x_{i}}:=i\right.$ for $\left.1 \leq i \leq 2 p+1\right)$. In the second step, we have two cases. If $n=4 p+1$, we color the remaining vertices as follows: $c_{x_{i}}:=c_{x_{i-2 p-1}}$ for $2 p+2 \leq i \leq n$. If $n \geq 4 p+2$, then the remaining vertices are colored as follows: $c_{x_{i}}:=c_{x_{i-2 p-1}}$ for $2 p+2 \leq i \leq 4 p+2$, and $c_{x_{i}}:=c_{x_{i-p-1}}$ for $4 p+3 \leq i \leq n$. Then the distance between two vertices colored by the same color c is at least $p+1$. So the coloring is proper. By an analogue proof of Lemma 3, one can prove that each vertex x_{i}, with $p+1 \leq i \leq 3 p+1$, is a dominating vertex. So this coloring is a dominating proper $(2 p+1)$-coloring. This construction shows that $\varphi\left(C_{n}^{p}\right) \geq 2 p+1$. Therefore we have proved that $\varphi\left(C_{n}^{p}\right)=2 p+1$. For example, Figure 7 gives a dominating proper 7-coloring C_{16}^{3}.

4 Open Problem

In section 3, we have obtained the exact values of $\varphi\left(C_{n}^{p}\right)$, except in case $2 p+3 \leq n \leq 3 p$ where we give a lower bound. We believe that $\min \left(n-p-1, p+1+\left\lfloor\frac{n-p-1}{3}\right\rfloor\right)$ is the exact value of $\varphi\left(C_{n}^{p}\right)$ for $2 p+3 \leq n \leq 3 p$.

Fig. 7: Coloring of C_{16}^{3}

Acknowledgments

The authors thank the referees for useful suggestions that led to this improved version.

References

[1] J.-C. Bermond, F. Cormellas, D. F. Hsu, Distributed loop computer networks: a survey, Journal of Parallel and Distributed Computing 24 (1995) 2-10.
[2] A. Brandstädt, V. D. Chepoi, F. F. Dragan, Perfect elimination orderings of chordal powers of graphs, Discrete Mathematics 158 (1996) 273-278.
[3] E. Dahlhaus and P. Duchet, On strongly chordal graphs, Ars Combinatoria 24B (1987) 23-30.
[4] R.B. Eggleton, P. Erdős and D.K. Skilton, Coloring the real line, Journal of Combinatorial Theory B39 (1985) 86-100.
[5] F. Harary and S. Hedetniemi, The achromatic number of a graph, Journal of Combinatorial Theory 8 (1970) 154-161.
[6] F. Hughes and G. MacGillivray, The achromatic number of graphs: A survey and some new results, Bull. Inst. Comb. Appl. 19 (1997) 27-56.
[7] R. W. Irving and D. F. Manlove, The b-chromatic number of a graph, Discrete Applied Mathematics 91 (1999) 127-141.
[8] H.Kheddouci, J.F.Saclé and M.Woźniak, Packing of two copies of a tree into its fourth power, Discrete Mathematics 213 (1-3) (2000) 169-178.
[9] M.Kouider and M.Maheo, Some bounds for the b-chromatic number of a graph, Discrete Mathematics 256, Issues 1-2, (2002) 267-277.
[10] D.E. Knuth, The Art of Computer Programming, Vol. 3 Addison-Wesley, Reading. MA. 1975.
[11] J. Kratochvíl, Z. Tuza and M. Voigt, On the b-chromatic number of graphs, Proceedings WG'02 - 28th International Workshop on Graph-Theoretic Concepts in Computer Science, Cesky Krumlov, Czech Republic, volume 2573 of Lecture Notes in Computer Science. Springer Verlag 2002.
[12] I.Z. RuZsa, Z. TuZa and M. Voigt, Distance Graphs with Finite Chromatic Number, Journal of Combinatorial Theory B85 (2002) 181-187.
[13] X. ZHU, Pattern periodic coloring of distance graphs, Journal of Combinatorial Theory B73 (1998) 195-206.

