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A new approach is used to determine the transient probability functions of Markov processes. This new solution
method is a sample path counting approach and uses dual processes and randomization. The approach is illustrated
by determining transient probability functions for a three-state Markov process. This approach also provides a way
to calculate transient probability functions for Markov processes which have specific sample path characteristics.
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1 Introduction
In this paper, we discuss how randomization and dual processes may be employed to determine transient
probability functions of Markov processes. Our approach is based upon counting sample paths. Random-
ization (also known as uniformization) became popular in the 1950’s and 1960’s as a numerical method
for approximating transient probability functions of intractable queueing systems, see [GH85], [Gra91].
In the 1990’s, randomization and lattice path combinatorics were used to obtain analytic solutions of
birth-death processes, see [BKM97], [KMKC97], [LPRS93]. Meanwhile, the theory of dual processes
also emerged in the 1950’s through the pioneering work of Karlin and McGregor and continued to be
developed throughout the 1970’s, see sections 7.4 and 8.2 of [And91] for a nice summary of duality re-
sults. Recently, dual processes have been used, along with randomization and path counting, to simplify
the calculation of transient probability functions of non birth-death, Markov processes, cf. [KMSC02]
and [KRM � 03]. Dual processes are turning out to be a particularly useful tool in the transient analysis
of Markovian systems having an infinite number of states. Standard combinatorial techniques found, for
example, in [Mar98] are sufficient to count the sample paths appearing in this article. However, when
more specialized results in lattice path combinatorics are needed, the classical references are [Moh79]
and [Nar79].

To illustrate the effectiveness of randomization and dual processes in our sample path counting ap-
proach, we require a suitable Markov process to use as an example to demonstrate the methodology. We
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have chosen a simple, three-state Markov process, having transitions diagrammed in Figure 1, as a vehi-
cle to illustrate the sample path counting approach. There are several reasons for this selection. For the
three-state Markov process, the ideas behind this new approach are clear and easy to present. A three
state space is an appropriate setting to introduce the notion of a dual process and first observe how the
analysis simplifies on the dual transition diagram as opposed to the equations required for the original
process. In this article, the analysis on the dual diagram leads to roots of a quadratic whereas the original
process diagram requires the roots of a cubic equation. More generally, however, the major advantage of
dual processes to the solution approach is to replace path counting on a recurrent Markov chain by sample
path counting on an absorbing Markov chain, see [KMSC02] and [KRM � 03]. In addition to finding the
usual transition probability functions, the three-state Markov process also provides an accessible example
to display the path counting approach to calculate transient probabilities having pre-specified sample path
conditions. As an illustration, we determine the probability of going from state 1 to state 2 in time t
without hitting state 0 anytime along the way in the three-state Markov process. This method generalizes
to different Markov processes and provides a technique for future researchers to calculate time-dependent
transitional probability functions having specific sample path restrictions.

2 Transient Probability Functions of a Three-state Markov Pro-
cess

Consider a three-state Markov process having transition rate diagram, Figure 1.
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Fig. 1: A generic 3-state Markov process

where λ0, λ1, µ1, µ2, β and γ are all nonnegative constant rates having Q-matrix

Q �
������

λ0 � β � λ0 β
µ1

���
λ1 � µ1 � λ1

γ µ2
���

µ2 � γ �
	


This Markov process includes several important special cases. For example, if β � γ � 0, we have the
general three-state birth-death process which itself includes as special cases common queueing systems
M/M/1/2 and M/M/2/2. However, to treat the general case when all transitions are possible, we restrict
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ourselves to assuming that λ0, λ1, µ1, µ2, β and γ are all positive quantities. The analysis is similar (and
simpler) if some of these transition rates are zero and therefore missing from the diagram in Figure 1.

The dual process of the process described in Figure 1 is well defined (see section 7.4 of [And91]), if
and only if µ1 � γ and λ1 � β and has transition rate diagram Figure 2.

0 1 2 3
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λ1
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µ2 � γ

λ0 � β

γ

β

Fig. 2: The dual of the process of Figure 1

Again, to consider the case when all pictured transitions occur we suppose that µ1 � γ and λ1 � β. The
Q-matrix of this dual process in Figure 2 is

Q � �
�
��
� 0 0 0 0
λ0 � β

���
λ0 � µ1 � β � µ1

�
γ γ

β λ1
�

β
���

λ1 � µ2 � γ � µ2 � γ
0 0 0 0

	
��



If we call the transient probability functions of the processes shown in Figures 1 and 2, Pi � j � t � and P �i � j
�
t �

respectively, then from duality theory (see [And91]) we have

Pi � j � t � � i

∑
k � 0

�
P �j � k

�
t � � P �j � 1 � k

�
t �	� for i 
 j � 0 
 1 
 2.

For simplicity in presentation, we restrict ourselves to i � 0, so

P0 � j � t � � P �j � 0
�
t � � P �j � 1 � 0

�
t � for j � 0 
 1 
 2. (1)

The dual approach determines P0 � j � t � by finding P �j � 0
�
t � through equation (1).

One essential difference between our original three-state Markov process of Figure 1 and its dual pic-
tured in Figure 2 is that the dual process has two absorbing states. It turns out (as we will see) that having
absorbing states makes it easier to determine transient probability functions of the dual process as com-
pared to the original three state Markov process of Figure 1. Rewriting equation (1) we obtain the three
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relations

P0 � 0 � t � � 1
�

P �1 � 0
�
t �

P0 � 1 � t � � P �1 � 0
�
t � � P �2 � 0

�
t �

P0 � 2 � t � � P �2 � 0
�
t � (2)

This completes the duality part of our sample path counting approach.
On a finite state space, say � 0 
 1 
������ 
 n � 1 � , the transient probability functions Pi � j � t � , of a Markov pro-

cess are always determined by solving the Kolmogorov backward or forward equations (see for instance
[BW90] or [GH85]). The result is a system of differential equations that may be written in matrix form as

P � � t � � QP
�
t � � P

�
t � Q 


where P
�
t � � �

Pi � j � t � � i � j �	� 0 � 1 � 
 
 
 � n � 1 � and Q � �
qi � j � i � j �� 0 � 1 � 
 
 
 � n � 1 � and Q is the transition is the transition

rate matrix of the process. The solution to the Kolmogorov differential equation can then be written

P
�
t � � eQt �

For a general Markov process on a finite state space � 0 
 1 
������ 
 n � 1 � , consider a Markov chain called the
associated randomized chain having one-step transition probabilities defined by:

pi � j � qi � j
m


 i �� j 


pi � i � 1 � qi � i
m



where m is chosen such that maxi � qi � i �� m � ∞. The following theorem, called randomization (or uni-
formization), is a well-known result used primarily for the numerical computation of the transition prob-
ability functions of a Markov process [GH85], [Gra91]. It is stated here for a Markov process on a finite
state space but it applies, more generally, for any Markov process on countable state space, having uni-
formly bounded diagonal transition rates in the Q-matrix (see for instance [And91]).

Theorem 2.1 Suppose a Markov process on � 0 
 1 
������ 
 n � 1 � has transition rate matrix Q with maxi � qi � i ���
m � ∞. Then the transition probability functions Pi � j � t � may be written as

Pi � j � t � � ∞

∑
n � 0

e � mt

�
mt � n
n!

P � n �i � j 


where P � n �i � j is the n-step transition probability of the associated randomized Markov chain.

It should be noted that Pi � j � t � is completely determined once P � n �i � j is “known”. For examples of solving

for Pi � j � t � by finding P � n �i � j , see [BKM97], [KMKC97], [KMSC02], [KRM � 03], [LPRS93].
Applying randomization to the dual process in Figure 2, the following associated Markov chain is

obtained when we assume, without loss of generality, that m � λ1 � µ2 � γ � λ0 � µ1 � β:
where

p0 � λ0 � β
m


 p1 � λ1
�

β
m


 q1 � µ1
�

γ
m


 q2 � µ2 � γ
m
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Fig. 3: The randomization of the process depicted in Figure 2

b � β
m


 c � γ
m


 r � 1
� �

c � p0 � q1 � �
It follows from earlier assumptions that all of these transition probabilities are nonzero. Note that if we
assumed m � λ0 � µ1 � β � λ1 � µ2 � γ, then the loop would appear on state 2 instead of state 1 in Figure 3.
If m � λ0 � µ1 � β � λ1 � µ2 � γ, there would be no loop at either state 1 or 2. Randomization gives us

P �j � 0
�
t � � ∞

∑
n � 0

e � mt

�
mt � n
n!

P � � n �j � 0 
 for j � 0 
 1 
 2 
 3 


where P � � n �j � 0 is the n-step transition probability of going from state j to state 0 in Figure 3. We now find

P � � n �j � 0 by a one-step backward analysis. This will lead to P �j � 0
�
t � , for j � 0 
 1 
 2 
 3 which in turn gives us

P0 � j � t � by equations (2). On Figure 3,

P � � n � 1 �
1 � 1 � rP � � n �1 � 1 � p1P � � n �1 � 2 and P � � n � 1 �

1 � 2 � q1P � � n �1 � 1 �
So,

P � � n � 1 �
1 � 1 � rP � � n �1 � 1 � p1q1P � � n � 1 �

1 � 1
which is a constant coefficient, second order, linear recurrence relation. Therefore, by the theory of linear,
constant coefficient recurrences, see [Mar98],

P � � n �1 � 1 � Arn
1 � Brn

2 
 for n � 0,

where A and B are constants determined by the initial values of the recurrence and r1 
 r2 are roots of the
quadratic x2

�
rx
�

p1q1 � 0, that is,

r1 
 r2 � r
���

r2 � 4p1q1

2
� (3)

Here,

A � r
�

r2

r1
�

r2
and B � r1

�
r

r1
�

r2
�
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Note that r1 
 r2 �� 1. Similarly, by combining

P � � n � 1 �
1 � 0 � P � � n �1 � 0 � p0P � � n �1 � 1 � bP � � n �1 � 2 


with the preceding recurrence relations yields

P � � n � 1 �
1 � 0 � P � � n �1 � 0 � p0P � � n �1 � 1 � bq1P � � n � 1 �

1 � 1 �

After re-indexing, this equation may be written as

P � � k � 1 �
1 � 0

�
P � � k �1 � 0 � p0P � � k �1 � 1 � bq1P � � k � 1 �

1 � 1 �

Summing over k from 1 to n
�

1 gives

P � � n �1 � 0
�

P � � 1 �1 � 0 � n � 1

∑
k � 1

�
p0P � � k �1 � 1 � bq1P � � k � 1 �

1 � 1 �
� n � 1

∑
k � 1

�
p0 � Ark

1 � Brk
2 � � bq1 � Ark � 1

1 � Brk � 1
2 � � �

This gives

P � � n �1 � 0 � p0 � n � 1

∑
k � 1

�
A � p0 � bq1

r1 � rk
1 � B � p0 � bq1

r2 � rk
2 �

� p0 � A � p0 � bq1

r1 � 1
�

rn
1

1
�

r1
� B � p0 � bq1

r2 � 1
�

rn
2

1
�

r2
(since r1 
 r2 �� 1)

� � p0 � A
�
p0 � bq1r � 1

1 �
1
�

r1
� B

�
p0 � bq1r � 1

2 �
1
�

r2 	� � A
�
p0 � bq1r � 1

1 �
1
�

r1 	 rn
1

� � B
�
p0 � bq1r � 1

2 �
1
�

r2 	 rn
2 (for n � 2).

Note that P � � 0 �1 � 0 � 0 and P � � 1 �1 � 0 � p0. Let

C0 � p0 � A
�
p0 � bq1r � 1

1 �
1
�

r1
� B

�
p0 � bq1r � 1

2 �
1
�

r2



C1 � � A
�
p0 � bq1r � 1

1 �
1
�

r1
and C2 � � B

�
p0 � bq1r � 1

2 �
1
�

r2
�

Note that C0 � p0
�

C1
�

C2. Substituting these results into the randomization formula and using the
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Taylor series for the exponential function produces

P �1 � 0
�
t � � ∞

∑
n � 0

e � mt

�
mt � n
n!

P � � n �1 � 0

� e � mtmt p0 � ∞

∑
n � 2

e � mt

�
mt � n
n! � C0 � C1rn

1 � C2rn
2 �

� e � mtmt p0� e � mt
�
C0
�
emt

�
1
�

mt � � C1
�
emr1t

�
1
�

mr1t � � C2
�
emr2t

�
1
�

mr2t � �� C0 � � mt p0
� �

C0 � C1 � C2 � � � C0mt � C1mr1t � C2mr2t � � e � mt

� C1em � r1 � 1 � t � C2em � r2 � 1 � t
� C0

�
p0e � mt

�
� C0

�
p0 � C1r1 � C2r2 � mte � mt � C1em � r1 � 1 � t � C2em � r2 � 1 � t �

In a similar way, P �2 � 0
�
t � can be found by using recurrence relations to find P � � n �2 � 0 . From Figure 3, it follows

that
P � � n � 1 �

2 � 0 � P � � n �2 � 0 � p0P � � n �2 � 1 � bP � � n �2 � 2 
 P � � n � 1 �
2 � 1 � rP � � n �2 � 1 � p1P � � n �2 � 2 
 P � � n � 1 �

2 � 2 � q1P � � n �2 � 1 �
So,

P � � n � 1 �
2 � 1 � rP � � n �2 � 1 � p1q1P � � n � 1 �

2 � 1 

is the same constant coefficient, second order, linear recurrence relation found earlier. So, as before

P � � n �2 � 1 � Crn
1 � Drn

2

for n � 0, where C and D are constants determined by the initial values of the recurrence, and r1 
 r2 are

given in (3). Noting that P � � 0 �2 � 1 � 0 and P � � 1 �2 � 1 � p1 leads this time to

C � p1

r1
�

r2
and D � p1

r2
�

r1
� �

C �

Substituting this expression for P � � n �2 � 1 into P � � n � 1 �
2 � 0 � P � � n �2 � 0 � p0P � � n �2 � 1 � bq1P � � n � 1 �

2 � 1 gives

P � � k � 1 �
2 � 0

�
P � � k �2 � 0 � p0P � � k �2 � 1 � bq1P � � k � 1 �

2 � 1� p0
�
Crk

1 � Drk
2 � � bq1

�
Crk � 1

1 � Drk � 1
2 �� p0C

�
rk

1

�
rk

2 � � bq1C
�
rk � 1

1

�
rk � 1

2 � �
Summing,

P � � n �2 � 0
�

P � � 1 �2 � 0 � n � 1

∑
k � 1

�
p0P � � k �2 � 1 � bq1P � � k � 1 �

2 � 1 �
� n � 1

∑
k � 1

�
p0
�
Crk

1 � Drk
2 � � bq1

�
Crk � 1

1 � Drk � 1
2 � �

� C
n � 1

∑
k � 1

�
p0
�
rk

1

�
rk

2 � � bq1
�
rk � 1

1

�
rk � 1

2 � � �
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Note that P � � 1 �2 � 0 � b. This produces

P � � n �2 � 0 � b � C
n � 1

∑
k � 1

� � p0 � bq1

r1 � rk
1

� � p0 � bq1

r2 � rk
2 � �

From here, it is seen that the analysis goes forward precisely as in the preceding calculation for P � � n �1 � 0 with
A and B being replaced by C and D

� � �
C � . Let

D0 � b � C
�
p0 � bq1r � 1

1 �
1
�

r1
� D

�
p0 � bq1r � 1

2 �
1
�

r2



D1 � � C
�
p0 � bq1r � 1

1 �
1
�

r1
and D2 � � D

�
p0 � bq1r � 1

2 �
1
�

r2
�

Then substituting these results into the randomization formula and using the Taylor series for the expo-

nential function together with P � � 0 �2 � 0 � 0 and P � � 1 �2 � 0 � b produces

P �2 � 0
�
t � � D0

�
be � mt

�
� D0

�
b � D1r1 � D2r2 � mte � mt � D1em � r1 � 1 � t � D2em � r2 � 1 � t �

This expression and the previously determined expression,

P �1 � 0
�
t � � C0

�
p0e � mt

�
� C0

�
p0 � C1r1 � C2r2 � mte � mt � C1em � r1 � 1 � t � C2em � r2 � 1 � t

may be substituted back into (2) to give the explicit transient probability functions for the three-state
Markov process. Note: for i 
 j � 0 
 1 
 2, Pi � j � t � may also be found in the same manner.

3 A non standard transient probability calculation
We again consider the three-state Markov process having transition rate diagram, Figure 1. This time, we
assume m � λ0 � β, m � λ1 � µ1 and m � µ2 � γ. Randomizing the process described in Figure 1 using
these assumptions, gives the following Markov chain, diagrammed in Figure 4, where

p0 � λ0

m

 p1 � λ1

m

 q1 � µ1

m

 q2 � µ2

m



b � β
m


 c � γ
m


 r1 � 1
� �

p1 � q1 � 
 r2 � 1
� �

c � q2 � �
Note: these quantities are defined differently here than in Section 2.

We wish to calculate the transient probability function �P1 � 2 � t � , which is defined to be the probability of
starting at state 1 and ending at state 2 in Figure 1, after some time t, but never reaching state 0 along the
way. Using the one-step backward analysis as before, we have

�P � n � 1 �
1 � 2 � p1 �P � n �1 � 1 � r2 �P � n �1 � 2 
 �P � n � 1 �

1 � 1 � r1 �P � n �1 � 1 � q2 �P � n �1 � 2 �
So,

�P � n � 2 �
1 � 2

� �
r1 � r2 � �P � n � 1 �

1 � 2 � �
r1r2

�
p1q2 � �P � n �1 � 2 � 0 �
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0

1 2

p0

q1 b

c

p1

q2

r1 r2

Fig. 4: The randomization of the particular case analyzed in this section

By the theory of linear constant coefficient recurrence relations, �P � n �1 � 1 � Eρn
1 � Fρn

2, where E and F are
determined by the initial values of the recurrence and ρ1 
 ρ2 are the distinct roots of the characteristic
equation of this recurrence relation, x2

� �
r1 � r2 � x � r1r2

�
p1q2 � 0, which are

ρ1 
 ρ2 � r1 � r2
� � �

r1
�

r2 � 2 � 4p1q2

2
�

It works out that
E � p1� �

r1
�

r2 � 2 � 4p1q2

and F � �
E. Thus, �P � n �1 � 2 � E

�
ρn

1

�
ρn

2 � for n � 2. Substituting this into the randomization formula and

using the Taylor series for the exponential function along with �P � 0 �1 � 2 � 0 and �P � 1 �1 � 2 � p1 produces

�P1 � 2 � t � � p1e � mt � E
�
em � ρ1 � 1 � t � em � ρ2 � 1 � t � � Em

�
ρ2
�

ρ1 � te � mt �

Remarks
1. �P1 � 1 � t � may be found using the same method. In queueing theory, �P1 � 1 � t � � �P1 � 2 � t � is the probability

of starting with one customer in the system and being busy throughout the time interval � 0 
 t � . This
is called the busy period distribution, see [GH85].

2. The reader is invited to generalize the example within Section 3 to determine the probability of
traveling from state 1 to state 2 in time t hitting the 0 state exactly once along the way for the
three-state Markov process of Figure 1.

3. In Section 2 on solving the transient probability functions, in order for the dual process to have
positive off-diagonal elements we assumed µ1 � γ and λ1 � β. Alternatively, it suffices to have
µ1 � γ and µ2 � λ0 or λ1 � β and µ2 � λ0. These alternative conditions emerge from re-labeling the
states and insisting that all off-diagonal elements be positive for the newly shuffled Q-matrix. For
the sake of generality, it is desirable to relax as many Q-matrix prerequisites as possible.
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