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Morse code sequences are very useful to give combinatorial interpretations of various properties of Fibonacci num-
bers. In this note we study some algebraic and combinatorial aspects of Morse code sequences and obtain several
q-analogues of Fibonacci numbers and Fibonacci polynomials and their generalizations.
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1 Morse code polynomials
Morse code sequences are finite sequences of dots(•) and dashes(−). If a dot has length 1 and a dash
has length 2 then the number of all such sequences of total lengthn−1 is the Fibonacci numberFn, which
is defined as the sequence of numbers satisfying the recursionFn = Fn−1 + Fn−2 with initial conditions
F0 = 0 andF1 = 1. If a dash is assumed to have lengthj, j ≥ 1, we get a simple generalization of Fibonacci
numbers.

Let MC be the set of all Morse code sequences. We interpretMC as a monoid with respect to con-
catenation whose unit element is the empty sequenceε. If we write a for a dot andb for a dash thenMC
consists of all words ina andb. Let P be the corresponding monoid algebra overC, i. e. the algebra of all
finite sums ∑

v∈MC
λvv with complex coefficients. The elements ofP will be called Morse code polynomials.

An important element ofP is the binomial

(a+b)n =
n

∑
k=0

Cn
k(a,b) (1.1)

HereCn
k(a,b) is the sum of all words withk dashes andn− k dots. It is characterized by the boundary

valuesC0
k(a,b) = δk,0 andCn

0(a,b) = an and each of the two recursions

Cn+1
k (a,b) = bCn

k−1(a,b)+aCn
k(a,b) (1.2)

or
Cn+1

k (a,b) = Cn
k−1(a,b)b+Cn

k(a,b)a. (1.3)
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It is clear that the image ofCn
k(a,b) under the homomorphismϕ : P→ C, defined byϕ(a) = ϕ(b) = 1,

is the binomial coefficient
(n

k

)

.
By considering various other homomorphisms of this algebra into other algebras we obtain generaliza-

tions andq-analogues of the binomial coefficients.
We state some simple examples:

(a) Consider the homomorphismφ : P → C[x,s] defined byφ(a) = x, φ(b) = s, wherex and s are
commuting variables. Then we get of courseφ(Cn

k(a,b)) =
(n

k

)

xn−ksk.

(b) Let R be the ring of linear operators on the vector space of polynomialsC[x,s]. We will only use
multiplication operators with

polynomials and the shift operatorsη = ηq in Rdefined by

η f (x,s) = f (x,qs)

for a positive real numberq.

For each integerj ≥ 1 we define homomorphismsϕ j : P→ Rby

ϕ j(a) = r(s)η, ϕ j(b) = t(s)η j
, (1.4)

wherer(s) andt(s) are polynomials inC[x,s]. Then

ϕ j(C
n
k(a,b)) = an,k, j(s)ηn+( j−1)k (1.5)

for some polynomialan,k, j(s).

From (1.2) we get
an,k, j(s) = r(s)an−1,k, j(qs)+ t(s)an−1,k−1, j(q

js) (1.6)

and from (1.3)

an,k, j(s) = r(qn−1+k( j−1)s)an−1,k, j(s)+ t(qn−1+(k−1)( j−1)s)an−1,k−1, j(s). (1.7)

For some special choices ofr(s) andt(s) we can obtain explicit formulas foran,k, j(s).

(b1) Frequent use will be made of the homomorphismsΦ j with r(s) = x and arbitraryt(s). There are no
explicit formulas known in this case.

(b2) Forr(s) = x andt(s) = swe call the corresponding homomorphismΨ j the Carlitz homomorphism,
because it will play a fundamental role in the study of Carlitz’sq-Fibonacci polynomials. It satisfies

xη ·sη j = qsη j ·xη

or in other words
Ψ j(a)Ψ j(b) = qΨ j(b)Ψ j(a).
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We need the Gaussianq-binomial coefficients

[

n
k

]

(cf. e. g. [2], [5] or [6]). We define them by

[

n
k

]

=
k

∏
i=1

qn−i+1−1
qi −1

for n,k∈ N.

They satisfy the following recursions
[

n+1
k

]

= qk
[

n
k

]

+

[

n
k−1

]

and

[

n+1
k

]

=

[

n
k

]

+qn−k+1
[

n
k−1

]

.

Theq-binomial theorem (see e. g. [2], [5] or [6]) states that forn∈ N

(A+B)n = ∑
k≥0

[

n
k

]

BkAn−k if AB= qBA. (1.8)

Therefore we get

Ψ j(C
n
k(a,b)) =

[

n
k

]

(sη j)k(xη)n−k
. (1.9)

The corresponding polynomials are

an,k, j(s) = q j(k
2)
[

n
k

]

xn−ksk
. (1.10)

(b3) If we chooser(s) = x · (1+s), t(s) = s and j = 2 we have

an,k,2(s) = q2(k
2)
[

n
k

]

sk(1+qks)(1+qk+1s) · · ·(1+qn−1s)xn−k
. (1.11)

We prove this by induction. Forn = 0 and allk it is trivially true. Suppose it holds forn and allk.
By (1.6) we have to show

q2(k
2)
[

n+1
k

]

sk(1+qks)(1+qk+1s) · · ·(1+qns)

= (1+s)q2(k
2)
[

n
k

]

(qs)k(1+qk+1s) · · ·(1+qns)

+sq2(k−1
2 )
[

n
k−1

]

(q2s)k(1+qk+1s) · · ·(1+qn+1s)
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or equivalently
[

n+1
k

]

(1+qks) = (1+s)qk
[

n
k

]

+

[

n
k−1

]

(1+qn+1s).

Comparing coefficients this is equivalent with the recursions of theq-binomial coefficients.

This homomorphism will be used in our treatment of the Al-Salam and Ismail polynomials (cf. [1],
[10]).

2 Abstract Fibonacci polynomials
Now we want to define abstract Fibonacci polynomials of orderj ≥ 1. To this end we consider again the
algebra generated by the Morse code sequences. For each wordw in MC we define a lengthl( j,w) by
l( j,a) = 1, l( j,b) = j andl( j,w1w2) = l( j,w1)+ l( j,w2). We define these polynomialsFn( j,a,b) as the
sum of all monomialsw∈ MC of lengthl( j,w) = n− j +1.

Then it is clear that
Fn( j,a,b) = aFn−1( j,a,b)+bFn− j( j,a,b) (2.1)

and also
Fn( j,a,b) = Fn−1( j,a,b)a+Fn− j( j,a,b)b (2.2)

with initial values
F0( j,a,b) = · · · = Fj−2( j,a,b) = 0, Fj−1( j,a,b) = ε. (2.3)

For j = 1 we have of courseFn(1,a,b) = (a+b)n and for j = 2 we get the abstract Fibonacci polyno-
mials introduced in [7].

A word w of lengthl( j,w) = n− j +1 with k dashes consists ofn− ( j −1)(k+1) letters and all these
occur inFn( j,a,b). Therefore we have

Theorem 2.1. The abstract Fibonacci polynomials of order j≥ 1 are given by

Fn( j,a,b) = ∑
0≤k≤ n− j+1

j

Cn−( j−1)(k+1)
k (a,b). (2.4)

By applying the homomorphismϕ j we get

ϕ j(Fn( j,a,b)) = r(s)ηϕ j(Fn−1( j,a,b))+ t(s)η jϕ j(Fn− j( j,a,b))

or equivalently

ϕ j(Fn( j,a,b)) = ϕ j(Fn−1( j,a,b))r(s)η +ϕ j(Fn− j( j,a,b))t(s)η j
.

This implies that
ϕ j(Fn( j,a,b)) = F∗

n ( j,s,q)ηn− j+1
, (2.5)

where the polynomialsF∗
n ( j,s,q), which we callgeneral q-Fibonacci polynomialssatisfy the recurrence

F∗
n ( j,s,q) = r(s)F∗

n−1( j,qs,q)+ t(s)F∗
n− j( j,q js,q) (2.6)
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or equivalently
F∗

n ( j,s,q) = r(qn− js)F∗
n−1( j,s,q)+ t(qn−2 j+1s)F∗

n− j( j,s,q). (2.7)

The most important special case is given byr(s) = x and t(s) = s. The corresponding polynomials
Fn( j,x,s,q) will be calledCarlitz-Fibonacci polynomialsof order j, because Carlitz has studied the special
casej = 2.

Theorem 2.2. The Carlitz-Fibonacci polynomials of order j satisfy the recursion

Fn( j,x,s,q) = xFn−1( j,x,s,q)+qn−2 j+1sFn− j( j,x,s,q) (2.8)

or equivalently
Fn( j,x,s,q) = xFn−1( j,x,qs,q)+sFn− j( j,x,q js,q) (2.9)

with initial values

F0( j,x,s,q) = · · · = Fj−2( j,x,s,q) = 0, Fj−1( j,x,s,q) = 1.

They are given by

Fn( j,x,s,q) = ∑
0≤k j≤n− j+1

q j(k
2)
[

n− ( j −1)(k+1)
k

]

skxn−(k+1) j+1
. (2.10)

For j = 2 these polynomials have been studied in [4] and [7]. The formula (2.10) follows immediately
from (2.4) and (1.9).

Some examples.

(a) For j = 1 we get by applying theq-binomial theorem

(1.8)

the well-known formula

Fn(1,x,s,q) = (x+s)(x+qs) · · ·(x+qn−1s) = ∑
[

n
k

]

q(k
2)skxn−k

.

(b) Let En = En−1 − qnEn− j with initial valuesE0 = · · · = E j−1 = 1 andDn = Dn−1 − qnDn− j with

initial valuesDi = 1− q[i], i = 0, . . . , j − 1, where[i] denotes[i] = qi−1
q−1 . It is clear thatEn =

Fn+ j−1( j,1,−q j ,q).

Therefore from (2.10) we get

En = ∑
0≤k j≤n

[

n− ( j −1)k
k

]

q j(k+1
2 )(−1)k

which has been shown in [11].

FurthermoreDn = Fn+2 j−2( j,1,−q,q), which gives the second formula shown in [11]

Dn = ∑
0≤k j≤n+ j−1

[

n− ( j −1)(k−1)
k

]

(−1)kqk+ j(k
2).
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(c) If we sett(s) = 1 andr(qks) = xk+1 we get thecontinuantsstudied in [9].

(d) If we choosej = 2 andr(s) = ξ(1+ s), t(s) = −βs for some constantsβ,ξ and denote the corre-
sponding homomorphismχ then

F∗
n+1(2,s) = χ(Fn+1(2,a,b))1 = Un(ξ,s,

β
s
),

where theUn(ξ,s,β) are the Al-Salam and Ismail polynomials (cf. [1] or [10]), since the recurrence
and the initial values coincide.

From (2.4) we get immediately that

Un(ξ,σ,β) = ∑
0≤2k≤n

q2(k
2)
[

n−k
k

]

(−β)k(1+qkσ) · · ·(1+qn−kσ)ξn−2k
,

which is formula (1.12) of [10].

(e) A further interesting example occurs by choosing the homomorphismψ of P into the algebra of
operators onC[x,s] defined by

ψ(a) = x+(q−1)sD, ψ(b) = s, where Dh(x) =
h(qx)−h(x)

qx−x

is the operator ofq-differentiation. The corresponding Fibonacci polynomialsFibn(x,s) have been
studied in [8]. They satisfy the recurrence

Fibn(x,s) = xFibn−1(x,s)+(q−1)sDFibn−1(x,s)+sFibn−2(x,s)

with initial valuesFib0(x,s) = 0, Fib1(x,s) = 1.

They are explicitly given by

Fibn(x,s) =
⌊ n

2⌋

∑
k=0

[

n−k−1
k

]

q(k+1
2 )xn−1−2ksk

. (2.11)

For the proof it suffices to compare coefficients. This leads to the identity

q(k+1
2 )
[

n−k
k

]

= q(k+1
2 )
[

n−k−1
k

]

+(q−1)q(k
2)
[

n−k
k−1

]

[n−2k+1]+q(k
2)
[

n−k−1
k−1

]

which is easily verified. Here[n] denotes[n] = qn−1
q−1 .

Remark.Whereas for the Carlitz–Fibonacci polynomials (2.10) noq-analogue of the Lucas polynomials
with a simple recurrence exists, we have in this case a preciseq-analogue (cf. [8]). It satisfies the same
recurrence

Lucn(x,s) = (x+(q−1)sD)Lucn−1(x,s)+sLucn−2(x,s)

but with initial valuesLuc0(x,s) = 2, Luc1(x,s) = x and is given by the explicit formula

Lucn(x,s) =
⌊ n

2⌋

∑
j=0

[n]

[n− j]

[

n− j
j

]

q( j
2)xn−2 jsj

.
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3 A useful matrix
Let

C :=

(

0 ε
b a

)

. (3.1)

Then it is easily shown by induction that

Cn =

(

Fn−1(2,a,b)b Fn(2,a,b)
Fn(2,a,b)b Fn+1(2,a,b)

)

. (3.2)

As a special case we see that

C2 =

(

b a
ab a2 +b

)

= aC+bI, (3.3)

whereI =

(

ε 0
0 ε

)

is the identity matrix in the ring of matrices overP.

If we assumeb to be invertible then (3.3) can be used to show thatC is invertible and given by

C−1 = b−1C−b−1aI =

(

−b−1a b−1

ε 0

)

. (3.4)

One checks then that (3.2) holds for alln∈ Z. We may therefore also extendFn(2,a,b) to negativen
and obtain

F−n(2,a,b) = (−1)n−1b−1Fn(2,ab−1
,b−1) = (−1)n−1Fn(2,b−1a,b−1)b−1

.

FromC−nCn = I andCnC−n = I we may deduce a general form of the Cassini identities

bFn+1(2,b−1a,b−1)Fn−1(2,a,b)−Fn(2,ab−1
,b−1)Fn(2,a,b) = (−1)nε

and

Fn−1(2,a,b)Fn+1(2,ab−1
,b−1)b−Fn(2,a,b)Fn(2,b−1a,b−1) = (−1)nε.

For the Fibonacci numbers we have the formulaF2n = ∑
(n

k

)

Fn−k. We now give an interesting general-
ization.

Theorem 3.1. For positive n we get the following formula

C2n =
n

∑
k=0

Cn
k(a,b)Cn−k

. (3.5)
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Proof. This holds forn = 1. If it is already known forn the following reasoning gives the result forn+1:

C2n+2 =
n

∑
k=0

Cn
k(a,b)C2Cn−k =

n

∑
k=0

Cn
k(a,b)(aC+bI)Cn−k

=
n

∑
k=0

Cn
k(a,b)aCn−k+1 +

n

∑
k=0

Cn
k(a,b)bCn−k

=
n

∑
k=0

(Cn
k(a,b)a+Cn

k−1(a,b)b)Cn+1−k =
n+1

∑
k=0

Cn+1
k (a,b)Cn+1−k

.

This is a somewhat curious formula. It means in fact that we may compute(aC+bI)n by first treating
C as an indeterminate commuting with botha andb, and then writing theC′s at the rightmost place and
interpret the result as a matrix overP.

By multiplying both sides from the right withCm and comparing coefficients we deduce from (3.5) that

F2n+m(2,a,b) =
n

∑
k=0

Cn
k(a,b)Fm+n−k(2,a,b). (3.6)

In the same way we get for the transposed matrix

D :=

(

0 b
ε a

)

(3.7)

the formulas

Dn =

(

bFn−1(2,a,b) bFn(2a,b)
Fn(2,a,b) Fn+1(2,a,b)

)

(3.8)

and

D2n =
n

∑
k=0

Dn−kCn
k(a,b). (3.9)

From this we deduce as above

Fm+2n(2,a,b) = ∑Fm+n−k(2,a,b)Cn
k(a,b). (3.10)

Remark.These formulas have an obvious combinatorial interpretation:
Fm+2n(2,a,b) is the sum of all words inMC of lengthm+2n−1. Form> 0 each such wordw contains
at leastn letters from the alphabet{a,b} and can therefore be split into a productw = uv, whereu has
preciselyn letters. Ifu containsk dashes then it has lengthn+k.
Thereforev has lengthm+n−k−1.
On the other hand for eachk,0≤ k≤ n, eachuk with k dashes andn−k dots, and each wordvk of length
m+n−k−1 the wordukvk has lengthm+2n−1. Thus we have

Fm+2n(2,a,b) = ∑
k
∑
uk

uk∑
vk

vk = ∑Cn
k(a,b)Fm+n−k(2,a,b).
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For m= 0 andk = n the result is also true becauseF0(2,a,b) = 0. If we split the wordw in the form
w = vuwe get the second formula.

If we applyΨ2 to (3.10) and remember (2.5) and (1.9) we get

Fm+2n(2,x,s,q) = ∑
[

n
k

]

qk(m+n−2)skxn−kFm+n−k(2,x,s,q). (3.11)

A special case of this formula has also been considered by Andrews [3].
In an analogous way we deduce from (3.6) and (1.5) the formula

Fm+2n(2,x,s,q) = ∑
[

n
k

]

q2(k
2)skxn−kFm+n−k(2,x,qn+ks,q). (3.12)

In the same manner we get after some calculation the following doubling formula for the Al-Salam and
Ismail polynomials:

Um+2n(x;a,b) = ∑Um+n−k(x;a,b)qk(m+n−1)

[

n
k

]

(−b)k(1+qm+na) · · ·(1+qm+2n−k−1a)xn−k
. (3.13)

4 The general case
The generalizations forj > 2 are straightforward. We have to consider now thej × j-matrix

C =













0 ε 0 . . . 0
0 0 ε . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . ε
b 0 0 . . . a













.

It is easily seen that
C j = aCj−1 +bI (4.1)

and that
C jn = ∑Cn

k(a,b)C( j−1)(n−k)
. (4.2)

For the transposed matrixD = Ct we obtain analogously

D j = D j−1a+ Ib (4.3)

and
D jn = ∑D( j−1)(n−k)Cn

k(a,b). (4.4)

From these formulas we deduce

Fm+ jn( j,x,s,q) = ∑
[

n
k

]

q j(k
2)+k( j−1)(n−k)+k(m− j+1)skxn−kFm+( j−1)(n−k)( j,x,s,q) (4.5)

and

Fm+ jn( j,x,s,q) = ∑
[

n
k

]

q j(k
2)skxn−kFm+( j−1)(n−k)( j,x,s,qn+( j−1)ks,q). (4.6)
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Remark. It is also easy to prove (4.5) by comparing coefficients of the powers ofx. It is then equivalent
to theq-Vandermonde identity

[

p+ jn
k

]

= ∑
[

n
i

][

p+( j −1)n
k−1

]

qi(p+( j−1)n−(k−i))

(cf. e. g. [5]).
If we start from the companion formula obtained by switching the factors

[

p+ jn
k

]

= ∑
[

n
i

][

p+( j −1)n
k−1

]

q(k−i)(n−i)

we get (4.6).
Both (4.5) and (4.6) can also be verified by induction with respect ton.
It is instructive to verify (4.5) or (4.6) forj = 1.
L. Carlitz [4] has shown that

xnFm(2,x,s,q) = ∑(−1)k
[

k
n

]

qk(m−1)−(k+1
2 )skFm+n−2k(2,x,s,q) (4.7)

holds for allm andn. I shall give another proof of this fact and generalize it to arbitraryj:

Theorem 4.1. The Carlitz-Fibonacci polynomials satisfy

xnFm( j,x,s,q) = ∑
k∈Z

(−1)k
[

n
k

]

qk(m− j+1)−( j−1)(k+1
2 )skFm+n− jk( j,x,s,q). (4.8)

Proof. Let C[z,z−1] be the vector space of all polynomials inz and 1
z. There we consider the linear

operatorsT,Rj ,edefined by

Tzn = zn+1
, Rjz

n = zn+1− j
, ezn = qnzn

.

They satisfy theq-commutation ruleRje·T = qT ·Rjebecause for eachn∈ Z we have

Rje·Tzn = Rjezn+1 = qn+1zn+2− j

and
qT ·Rjezn = qn+1Tzn+1− j = qn+1zn+2− j

.

From theq-binomial theorem we get therefore

(T −q1− jsRje)
n = ∑(−1)k

[

n
k

]

Tn−k(q1− jsRje)
k
.

This implies

(T −q1− jsRje)
nzm = ∑(−1)k

[

n
k

]

Tn−k(q1− jsRje)
kzm

= ∑(−1)k
[

n
k

]

qk(m− j+1)−( j−1)(k+1
2 )skzm+n− jk

.
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Now consider the linear mapσ, defined byσ(zn− j+1) = fn for all n ∈ Z, where fn = αn with an
indeterminateαn if Fn( j,s,x,q) = 0 and fn = Fn( j,x,s,q) else, in order to get a linearly independent set
of vectors. LetH be the vector space generated by thefn, such thatσ becomes a bijection ontoH. Then

σ(T −q1− jsRje)σ−1 fn = σ(T −q1− jsRje)z
n− j+1 = fn+1−sqn−2 j+2 fn+1− j

for all n∈Z. The homomorphismfn →Fn( j,x,s,q) maps the right hand side untoxFn( j,x,s,q). Therefore
the kernel contains allfn with Fn( j,x,s,q) = 0 and our theorem is proved.

Remark.For m= 0 we get as special case of (4.7) that

0 = ∑(−1)k
[

n
k

]

q−k−(k+1
2 )skFn−2k(2,x,s,q).

Whereas forq = 1 the terms(−s)kFn−2k(x,s,1)+(−s)n−kF2k−n(x,s,1) vanish, this is not the case for the
corresponding terms forq 6= 1.

5 General q-Fibonacci polynomials
Finally we want to generalize some results of [7] to the generalq-Fibonacci polynomialsF∗

n ( j,s,q), which
satisfy the recurrence

F∗
n ( j,s,q) = r(s)F∗

n−1( j,qs,q)+ t(s)F∗
n− j( j,q js,q)

or equivalently
F∗

n ( j,s,q) = r(qn− js)F∗
n−1( j,s,q)+ t(qn−2 j+1s)F∗

n− j( j,s,q)

with initial conditions

F∗
0 ( j,s,q) = · · · = F∗

j−2( j,s,q) = 0, F∗
j−1( j,s,q) = 1.

Consider first the casej = 2. Let

A(s) =

(

0 1
t( s

q) r(s)

)

(5.1)

and
Mn(s) = A(qn−1s)A(qn−2s) · · ·A(s). (5.2)

Then we get
Mk+n(s) = Mk(q

ns)Mn(s) (5.3)

and

Mn(s) =

(

t( s
q)F∗

n−1(qs,q) F∗
n (s,q)

t( s
q)F∗

n (qs,q) F∗
n+1(s,q)

)

. (5.4)

Taking determinants we get the Cassini identity

F∗
n−1(qs,q)F∗

n+1(s,q)−F∗
n (qs,q)F∗

n (s,q) = (−1)nt(s)t(qs) · · · t(qn−2s). (5.5)
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If we extend (5.3) to negative indices—which is uniquely possible—we get

M−k(s) =
(

Mk(q
−ks)

)−1

and therefore

M−n(s) =
1

dn(q−ns)

(

F∗
n+1(q

−ns,q) −F∗
n (q−ns,q)

−t(q−n−1s)F∗
n (q−n+1s,q) t(q−n−1s)F∗

n−1(q
−n+1s,q)

)

with dn(s) = (−1)nt( s
q)t(s)t(qs) · · · t(qn−2s). This implies

F∗
−n(s,q) = (−1)n−1 F∗

n (q−ns,q)

t( s
q2 ) · · · t( s

qn+1 )
.

The Cassini identity is a special case of the Cassini-Euler identity

F∗
n−1(qs,q)F∗

n+k(s,q)−F∗
n (s,q)F∗

n+k−1(qs,q) = (−1)nt(s) · · · t(qn−2s)F∗
k (qns,q). (5.6)

For the Al-Salam and Ismail polynomials this identity has been proved in Theorem 3.1 of [10]. Other
special cases are mentioned in [7].

The Cassini-Euler formula is an immediate consequence of (5.3) if we write it in the form

Mk+n(s)Mn(s)
−1 = Mk(q

ns)

and compare the upper right entries of the matrices.

A combinatorial proof. There is also a more illuminating combinatorial proof of this formula, inspired
by [12]. Let m∈ Z andw = c1c2 · · ·ci a Morse code sequence of dots and dashes of total lengthn. If
we put this sequence upon the interval{m,m+ 1, . . . ,m+ n− 1} we say that it starts atm and ends at
m+n−1. We associate with this sequence a weightλ(w) = λ(c1) · · ·λ(ci) by λ(c) = x(q js) if c is a dot
at j, λ(c) = t(q js) if c is a dash starting atj, andλ(c) = 1 if c is ending atj. It is clear that for a Morse
code sequencew starting atm we haveλ(w) = ηmΦ2(w).

Now consider all ordered pairs of Morse code sequences(u,v) whereu starts at 0 and has length
n+k−1 for somek≥ 1 andv starts at 1 and has lengthn−2. Their total weight isF∗

n−1(qs,q)F∗
n+k(s,q).

If there is ani,0≤ i ≤ n−2, where in one of the sequences occurs a dot, there is also a minimalimin with
this property. Then we exchange the sequences starting atimin+1. Note that at this point in each of the
sequences we have either a dot or the initial point of a dash, so that we really can exchange the rest of the
sequences. Thus to each pair(u,v) there is associated a pair(û, v̂) whereû starts at 0 and has lengthn−1
andv̂ starts at 1 and has lengthn+k−2.

It is clear thatλ(u)λ(v) = λ(û)λ(v̂). The total weight of all pairs(û, v̂) is F∗
n (s,q)F∗

n+k−1(qs,q).
The only pairs where this bijection fails are forn even those where inv there are only dashes and inu all

places up ton−1 are occupied by dashes. The total weight of these pairs ist(s)t(qs) · · · t(qn−2s)F∗
k (qns,q).

If n is odd then this bijection fails at those pairs(û, v̂) whereû has only dashes and in ˆv all places up to
n−1 are occupied by dashes. Thus theq-Cassini-Euler formula is proved.
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For j > 2 we consider matrices

A( j,s) =













0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

t( s
q) 0 0 . . . x(s)













and define
Mn( j,s) = A( j,qn−1s)A( j,qn−2s) · · ·A( j,s)

andM0( j,s) = I , the identity matrix.
Then thei-th row, 0≤ i ≤ j −1 of Mn( j,s) is given by

(

t( s
q)F∗

n−1+i(qs), t(s)F∗
n−2+i(q

2s), . . . , t(q j−3s)F∗
n− j+1+i(q

j−1s),Fn+i(s)
)

,

where we only indicate the dependence ons.
To prove this observe thatgn(k,s) := t(qk−1s)Fn−k−1(qk+1s) satisfies the recurrence relation of the

Fibonacci polynomials with the initial conditionsgi(k,s) = δi,k.
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