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We consider simply generated trees, where the nodes are equipped with weakly monotone labellings with elements of
{1,2,...,r}, forr fixed. These tree families were introduced in Prodinger and Urbanek (1983) and studied further
in Kirschenhofer (1984), Blieberger (1987), and Morris and Prodinger (2005). Here we give distributional results
for several tree statistics (the depth of a random node, the ancestor-tree size and the Steiner-disteanmoofly

chosen nodes, the height of thest leaf, and the number of nodes with labelwhich extend the existing results and

also contain the corresponding results for unlabelled simply generated trees as the special tase
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1 Introduction

We consider rooted trees, where the nodes are labelled monotonically by elemént8,of . | r}; this

will mean that any sequence of labels lying on the direct path from the root to an arbitrary node in the tree
is weakly monotone. Such tree structures were introduced in Prodinger and Urbanek (1983) and studied
further in Kirschenhofer (1984) and Blieberger (1987). Very recently some parameters in monotonically
labelled trees are treated in Morris and Prodinger (2005). These tree structures appear in the context of
evaluating arithmetic expressions via the corresponding expression trees, see Blieberger (1987).

The previous work deals either witkary trees, Motzkin trees (unary-binary trees) or with ordered trees
(planted plane trees) as the underlying model for the non-labelled trees, which are then equipped with
monotone labelling with elements ¢f,2,...,7}.% In Prodinger and Urbanek (1983) and Blieberger
(1987) asymptotic results for the numtief’ of monotonically labelled trees with elements{af . .., r}
of sizen are obtained. In Kirschenhofer (1984) first results for the shape of such trees are given: he
gives asymptotic equivalents for the expectafitiil,, ;) for j fixed andn — oo, whereH,, ; measures
the height(counted by the number of edges lying on the direct path from the abahle j-st leaf (who
are enumerated from left to right) in a random siz&ee. Morris and Prodinger (2005) use the method
of moments to obtain limiting distribution results for the Steiner-distarcg and the ancestor-tree size
X, p of p randomly chosen nodes in a random sizeronotonically labelled binary tree (forfixed and
n — oo). Fort-ary trees and ordered trees they give asymptotic equivalents for the first two moments.
The size of the ancestor-treaf p chosen nodes, ..., v, in a rooted tree measures the size of the tree
spanned by the root and, . . . , v, and therefore counts the number of nodes that are lying on at least one
direct path from the root to, for 1 < i < p, and theSteiner-distancef p chosen nodes,, ..., v, in a
tree counts the number of nodes that are lying on at least one direct path;ftom; for 1 < i < j < p.

The special instange = 1 of X,, , measures thdepthD,, of a random node in a random sizefee and
is of particular interest.

In the present work we use as the underlying non-labelled tree model so called simply generated tree
families, where of courseary trees and ordered trees are included as the most prominent members. We
are studying then for monotonically labelled simply generated trees the tree statistics mentioned above,
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§ In Prodinger and Urbanek (1983) also monotonically labelled rooted trees (also daliffadries) are studied, where an asymptotic
equivalent for the number of such trees witihodes is given. For the tree parameters studied here we will not treat this tree model,
since such a distributional analysis is not even done for the unlabelled case
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which extend the previous work on this subject. In particular we will give limiting distribution results for
the random variable®,,, X,, ,, Y, , andH,, ; for n — oo andp fixed resp.j ~ ck,n, with0 < ¢ < 1.

Herek,. is the constant (depending on the tree family considered), which appé&(g.in ~ «,.n, where

L, is the random variable that counts the number of leaves in a random monotonically labelled tree with
elements of 1, ..., r} of sizen. The corresponding results for ordinary (nlabelled) simply generated
trees (which are all well known, see Drmota (1994); Meir and Moon (1978); Panholzer (2004)) are of
course always contained as the special casel.

Furthermore we show that the number of nodé4 labelled withl, with 1 < I < r, in a random
monotonically labelled size-tree with elements of1,...,r}, are forr > 2 asymptotically Gaussian
distributed.

It is planned by the authors to continue the present work and possibly establish functional limit laws as
obtained for simply generated trees (see e. g. Gittenberger (1999)).

2 Preliminaries

A family 7,. of monotonically labelled simply generated trees with elemenfd of. ., r} can be defined
(in analogy to the definition of Meir and Moon (1978) of simply generated tree families) in the following
way. A sequence of non-negative numbgrs )r.>o With o > 0 (¢ can be seen as the multiplicative
weight of a node with out-degree is used to define the weight(7") of any ordered tree={ planted
plane tree)l’ by w(T') = [], va(v)» Wherev ranges over all vertices @f andd(v) is the out-degree af.
Since we want to exclude degenerate cases we always assume that therekexistsach thatp;, > 0.
Furthermore,£I"/(T') denotes the set of different monotone labellings of the Fewith elements of
{1,2,...,r} andLI"N(T) := |£I(T)] its cardinality. Then the familg, consists of all tree§’ together
with their weightsw(7') and the set of monotone labelling&’(T'). For brevity we will call a familyZ
of treesM -labelled if it consists of simply generated trees labelled monotonically with elememts. in
For a given degree-weight sequetfgg ) x>0, we define the total weights

7= " w(T) - LI(T),
|T|=n

where |T'| denotes the size of the tréde For integer sequencégy)x>o, the quantitieSB[f] can be
considered as theumberof different{1, ..., r}-labelled sizen trees of7,.
Furthermore we define by
o) = ext",

k>0

the degree-weight generating functigr{¢), which contains all the information required for analysing the
tree parameters considered here.

However it is more instructive to define the tree familiesy systems of formal equations as done for
t-ary trees and ordered trees in Prodinger and Urbanek (1983). To do this we use the auxiliary families
of {2,3,...,r + 1}-labelled trees. Thef, can be described by the system of formal recurrences

Ti=0 x ¢(Th),
=0 x ¢(Tz) + T,

@)

T, =0 x o(T,) + Tr-1,
with O a node and(7;) a substituted structure.
This formal equation (1) can be translated directly into the following system of functional equations for
the generating functioris, (z) := >, -, Tl n (of course, the corresponding generating functiongfor
and7, coincide):

Ti(2)
TQ(Z)

ZSD(Tl(Z))a
20 (To(2)) + T (2),

; )
T, (2) = 2¢(T;(2)) + Tr—1(2).
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Assumption 1 For our further analysis we always make the following assumptions on the degree-weight
generating functionp(t):

(1) ¢(t)is aperiodic, i. eged{k : ¢r >0} =1,
(i) o(t) has a positive radius of convergenBe> 0,

(79t) Forall » > 1 exists a minimal positive solution < R of the equation

1
om TG

Of course, one could also treaft) with periodd := ged{k : ¢, > 0} > 1 analogous to (unlabelled)
simply generated tree families, but we restrict ourselves to this case. Although it seems hard to verify
assumption(iéi) in general, one can give sufficient conditions that cover the interesting cases. E. g.,
assumption(iii) always holds for entire degree-weight generating functip(is (as in the instance of
polynomials, or equivalently for trees with bounded degrees). Moreover, for functighsvith a finite
radius of convergencB < oo, assumptiorfiii) holds iflim;_, z- ;f% = 0 (as in the instance of ordered
trees).

With Assumption 1 it follows then with arguments as in Meir and Moon (1978) or Drmota (2004) that
the unique dominant singularity,. of 7.(z) is given byp, := ﬁ, wherer,. is defined above. It is
easily seenthat; < 2 < 73 < ...,whereasp; > ps > p3 > ...

The local expansion dF,.(z) around the dominant singularity= p,. follows also directly from Drmota
(2004):

T,(2) = :(2) = he()y 1 = =7, \/ 2(“"(’"20?(3)‘1(”')) 4 U O

whereg,.(z) andh,.(z) are analytic functions in a neighbourhood:of p,..
Singularity analysis (Flajolet and Odlyzko (1990)) gives thus the following asymptotic expansion of the

numberT}” of {1,...,r}-labelled trees of size:

r “!‘T,{_ r —n -3 —
Tr[LT] B \/w(T;FQD//(Trl)(p )pr no2 (1 + O(TL 1)) (4)

For the most interesting casestedry trees and ordered trees an asymptotic equivaleﬂt[ﬂ)was already
established in Prodinger and Urbanek (1983), where also an asymptotic expansion of the singylarities
(for r — o0) was given.

3 Results

In this section we collect the results of the tree statistics considered, where we make in all theorems
presented the assumptions given by Assumption 1. We further use the abbreviation
or = /p2¢" (1) (p(7) + T/_, (p,)) for a constant appearing frequently.

Theorem 1 The depthD,, of a randomly chosen node in a randaf, ..., r}-labelled tree of size

D, (4

converges fom — oo in distribution to a Rayleigh distributed random variahké, 7 X, with

density functiong (x) given by

o2a2

f(z) =o2xe” "2, for x >0, and f(z) = 0 otherwise

Theorem 2 The random variableX,, ,, which counts the size of the ancestor-tregp ohndomly chosen
nodes in a randon{1,...,r}-labelled tree of sizex and the random variabl&’, , which counts the
Steiner-distance gf randomly chosen nodes in a randd, ..., r}-labelled tree of size:, converge
for fixedp > 1 (resp.p > 2), andn — oo in distribution to generalized Gamma distributed random
variables:

Xnap ﬂ)X Ynap (d) Y.

VRV
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whereX, = Y, andY, is a random variable with density function

2 o\, oka? .
fo(2) = 7<—) x?P 3¢~ 72 for 2 >0, and f,(x) = 0 otherwise

(p—2)1\v2
If gla,h,A;z) = F(‘Z)lA(%)“hfle*(%)h (for z > 0) denotes the density function of the generalized
Gamma distribution we get thus that, resp.Y, have density function§<p72, j—f,m) resp.g( —

1,2 ﬁx)

’ S g,

Theorem 3 The random variabléd,, ; which counts the height of thest (from left to right enumerated)
leaf in a random{1, ...,r}-labelled tree of sizex converge in distribution for a (asymptotically) fixed
ratio 2 = cr, +o(1), with0 < ¢ < 1, andn — oo to a Maxwell distributed random variablé..,

’f"ﬁj D, H.. with density functior..(z) given by

o032 opa?
o e stu-a  for x >0, and h.(xz) =0 otherwise

hel®) = o e = o)

The constank, appearing here is given by, = 1 T £0 .
ppeating SN B, = ST = [T (o (1)

Theorem 4 The random vectoN,, = (NJLl], cee N,[f]), whereN! counts the number of nodes that are
labelled with elementtin a random{1, ..., r}-labelled tree (with- > 2) of sizen, converges fon — co

in distribution to a Gaussian distributed random vector with mean valueu and a certain covariance
matrix ~ nX:

N, —np (4
e ).
The mean vector = (ulY, ..., ul"l) is given by
n _ o(7r) w_ _ P(Trr1-i(pr)) 1 f
= , ul = — , for2<i<r.
o(rr) + 171 (pr) e(rr) + 171 (pr) HS:iJrl,l (1 - Pr@l(Ts@r)))

The proofs of these results are sketched in the next sections, where the following common abbreviations
are used:D, is the differential operator w. r. t, E, denotes the evaluation operatorat 1, and N,
denotes the evaluation operatorat 0.

4 The depth of nodes

We obtain from the formal description (1) @f. the following system of functional equations for the
generating functions/,.(z,v) == >, 5, >_,,50 nP{Dyn = m}TT[LT]z"vm

My (z,v) = 209 (Ty(2)) M1 (z,v) + zvp(T1(2)),
Ms(z,v) = 209’ (Ta(2)) Ma(z,v) + zvp(Ta(2)) + Mi(z,v),

; (®)
M, (z,0) = 209 (T, (2)) My (2,0) + 200(T;(2)) + My—1(z,0),
which give the solutions
20p(T(2)) + My_1(2,0)
1 — zv¢! (T (2))

To establish the limiting distribution dp,, we use the method of moments and comgig®;: M,.(z, v)
for fixed integerss > 1. Using (6) one can show the following suitable expansion:

M, (z,v) = (6)

B s!(zp(T(2)) + My—1(z,1)) 1

E DM, (z,v) = (e @)™ + O( i Z@/(Tr(z)))s), for s > 1.
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Together withM,.(z, 1) = 2T (z), which follows from the definition, we get via (3) the following expan-
sion around the dominant singularity= p,.:

(202" (1) (0 () + T} _ 1 (pr))) 2

Singularity analysis gives then

E,D:M,(z,v) = slpr(o(m) + Ty (pr)) __ (1 B i)_izl JrO((l B pi),§>

[2"E, DM, (z,v) 251"(% + 1)n

[T (z) o3

E(D5) ~

n

@)

Thus thes-th moment of the normalized dep@% converges fog > 1 to thes-th moment of the Rayleigh
distribution and together with the Theorem o&Ehet and Shohat this shows Theorem 1.

5 Distances between nodes
5.1 Ancestor-tree size

¢From the formal system (1) one gets the following system of functional equations for the generating
functions G, (z,u,v) 1= 32,51 D o<pen 2omz0 (o) P{Xnp = m} T znuPy™ (see Panholzer (2004)
for the corresponding formula for simply generated treesi.-e.1, which can be extended easily):
G1(z,u,v) = 2v(1 + u)p(Gi(z,u,v)) + (1 — v) Ty (2),
Ga(z,u,v) = 2v(1 + u)p(Ga(z,u,v)) + (1 — v)T2(2) + G1 (2, u,v),

- (8)
Gr(z,u,v) = 2v(1 + w)p(Gr(z,u,v)) + (1 = )T (2) + Gr_1(z,u,v).

We are interested here in the ancestor-tree size»fl randomly chosen nodes fprfixed. Thus we
differentiateG..(z, u, v) p-times w. r. t.u and evaluate at = 0. Studying the resulting equations in a way
analogous to Panholzer (2004) one can show inductively the following asymptotic equivalent{fen,

m = O(y/n) andp > 1 fixed):

(zv)?P~1

P 2w V) ~ (p—1)! 2(p—1) ! )P

NuDLG () ~ —b e (0 V) (e 00 e e ©
with z
~ (YT (2)) e(Ti(2))
Cr(z) = T .
) l; [T:= (¢ (Tn(2) — ¢/ (Ts(2)))
Extracting coefficients from (9) at” immediately gives then

WINLDLG () ~ T (G oy o)

(= D! (T, ()20 (' (T1(2)))

For the remaining task of extracting coefficients from (10}"atve can use Cauchy'’s integration for-
mula with a Hankel contour like integration path as was done for the corresponding parameter in simply
generated trees in Panholzer (2004). Together with the evaluatign.) = ¢(.) + T\._;(p»), which
follows by induction, one gets finally the required asymptotic equivalent:

P{X,, =m} =

[2"v™| N DEG (2, u,v) 2m2r—1 (2)21’ _opm?
() [T (2) nP(p—1)! '

V2
Settingm = zv/n + o(y/n) leads then to

VAP(X,, = m} ~ ﬁ(f@)x = (11)

Since the right-hand side of (11) is the density function of a generalized Gamma distribution the first part
of Theorem 2 is shown.
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5.2 Steiner-distance

Since the parameters Steiner-distance and ancestor-tree size are closely related, we obtain that the gen-
erating functions (2,u,v) 1= 35,51 Do<pen 2oms0 (o) P{Ynp = m}Ty lanupym and Gy (2, u,v)

(as defined in Subsection 5.1) are connected; the formal equation (1) can be translated into the follow-
ing system of equations (see again Panholzer (2004) for the corresponding formula for simply generated
trees):

Fi(z,u,0) = Gi(z,u,0) — 209" (T1(2)) G1 (2, u,v) + 29 (T1(2)) Fi(2,u,v) — (1= 0)2¢ (Ta(2)) T (2),
Fo(z,u,v) = Ga(z,u,v) — 2v¢' (T (2)) Ga(2,u,v) + 2¢' (T2(2)) Fa(z,u,v) — (1 — v)z¢' (Ta(2)) T2 (2)
+ Fi(z,u,v) — G1(z,u,v),
: (12)
Fr(z,u,v) = Gr(z,u,v) — 209 (T (2)) Gr(2,u,v) + 20" (T(2)) Fr (2,4, v) — (1 — 0)2¢' (T,.(2)) T (2)
+ Fr—l('z? U, U) - Gr—1(27 U, U)'

We are here interested in the Steiner-distance for fixed2. The task of computingV,, DE F..(z, u, v)
can be reduced to compudé, DG, (z, u,v) for 1 <[ <r, since we get:

1 — z2v¢’ (Tr(z)) H ( (1- U)‘P/( s(2) ))
1—2¢/(T,(2)) Hb L (1= 29/ (Ti(2)))
It follows that (forn — oo, m = O(y/n) andp > 2 fixed):
1 — zv¢/ (T (2))
1—z¢' (T (2))

Together with the asymptotic equivalent (9)8f, D2G,.(z, u, v) we can show the asymptotic equivalent
here required:

Ny DPF,(z,u,v) = N, DPG,(z,u,v +Z N, DEGy(z,u,v).
1=1

NuDZFr(Zvuav) ~ NuDﬁGT(Z,'LL,’U). (13)

[2"v™| Ny DE F (2, u,v) 2m?P=3 o )2(1)—1)6_ wim?

AT e ys
Again by settingn = z/n + o(y/n) we obtain the second part of Theorem 2.

P{Y,, =m} =

6 The height of the leaves

Defining the generating functions$, (z,u, v) := 3=, 51 351 22,50 P{Hn,; = m}TY 2P uiv™ one can
again show by using (1) the following system of functional equationsifdr, v, v):

2o (p(yi(z,u)) — ¢(T1(2))
A1(Zauav):¢ozu+ ( y1(2’ U)—Tl( ) )Al(Z,U,U)
20 ( g(z,u)) - (Tg(z))
As(z,u,v) = pozu + (80 32(2 g T;p(z) >A2(z u,v) + A1 (z,u,v)

(14)
20(p(ur(z,0) - (1))
yr(z,u) — T(2)

where the generating functiops(z, u) are defined by, (z,u) := ", <1 > .~ P{Ln = m}Tr[f] 2" u™
These generating functions satisfy themselves the following system of functional equations:

Ar(z,u,v) = pozu + Ar(z,u,v) + Ar_1(z,u,v),

y1(z,u) = poz(u — 1) + 20 (y1(2,u)),
Y2(z,u) = poz(u—1) + Z(P(yQ(Zvu)) +y1(z,u),

(15)
yr(z,u) = poz(u— 1) + 20 (yr(2,w)) + yr—1 (2, 0).
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It follows immediately from Drmota’s studies concerning systems of functional equations (see e. g.
Drmota (2004)) that the functions (z, «) have in a neighbourhood af= 1 the following local expansion
around the dominant singularigy. (u):

Oyp_1
(o) = 72 () \/2[Wo(u—1)+<ﬂ(n(u))+()(Pr(u) w)) N 0(1 B L) (16)

@ (17 (u)) pr () or(u)
and furthermore that the number of leavgsof a{1,...,r}-labelled tree follows a Gaussian limit law
with mean valué&(L,,) ~ k,n, wherex,. is given by
4,00Pr ( Yr— 1)(/)“1) B 1 T ©o

T

—ope(e(m) + T (pr)  e(re) + Ty (pr) l; 12 (1= o' (Tu(pr))

Equation (14) gives immediately the solution

A (2, 0) = wozu + Ar_1(z,u,v) Z 1—[ Po2U
s=l

1— oz w(y;(fzuug ;((TZ)(Z (1—vfs(z,u)’

where we use the abbreviation
_plys(zu) — o(Ts(2))
fs(z,u) ==z ) L)

For our asymptotic evaluations of the coefficients4of z, u, v) we use partial fraction expansion and
obtain (forn — oo, j ~ ¢k, n andm = O(y/n)) the asymptotic equivalent

Ap(z,u,v) ~ pozU XT: (fr(2, “))T_l
ne 1 —vfr(z,u) =1 Hs l (f?"(z u) fs(z,u))7
resp. also

T

v Az, u,v) ~ Popr r(z,u "= ” Oyr 1 1 r(z,u "
[0 A (2,0, v) (;H”(lw(w))))w 0" = (Popet( 21 (o0 1) (il ()))
17

Extracting coefficients of (17) can now be done similar to Drmota (1994) by using Cauchy’s integration
formula with a double Hankel contour like integration path. We eventually get

/ 2 —n,,2 2,2
[2"uiv™ Az, u,v) ~ pr(e(r) +_ Trs_l(pr))_arfr m exp ( — w) (18)
87T(,j—r)§(n—,j—r)E 8(;5)(n— 1)
Setting

1 ckr +0(1), o x+o(1),
n

Vn
we obtain from (18)

3.2 2.2
T

4W(U(ch)) eXp(_%)' (19)

Since the right-hand side of (19) is the density function of the Maxwell distribution Theorem 3 is shown.

7 The distribution of the labels

Defining the generating functions

1 [ n, My, Mr— m
Ny (z;v1,...,0,) == 2@1Zmizoﬁfmgigp{(N,Ql’,..,NT[;]) = (my,...,m) YT zrgmrgir=1 . ym
we obtain from (1) the following system of functional equations:

Ni(z;v1) = zv10(Nyi(2501)),
Na(z;v1,v2) = 2020(Na(z;01,v2)) + Ni(z;01),
(20)
NT(Z; V1,02, ... 7vr) = ZUTSO(NT(Z; V1,02, ... Ur)) + Nr—l(z; V1,02, ... ;Ur—l)-
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Studying the system (20) gives the following local expansion in a neighbourhood of the dominant

singularityz = p,-(v1, .. .,v,.) uniformly around(vy, ..., v,.) = (1,...,1):
oN,_1
. _ 2(vro(Tr(v1 ~«~¢U7‘))+(T)(F’r("’1 ~~~~~ Ur)iv1,.e vr)) z z
N”‘(Zavh'"?”’r) _7—7‘(017"'51)7‘)7\/ v,,,gp”(r,?(vl ,,,,, vy )) \/ 1- pr(V1,...y v,)+0(1 - pr(vh“.,vT))'

(21)
Theorem 4 follows now by singularity analysis and applying a theorem of Bender and Richmond (1983).
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