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We consider two probability distributions on Boolean functions defined in terms of their representatiamd/dry

trees (or formulas). The relationships between them, and connections with the complexity of the function, are studied.
New and improved bounds on these probabilities are given for a wide class of functions, with special attention being
paid to the constant functidfirue and read-once functions in a fixed number of variables.
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1 Introduction

An and/or formulais a Boolean formula formed from literals (variables and their negations) using binang v
connectives (and brackets). An example is

((Z1 Vz2) ANZ3) V (z1 A Z3) .

Corresponding to the formula is a binary planar (Catalan) tree with its leaves labelled by literals and its internal nodes
labelled by connectives. (In the above example the root is lab#&lldAssigning truth values at the leaves and
thinking of the internal nodes as logic gates, suctaad/or tree computes at its root the truth value of the Boolean
function defined by the formula. In the example above, the functian,i®r more precisely, the same function as is
defined by this much simpler formula.

We will use the termsand/or formula andand/or tree synonymously.n will denote the number of variables
r1,...,%n from which the variables in the formula are to be drawn. $keem is the number of occurrences of
literals (i.e., the number of leaves). As the tree is binary, the number of connectives (internal nades)li@nd
the total number of nodes &n — 1. ThecomplexityL(f) of a Boolean functiory is the minimal size of aand/or
formula definingf.

Fix n, the number of variables. One natural way to define a probability distribution on Boolean funttotslet
T, denote the total number ahd/or trees of sizen, letT,,,(f) be the number of these which compyfteand put

P(f) = tim_ Inlf)
Lefmann and Savick[4] seem to have been the first to show explicitly that for each choieetlois limit distribution
P (which depends implicitly om) is well defined, i.e., that there is convergence forfaland that in fact the limit
P(f) is always strictly positive. A rather different proof can be given using the methods of Woods [9], who established
the analogous results for non-binanyd/or trees which take account of the associativity and commutativity afd
V, and whose size is taken to be the total number of nodes.

A second natural probability distribution( f) on Boolean functiong is obtained by generating @md/or tree by
means of a random process. Start with the root and throw a fair coin. With probabiityecide to make the root a
leaf, throw a fair2n-sided die to decide which literal will be its label, and then stop. With probali}iymake the
root an internal node and then throw the coin again to decide which conngctive will be its label. Then repeat
the process with each of the two “daughter” nodes in place of the root.

Technically this is &ritical Galton—Watson branching proces#/ith probability1 the tree is finite. The probability
«(f) is simply defined to be the sum of the probabilities associated with those dimitler trees that computg.
Notice that as with the limit distributio®, ther distribution depends on. We will be interested in their asymptotic
behaviour as. — oo, as well as actually calculating or estimating probabilities whés small. In this direction, in
an early, but very interesting paper (predating the work of Lefmann and Sa\Rekis, Venkovsa and Wilmers [7]
proved among many other things thah, ... P(f) = 0 for the constant functiong € {True, False}.

The 7 distribution was first studied explicitly by Chauvin, Flajolet, Gardy and Gittenberger41§ definitely
different from P (even asymptotically fon — oo, as we will see below). However as they found, there are some
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important relationships between these distributions. The extensive calculations reported in [1] led them to also make
conjectures regarding the relationship between the numerical valuegfdfand P(f) for particular functionsf.

Some of these conjectures are settled here. We will proveltbas > = (f) for f € {True, False}, while on the

other hand, iff is a read-once function of some fixed set-ofariables then for. sufficiently large,P(f) < w(f).

For other variants adind/or formulas and the corresponding probability distributions see [2],[1] and [8]. Analogues
of P(True) have also been studied for tree-like formulas involving other connectives [6, 10, 11, 3, 5]. Mostly the
results are restricted to explicit small valueswfExceptionally Moczurad, Tyszkiewicz and Zaionc [6] have shown
that for formulas inn variables (without negation) having implication as the only connective, the probability of a
tautology P(True) lies in the interval[(4n + 1)/(2n + 1), (3n + 1)/(n + 1)?]. However they do not seem to
address the convergence issue for general values & a similar vein, Matecki [5] has studied the probability of
Truewhen equivalence is the only connective, obtaining results valid for.all

Which of these various models is of most significance? Well it depends on the situation. If short formulas are
of importance, ther distribution may be suitable. If the formulas are large, tiiewhich is, roughly speaking,

« conditioned on the sizex being large) is more appropriate. As noted in [6], there is a correspondence between
intuitionistic implicational tautologies (without negation) and inhabited typ@séalculus. (However not all Boolean
functions can be defined using only implication and variables.) In another arena, if a close relationship with the
underlying Boolean function is needed, e.g., if the real aim as in [8] is to estimate the number of Haalgtams
defined byand/or formulas of some type, then it may be desirable to regard formulas as being “the same” if they can
be converted into each other by means of the commutative and associative lawarfds/. And so on. A decided
advantage of the particular distributionsand P considered here is that they are less complicated to analyse than
some of the others, while presumably often having qualitatively similar properties.

One reason for interest in probability distributions for Boolean functipisthe suggestion (appearing in [9] for
an analogue ofP(f)) that the probability off might be related to its complexitli(f). Lefmann and Savigk[4]
proved that forP( f) this is indeed the case. In fact for some constant0,

4

where the upper bound incorporates an improvement from Chauvin, Flajolet, Gardy and Gittenberger [1]. Lefmann
and Savick prove their bounds by associating the limit distributiBrwith a distribution on certain sets ahd/or
trees having amfinite branch. Here we will sketch an alternative proof of a sharper lower bound by using generating
series (and avoiding infinite trees). As a bonus, the proof also provides an analogous lower baifd.for

The plan of the paper is as follows: In Section 2, the connections between the two probability distributions and the
generating functions for classesarfd/or trees are recalled. These connections, which underlie the whole paper, are
used in Section 3 to give improved lower boundszdf) and P(f) in terms of the complexity.(f) and number
k(f) of minimal size representations ¢f The main idea is to deal with a subset of the trees which conipute
which is both simple to describe and sufficiently large. Then in a move of particular significané farthe lower
bounds for this set of tautologies are “transferred” to obtain lower bounds for any Boolean fufictioi$ection 4
we consider a variety of simple Boolean functions, comparing our lower bounds numerically with the exact values for
smalln, and with the Lefmann/Savi§lower bound (1) whem is large. This is followed in Section 5 by comparisons
between thexactvalues of the probabilitie®(f) and«(f) for constant and read-once functiofis We conclude
with some discussion and a conjecture in Section 6.

1 (8171)“”“ < P < (4 001/ eap (~eEL ). ®

2 Generating functions for and/or trees
The generating functiof’(z) = >_>°_, T,,2™ enumerating the class of all and/or trees by sizen satisfies
T(z) =2nz+2T(z2)%

Solving this gives

T(z) = i (1—-+v1-16nz). )
Expanding as a power seriesznsing the binomial theorem shows that the numbearaf/or trees of sizen is
(16n)7rz

Tm _ 2'm71 2 ”Lcm7 ~o
(2n) ! 8m/mm

whereC,,—1 is the(m — 1)th Catalan number. Clearlj/(z) has radius of convergenge= 1/(16n), andT(p) =
1/4. (More details of items in this section can be found in [1].)

[e']

Similarly for any clas€ of and/or trees, letE(z) = > | E,, 2™ denote the corresponding generating series. It
is easy to check that for amnd/or treer of sizem, the probability that- is the tree generated by the Galton—Watson
process described above2is?™ 127+ (2n) ™™ = 4 p™, so the definition ofr can be extended 6 by putting

m(E€) =4 Y Enp™ =4E(p),

m=1
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which always converges. In genet}, /T, need not converge to a limi(£). Howeverif this limit does exisit
must satisfy
En . E'(2)
P)= lim =/ =1 .
(5) mgnoo Tm ziglf T'(Z)

This follows from an easily prove@lbelian theoremvhich uses only that the derivatiZ&’ (z) has positive coefficients
and diverges at = p. To establish convergence, we will appeal to the following standard lemma, the idea being that
(under certain conditions) if(z) has the same form of singularity atas (2) then its coefficients will be asymptotic
to those offs T'(z), for some constante.

LEMMA 1 Let £ be a class ofand/or trees. If the corresponding generating functid}z) has on the circle
|z| = p, a single dominant algebraic singularity at = 1/(16n), and aroundp has an expansiorF(z) =

(ag — Bev/1 —16n2) /4 + o(+/1 — 16nz), then

m(€) = as =4E(p);  P(€) =fe = lim E'(2)

z—p— T’(Z) ’ (3)

For any Boolean functioyf we will denote byZ; the class of aland/or trees which computé. T (z) will be the
corresponding generating function. As noted in [1] (cf. [9]), on the cirgle= p, T (z) always has only an algebraic
singularity atp = 1/(16n), with

Ty(z) = 1 (ar = /1= 2/p) + 0z~ p)

nearp for some constants;, 3y > 0. So by the LemmaP(f) exists,P(f) is positive, and

- = . = = lim Tf/(Z)
() =ag=4T(p):  P(f)=Fy = lim 7575

3 Improved lower bounds

Forn variables, there is a system 2t quadratic equations in the generating functidh$z) (with f ranging over
all possible Boolean functions of variables) which in principle can be solved for these generating functions.
(See [1] for the details.) The underlying idea of our lower bound method is that simpler equations which are easier to
solve can still give interesting bounds (instead of exact values) for the probabilities. Rather than work with the whole
set7; of all trees that computg, we will work with a more easily described subggtC 7, obtaining lower bounds
onm(f) and (providedP(Ey) exists) onP(f).

Let us begin by considering the set of afid/or trees, and @ropersubse€r,vue C Trrue. SOETrve IS @ Set of
someof theand/or trees that comput&rue. Errv. is defined (in obvious notation) by

gT'rue = ®1§i§n(\/7xi7£i) D ... @1S'LS7’L (V7i'i7mi) (&3] (/\75T'rue7€T'rue) D (\/,gT'rue,gT'rue)
&® (\/7 gTrue, T \ gTrue) ©® (\/, T \ gT'ruey gTrue)~

A symmetrical equation defines a $&t,;s. consisting of some of the trees that compHhigse. Now let Eryye(2)
be the generating function that enumerates the€set.. It satisfies the following equation, in which(z) is the
function enumerating alind/or trees om: literals:

Errue(z) = 2nz? + 2E7rue(2)T(2).
We obtainEr,..(z) = (2n2%)/(1 — 2T(z)) = 2T(z); hence

p(1 —+/1—16nz)
4

for z nearp. Using Lemma 1 (the conditions for which are clearly satisfied) we can read(6ff,..) = p,
P(Errue) = p. Recalling thap = 1/(16n), these give the common lower bound:

ETrue(Z) = + O(Z — p)

THEOREM2 w(True) > P(True)

L ; > —.

16n — 16n

Of course the same bounds applyHalse. Notice also that a&r,..(z) = zT(z), we even get a lower bound on
the numbefT;,, (T'rue) of trees of sizen which computel'rue, namely

Ty (True) > 2™ %(2n)™ 'Crn_o whereC,,_» is a Catalan number.

Now define a subset, of the trees that compute the literaby

595 = {:r}@ (\/75:075%) EB (/\75567596) EB (/\78T7‘ue,57)) @ (/\75$75T7‘ue)
&) (\/7 5False7 5:6) ©® (\/7 5:6, 5Fa,lse)~
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The generating functioft,, (z) for this set satisfies the equation
Eo(2) = 24 2E.(2)? + 4E4 (2) Erruc(2),

which gives

E.(2) = i (1 —z+2V1—16nz — \/1 — 10z + 222 — 16n23 + 22(1 — 2)V1 — 16n2) .

ExpandingFE. (z) near its singularity = 1/(16n) gives
E.(z) = i (2 — B2V/1—16nz) + O(1 — 16nz2),
with o, = (16n — 1 — /1)/(16n) and B, = a.//1 = paz/+/1—10p + p2, wheren = 256n° — 160n + 1.

Hence
16n —1— 1 3
7('(3:') > 7\/77 -

16n T dn + 64n2
What we have just done for literals can be mimicked for any Boolean fungti8{ T'rue, False}. Let us consider
a Boolean functiorf ¢ {True, False}, let L(f) be its complexity (i.e., the number of leaves in the trees of smallest
size representing), M( f) be the set of such trees of minimal complexity, &td) = |M ()| the number of these
trees. Next define a subsgt of the trees that computéby

gf = M(f) @(Avgfagf)@(V7vagf)@(/\’gf7gT'fu€)
©® (/\, gTrue, gf) @ (V» gfv gFalse) ©® (Va gFalsev gf)
The generating functiols (z) of £ satisfies
Ef(2) = k(f) 2" 4 2 E}(2) + 4 B¢ (2) Errue(2) .

Using the form ofEr,..(z) found above, it can be checked thgt(z) has only one dominant singularity ¢ = p,
namely atp, and that this singularity is algebraic. (We omit the details.) Expandipg) aroundp, we get

By(2) = § (ar = Brv/T=2/p) +0(1 = 2/p),
where, settingu(f) = 8k(f)p=“") /(1 — p)?, we have

1
o=t (L VITD)s = ().
( ) L—u(f)
Finally we apply Lemma 1 to get lower bounds for the probabilifiég) andx(f):

16n —1—/n 1 1 4
1/n3): P > = 1 .
+O0(1/n"); (x) > 16n./7 64n2 + 12813 +0(1/n")

THEOREM 3 For any non-constant Boolean functignif L(f) is the complexity of andk(f) is the number of trees
of minimal sizeL( f) that computef, then

1
m(f) > (1 —p) (1— 1_,11/(.)0)); P(f)>p<l—/j,(f)_1)7
wherep = 1/(16n) and

_ 8k(f) p"D

From this Theorem, we can obtain weaker bounds, easier to compute, but (in the form inkgl#jipngsymptotically
equivalent for larges.

4k 2 4k 1
COROLLARY 4 7(f) 2 (16n(){)(f) = Bn)ED) P(f) 2 (16n)(L]2>+1 z Bn)ED+1

Here we have used the inequalityf) > 2X(Y)~1. This is related to the “folklore” fact that minimahd/or trees

for f are rigid, and can be proved by induction bf). The case.(f) = 1is trivial. If L(f) > 1, observe that in
a tree representation gfof minimal size, the root has two daughters computfn@nd f>, say. Eitherf = f1 V f2
or f = fi A fo. Notice thatf, # fo. Forif fi = fathenf = fi = f» and the representation ¢fcannot be
minimal. Clearly the two daughters must also be of the minimal siZ¢s) andL(f2), andL(f) = L(f1) + L(f2).
By the induction hypothesigi(f1) > 2°UV =1 andk(fy) > 2¢(2)~1 giving 2 (F1)~1 2L(2)=1 distinct minimal
trees computing’. In each case we can exchange the daughter subtrees without modifying the function computed.
As f1 # f2 the representations g¢fresulting from doing this are atlifferent so

k‘(f) > 2 2L(f1)—1 2L(f2)—1 _ 2L(f1)+L(f2)—1 _ 2L(f)—1 )

If we know k(f), or a better lower bound of( f), we may get a substantial improvment on the bound of Lefmann
and Savick for P(f). (See the numerical results below.) Even if we do not kixgyi), we still get at least four times
their bound.
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4 Numerical results

For several Boolean functions, we will compare our lower boundA6f) with that of Lefmann and Savigk and
numerical values of our best lower bounds with the exact values for3.

e Forthe constant&rue andFalse, w and P are greater thaih/(16n), which is much better than Lefmann and
Savick’s bound of1 /(2 048n3).

|| 7(True) | Lower bound onr(T'rue) || P(True) | Lower bound onP(T'rue)
n=11 0.1339 0.0625 0. 2886 0.0625
n =2 || 0.08642 0.03125 0.2094 0.03125
n =3 || 0.0642 0.015625 0.165 0.015625

e Foraliteralz, k(z) = L(x) = 1, and Lefmann and Savigls bound onP(z) is 1/(256n2). Our lower bound
onP(z)is

1 1 1
Px) > — 1|~
) = 16, ( I ) 64n?
2n(1-1/(16n))2

The lower bound omr (z) is

1 1 1
(@) 2 (1_W) <1_\/1_2n(1—1/(16n))2>N4n'

Let us see how these bounds compare with the actual values<os:

| 7(z) | Lower bound onr(z) || P | Lower bound onP(z)
n=1 1 0.3660 0.3219 0. 2113 0.03268
n =21 0.1595 0.1390 0.06717 0.005235
n =3 | 0.0994 0.08916 0.0314 0.002087

e For the functiond; A Iz orly V Iy (for literalsl, # I2,12), we have thaf.(f) = 2 = k(f). Lefmann and
SavickK's bound onP(l; A l2) is 1/(2048 n*). Our lower bound is

1 1 1
i A R
Phint) = 1 (\/1 ) 512n3
T6n2(1— 1/(16n))2

and the lower bound on(l1 A l2) is

1 1 !
(i Alz) > (1 - m) (1 - \/1 T 16n2(1 — 1/(16n))2> ~ san2

Again we compare these lower bounds with the actual values fer2, 3:

H 7T(l1/\l2) ‘ L. B. on7r l1 /\lz H ll/\lz ‘ L. B. onP(ll /\lz)
n =2 (| 0.02345 0.008098 0.03848 0.0002634
n=23 0.00355 0.00995 0.7586 104

e Forafunctionly Al2 Als (with 11,12, I3 literals in distinct variables).(f) = 3 andk(f) = 12. Lefmann and
Savicky’s bound onP (i1 Al2 Als) is 1/(16 384n*). Our lower bound is now

P(l1/\l2/\l3)216% ! 3 _1>N40936n47
\/1—m

and the lower bound on(l; A lx Als) is

1 3 3
S . . ~
w(li ANl2 Nl3) > (1 16n) (1 \/1 128n3(1 — 1/(1671))2) 256m3”’

The exact values far = 3 are:

| 71 AlaAls) | L.B.onm || P(luAlzAls) | L.B.onP
=3[ 0.00282 | 0.0004433 || 0.00768 | 0.94310°°
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e For a functioniy A (I2 V I3) (with I3, 2, 3 literals in distinct variables), of similar complexify(f) = 3 but
smallerk(f) = 4, 7(f) > 1/(256n>). Lefmann and Savigks bound onP(l; A (12 V I3)) is 1/(16 384 n*),
i.e. the same as for the functions of the type\ > A 5. Our lower bound is

1 1 L
P > ~ 1~ Z096nt
(i A(l2 Vig)) 2 Ton (\/1 — ) 4096n4’
128n3(1—1/(16n))2

and the lower bound on(l; A (I2 V 13)) is

1 1 1
(1 - ﬁ) (1 - \/1 T 128n3(1 — 1/(16n))2> ™ 256n3

We check the lower bounds against the exact values fer3:

| 7(luA(laVis)) | LB.onw || P(liA(l2VIs)) | L.B.onP
n =3 || 0.000817 | 0.0001477 || 0.00211 | 0.3144107°

e For the functionf = z1 zor z2, L(f) = 4 andk(f) = 16; we basically have two minimal representations:
(z1 AN T2) V (T1 A x2) and(z1 V x2) A (Z1 V T2), and each representation gives eight different trees. This
gives:

1. Forn = 2: the lower bound onr is 0.630 10~* and the lower bound o is 0.203 10~ (the actual
values aré).000635 for = and0.00229... for P).

2. Forn = 3: the lower bound omr is 0.123 10~ and the lower bound o is 0.261 10~° (the actual
values are).635 10~ for = and0.192 10~ for P).

3. Forlargen, w(z1 zor z2) > 1/(1024n*) and P(z1 zor x2) > 1/(16 384n°).
All these numerical computations show that the lower boundsPfgf) are quite far from the actual values of the

probabilities, when we know them! Far( f) the gap is not quite so large, perhaps hinting at the major contribution
of trees of the minimal siz&( f) to both(f) and our lower bound.

5 Comparison of P(f) and = (f)

We will now compare the probabilitieB(f) and«(f) for some particular Boolean functions If S is a set of
Boolean functions, writd’(S) = >_ ;¢ P(f).

LEMMA 5 (PaRIS, VENCOVSKA AND WILMERS [7]) Fix k in the interval 0 < k& < 1. Let S(k) be the set of
all Boolean functionsf : {T'rue, False}" — {True, False} such tha2™" |{x € {True, False}" : f(x) =
True}| = k.ThenP(S(k)) — 0asn — oc.

Let f be a function ofr1, z2, . . ., z.. Consideringf to be a function ofc1, z2, . . ., 2, which does not depend on
the variablesc,+1, 42, . . ., z,, the probabilitiesP( f) and=(f) make sense for ait > r.

THEOREM6 Suppose that is fixed andf (z1, z2, . . ., z) is any Boolean function that depends essentially on all of
the r variablesz1, z2, ..., z-. ThenP(f) = o(n™") asn — oo.

PROOF As the functionf depends essentially on all of , z2, . . ., x,, distinct choices of < i1 <2 < --- <4, <
n correspond talistinctfunctionsf (z;, , zs,, - - ., zi,.) . Let S be the set of all such functions. Clearly,

n

Ps)= (") P

andS C S(k) for the fixed real numbek = 27" |{x € {True, False}": f(x) = True}|. Applying Lemma 5
shows thatP(S) < P(S(k)) = o(1). Consequently,

P(f) = P(S)/( :f ) =o(n™"). O

An and/or formula isread—oncef each variable appears at most once (possibly negated). It is well known (see
e.g. [8]) that the function defined by a read—once formula depends essentially on all the variables appearing. A
Boolean function isead—oncef there is some read—onead/or formula which defines it.

T

THEOREM 7 Fix r and suppose thaf(z1,z2,...,z,) is any read—once Boolean function efvariables. Then

P(f)

lim —= = 0 so certainlyP(f) < =(f) oncen is sufficiently large.

neo ()
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PROOF. We can assume thgtdepends essentially on all of the variables x», . .., x,. By Theorem 6, it is only
necessary to show that(f) > ¢,n™" for some constant, > 0. However we saw in Section 3 that(f) >
2 (8n)~ L) and asL(f) = r for the read—once functiof, this lower bound is indeed of the forepn ™" O

For exampleP(z1) < m(x1), P(z1 V z2) < w(z1 V x2) andP(Z1 V (T2 Ax3)) < w(Z1 V (T2 A x3)) oncen is
large enough.

We now return to considering the probability thatard/or formula is a tautology.
THEOREM8 P(T'rue) > w(True) for all n.

PROOFE As before, 7, 7, and 7r,.. Will denote respectively the class of ahd/or trees, the class of all trees
computing the literak, and the class of all trees computing the constant fundiiae The corresponding generating
functions arel’(z), T, (z) andTr,.(z). Consider the class

g = Bi<i<n(V, Tz,, Tz,) B... Di<i<n(V, 7Tz, 7Tz;)
©® (/\, TTrum TTrue) ©® (\/7 TTruey TTrue)
@ (\/7 T \ TTrue, TT'r‘ue) ® (\/, TT'r‘ue, T \ TT'rue)-

ClearlyG C 7rrue. The generating seri€s(z) for G is given by
G(2) = 2nTw(2)> + 2 Trrue(2) T(2) .

Each of the functiond’(z), Trrue(z) andT,(z) on the right has radius of convergenee= 1/(16n) and on their
circle of convergence only an algebraic singularityzat p, so the same is clearly true 6f(z). Similarly, for z

nearp, G(z) = (a —B1- z/p)/4 for some positive constants 3. Using Lemma 1 we see th&(True) >
P(G) =lim.—.,—(G'(2)/T'(z)). Now

G'(2) = A0 T (2) T/(2) + 2 T (2) T(2) + 2 Trrae (2) T'(2)

and dividing byT"’'(2) gives

+ 2 TTrue (p)

. G(2) o Ta(2) o Trrue(2)
> - T
P(TTue) = zl—lgl— T/(Z) An'T, (P) zl—lgl— T/(Z) + 2 T(p) zl_lgl_ T’(Z)

1 1
= nm(x)P(z) + §P(True) + §7r(T7“ue).

So P(True) > 2nw(x)P(x)+n(True) > w(True), as the probabilities(x) andP(z) of computing the literal
functionz are strictly positive for alh. o

6 Final remarks

Notice that in the case of read—once functighsf r variables, withr fixed, the lower boundr(f) > ¢.n™" from
Section 3 differs from the trivial upper bound

Tr(f)s1/<f)

proved similarly to Theorem 6, by only a constant factor. (The constant depenmdiskor P(f) the agreement is not
quite so good, the lower bound from Section 3 differing from the upper bound in Theorem 6 by a factor of eder

CONJECTUREL Suppose thaf(z1, z2,...,z,) is a read—once Boolean function ofvariables, withr fixed. Then
there exist constants; and B such thatr(f) ~ by n™" and P(f) ~ Byn~ "' asn — oo.

The conjecture asserts that, aside from constant factors dependifigtba lower bounds in Corollary 4 give
correct asymptotic formulas whehis a read-once function. All the examples given in Section 4, apart from the first
and last, are read-once functions. So in particular, the asymptotic formulas for them should look like the computed
asymptotic lower bounds except for the values of the constant factors.

Random generation afnd/or trees, forn = 2, has been simulated by F. Quessette and D. Villa Moreira. This
was done for two variables; andzz, and e.g. the number of internal nodes equal to 1000, Wihrees generated
at random. The random generation algorithm is as follows: first a random binary tree is generated, using Remy’s
algorithm, then a random labelling of internal nodes and of leaves takes place.

This simulation gave good agreement with the calculated values of the proballitjgs for the 16 Boolean
functions considered. We then computed, for each Boolean function, the following parameters: height, width, number
of occurrences ofv, number of occurrences of a specified literal. Simulations appear to indicate that in each case,
these parameters follothe samésaussian limiting distribution whatever the Boolean function.
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