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Pattern distribution in various types of random
trees

Gerard Kok!

Hnstitut fur Diskrete Mathematik und Geometrie, Technische Univirsitien, Wiedner Hauptstraf3e 8-10/113, A-
1040 Wien, Austria.

Let 7,, denote the set of unrooted unlabeled trees of sized let M be a particular (finite) tree. Assuming that
every tree ofZ,, is equally likely, it is shown that the number of occurrendgsof M as an induced sub-tree satisfies
E X, ~ un andVar X, ~ o2n for some (computable) constanis> 0 ande > 0. Furthermore, ifv > 0
then(X,, — E X,)/v/Var X,, converges to a limiting distribution with density + Bt2)e‘0t2 for some constants
A, B,C. However, in all cases in which we were able to calculate these constants, we olifaired and thus

a normal distribution. Further, if we consider planted or rooted trees inste@g thfen the limiting distribution is
always normal. Similar results can be proved for planar, labeled and simply generated trees.

Keywords: random trees, generating functions, limiting distributions

1 Introduction

By a pattern M we mean a given finite tree. Now we can consider the number of occurrengesiof
other trees as induced subtree, cf. figure 1. Note that there might be overlaps of two or more copies of
More exactly, we'll consider the séf, of unlabeled unrooted trees of size and compute the limiting
distribution of the number of occurrences/f in trees in7Z,, asn — oo. This will also be done for planar
and simply generated trees.

Chyzak, Drmota, Klausner and Kok already showed that this limiting distribution is normal for labeled
trees (planted, rooted or unrooted), Chyzak et al. (manuscript). In this article we'll show that the same
is true for patterns in planar or unlabeled non-planar trees which are planted or rooted and in simply
generated trees. Furthermore, for unrooted trees we’ll show that the limiting distribution has a density of
the form(A + Bt2)e*Ct2. However, for all examples we know (e.g. ftarsandchaing B = 0, that is,
the limiting distribution is normal. The case stars(i.e. the number of nodes of degregwas already
explored by Drmota and Gittenberger (1999) for various types of trees. One gets that for arkytfieed
number of nodes of degréeof labeled trees of size satisfies a central limit theorem with meanu;n
and variance- on (for specific constantgy, o, > 0).

As already mentioned the case sthrs has been discussed by Drmota and Gittenberger (1999) for
various types of trees and the case of labeled trees has been treated by Chyzak et al. (manuscript). Some
previous work for unlabeled trees is due to Robinson and Schwenk (1975). Patterns in (rooted) trees have
also been considered by Dershowitz and Zaks (1989). However, they only consider patterns starting at
the root. There is also some work on patterns in random binary search trees by Flajolet, Gourdon and
Martinez, Flajolet et al. (1997). They, too, obtain a central limit theorem. Flajolet and Steyaert also
analyzed an algorithm for pattern matchings in trees Flajolet and Steyaert (1980); Steyaert and Flajolet
(1983). Further Rudiski (1988) established conditions for when the number of occurrences of a given
subgraph in random graphs follow a normal distribution.

The plan of the paper is as follows. In Section 2 we state our results. In Section 3 we show the
combinatorial background of the problem, resulting in systems of equations for properly chosen generating
functions. In Section 4 we discuss the analytic theorems that can be applied to these systems and we
present the possible limiting distributions.

In this paper we only indicate the proof idea of most of the propositions. Detailed proofs can be found
in the author’s master thesis, Kok (2005), which can be found at http://www.dmg.tuwien.ac.at/kok/.
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Fig. 1: The pattern on the left occurs twice in the tree on the right side. We call the black nodes of the pattern
(non-leaves) the "internal nodes” of the pattern.

2 Results

We fix a finite treeM that we callpatternand say thaiM occurs in a tre€” if M is a subtree of" such
that the degrees of dtiternal nodes ofM coincide with the corresponding node degree® ¢€f. fig. 1).

Now consider a class, of trees of size: (that might be rooted or unrooted) with a probability distri-
bution (e.g. every tree iff, is equally likely) then the numbeX,, of occurrences oM in 7,, is a random
variable.

2.1 Free trees

Theorem 1. Let R,, denote the set of rooted unlabeled trees of siznd 7, the set of unrooted unla-
beled trees of size where we assume that every treely, resp.7,, is equally likely. TherE X,, ~
un and Var X,, ~ o*n for some constantg, > 0 and o > 0. Further, if o > 0 then (X,, —
E X,,)/v/Var X,, converges to a limiting distribution with dens[tgalJrBtz)e*Ct2 for some (computable)
constants4, B,C > 0.

In particular, for rooted trees or if we consider stars or chains as patterns fhen 0, that is, we have
a central limit theorem.

2.2 Planar trees

Theorem 2. LetR,,(?) denote the set of planar rooted unlabeled trees ofsiard7;, () the set of planar
unrooted unlabeled trees of sizavhere we assume that every treeiin () resp.7,,®) is equally likely.
ThenE X,, ~ un andVar X,, ~ o?n for some (computable) constants> 0 ando > 0. Furthermore,
if o > 0then(X,, — E X,,)/v/Var X,, converges to a limiting distribution with densitfl + BtQ)e—Ct2
for some (computable) constamts B, C' > 0.

In particular, for rooted trees or if we consider stars or chains as patterns fhen0.

Remark.For both cases, for free trees and for planar trees it is conjectureB thal (that is, one always
has a central limit theorem) for all patterns. In Chyzak et al. (manuscript) this property is proved for rooted
labeled trees.

2.3 Simply generated trees

Planted trees are rooted trees in which an edge without node is attached to the root. Simply generated trees
have been introduced by Meir and Moon (1978) and are a generalization of several tree classes, including
planted planar trees. One starts with a power sebies) = Zj>0 ¥;z7 of non-negative coefficients

1; > 0, whereyy > 0 andy; > 0 for somej > 2. We then define the weight(T") of a finite planted

treeT by Do)
J>0 ’

whereD;(T") denotes the number of nodesZnwith j successors. It is well known that the generating
functiony(z) = >_,, -, y»a™ of theweighted numbers

Yn = Z W(T)
| T|=n

(whereT runs through all planted planar trees) satisfies the functional equgtion= =¥ (y(x)). Fur-
thermore it is natural to define(7T") /y,, to be theprobability of T' (whenT" hasn nodes).
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Theorem 3. Let R,,¥ denote the set of simply generated trees of sizeith probability distribution
defined byl'. Assume that the radius of convergeritef ¥ (x) is positive and that there exisis< 7 < R
with ¥(7) = 79/(7). ThenE X,, ~ un andVar X,, ~ o?n for some (computable) constants> 0 and
o > 0. Furthermore, ifc > 0 then(X,, — E X,,)/v/Var X,, is asymptotically normal.

3 Combinatorial background

In this section we’ll treat the combinatorial background of the problem. We'll proceed similarly in the

three cases. Note that the labeled case is already treated by Chyzak et al. (manuscript). For reasons of

shortness we'll only bring our new results for unlabeled trees, planar trees and simply generated trees.
We'll make use of the concept of bivariate generating functions (BGF). We say(that) is a gener-

ating function where: counts size and counts the number of occurrences of the pattern if

plau) = 3T XD =3 anuk,
T n,k

where X (T) denotes the number of occurrences of the pattefiin 7" andp,, ; denotes the number of
trees of sizex with & occurrences oM. In this articlep(z, u) will always denote a BGF of planted trees,
r(z,u) of rooted trees ant{x, u) of unrooted trees. Furthermorg(S;; .) will denote the cycle index of
the symmetric grous; and withZ(S;; a(z, u)) we'll meanZ (S;; a(z, u), a(z?,u?), . .., a(z!, ul)).

3.1 Free trees

Proposition 1. Let P be the class of planted unlabeled non-planar trees anduebe a pattern. Let
p(z,u) be the bivariate generating function & wherexz counts size and counts the number of oc-
currences of the pattern. Then there exists a certain nuniber1 of auxiliary generating functions
a;(z,u) (0 <i < L) with

L
p(-’I;, U) = Z ai(‘r7 u)7
=0
a power series with infinitely many variables and non-negative coefficients
Po( (yij)osi<r, 1<j<00 )
and a numbel{ and polynomials
Pj(yo,la"'ayL,la"'7y0,H7"'ayL,H7u) (1 S] S L)

with non-negative coefficients such that

ao(gj,u) = ‘TPO( (yiJ) ) Yi,j=ai(xI ,ud)
ay(z,u) = zPi(ag(z,u),...,ap(z,u),... ao(x uf), ... ap (@™ u),u)
(1)
LLL(ZC,U) = zPL(ao(z,u),...7aL(x,u),...,ao(xH,uH),...,aL(:cH,uH),u)
Furthermore,
L 1
Po( (i) )+ Z Pi(yoa,---yr,u,1) = eXP(Z E(yo,k + Y1kt T YLk))
i=1 k>1

Proof. (Sketch) We can proceed similarly to Chyzak et al. (manuscript), where a corresponding property
for labeled trees is presented. It is well known (see Otter) that planted unlabeled non-planar trees can be
recursively described: a planted tree is a planted root to which are attched]. .. planted subtrees.

In our case we are also considering pattern occurrences. Therefore, we have to Byiit sgveral (but

finitely many) subclasses;. These subclasses are such, that the number of occurrences of the pattern
at the root of a tree is the same for every tree of a given subclass. We get a set of subclasses with
recursive descriptions. Now we can translate these descriptions to a system of functional equations for the
generating functions;(x, u) of these classes, as is stated in the theorem. Algorithms for calculating the
tree classes; and for calculating the system of equations can be found in Kok (2005). O
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Proposition 2. LetR be the class of rooted unlabeled non-planar trees andAgte a pattern. Let(z, u)
be the BGF ofR wherex counts size and counts the number of occurrences/of. Leta;(z,u),0 <
1 < L be the solutions of the system of equatii)s Thenr(x, u) is given by:

=1
rww) = wexp(ypp@t uf)tay] DT Z(Siiao(eu)) o Z(Si,;an () (a0 1)
k=1 deD lg,...,.1>0
lo+-+lr=d
with D C N finite and wheré,.(lo, . .., 1) is @ computable function.

Proof. The generating function of all unorderggtuples of trees of class; is Z(S;,; a;(z, u)) (multiset
construction for unlabeled objects). For a partially ordefddple with; trees of class:;; we get the
product of the different cycle indiceséquenceonstruction).D is the set of internal node degrees of the
pattern. k.. (lo, . ..,{1) equals the number of occurrences of the pattern at the root of any tree of a class
with recursive description;, ® - - - ®a;, in which the factow; occurs/; times @, ®- - -®a;, denotes the

class of trees which consist of a root to which are attachsabtrees, which are of the clasg, . .., a;,
respectively). O

Proposition 3. Let 7 be the class of unrooted unlabeled non-planar trees and\ebe a pattern.
Let¢t(z,u) be the BGF of7 wherex counts size and. counts the number of occurrences.of. Let
a;(z,u),0 < i < L be the solutions of the system of equati(ijs Thent(z, v) is given by:

L
1 . 1 -
t(x,u) =r(x,u) — 5 E a;(z,u)a;(z, u)ukt(”) + 5 g ai(IQ,UQ)ukf(”)

0<i,j<L i=0
wherek, (i, j) is a computable function.

Proof. This follows from a bijection discovered by Otter (1948). [Rdenote the set of rooted treés,

the set of unrooted trees ami?) the set consisting of pairs of two different planted trees. Then there
exists a bijection betweeR and7 U P(®). To get an equality for the generating functions we have
to consider the number @fdditional occurrenceg, (i, j) of the pattern when joining two planted trees
T, € a3, T5 € a; to form an unrooted tre€s. O

3.1.1 Chains

If M is a chain (that is, a tree consisting of a finite number of consecutive nodes) then the above system
of equations can be reduced to a single equatiopferw), for details see Kok (2005).

Proposition 4 (Chains). LetP resp.7 be the class of planted resp. unrooted non-planar unlabeled trees.
Let M be a linear pattern (chain) witin internal nodes. Then the bivariate generating functips ),
resp.t(x,u) counting nodesi) and pattern occurrences in trees ofP resp.7 fulfill

pla,u) = vexp (Zp(x’%uk>> e Do) @

Pt 1—zu+am™(u—1)

> 1 (1—2)1—azu) \> /1, 1—zmum am —1
kooky) L 2 om _pm
1p(x o )> 2p($,u) + <1—mu+xm(u—1) R p—— R

t(x,u) = xexp <

k=

’ m 1 ) m
2™ (u — 1) T + —(zu™ —x —u™ 1) (— v ) (x,u) —I—Zchazﬂﬁ u’)

l—2u 2 1—2u
=0 j>2
wherec;; are some computable real numbers.

3.2 Planar and simply generated trees
In this section we consider planar and simply generated trees. Note that planted planar trees can be seen
as simply generated trees with weighits= 1 for all j > 0. Further, the notion of weightedgenerating
functionp(z, w) will be used as

p(z,u) = ZW(T)mlTIuX(T)_

T
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Proposition 5. Let P be the class of simply generated trees with power sefies) = > - Vi
(¥; > 0Vj,¢9 >0, 3j > 2:¢; > 0)and letM be a pattern. Lep(z, u) be the (weighted) bivariate
generating function where counts size and counts the number of occurrencé4. Then there exists a
certain numbet + 1 of auxiliary generating functions;(z,«) (0 <+ < L) with

a power seriesPy(yo, - - -, yr,) and polynomialsP;(yo, ..., yr,u) (1 < i < L) all with nonnegative
coefficients such that

ap(z,u) = zPy(ap(z,u),...,ar(x,u))
ai(z,u) = xPi(ag(z,u),...,ar(x,u),u)
4
ar(x,u) = zPr(ap(z,u),...,ar(z,u),u)
and
L
PO(yOa-HayL)JFZPj(yOvu-,yLal):\I/(y0+yl+"'+yL) (5)
j=1

Proof. (Sketch) We can proceed similarly as in the non-planar case. However, the construction is a bit
simpler, because in the planar case we don't have to take cakedéppingpatterns. O

Simply generated trees are (of courpigntedplanar trees, that is, there is a natural left to right order.
Usually there is no rooted planar and definitely no unrooted planar version of simply generated trees in
general. Nevertheless, for planar trees (where= 1) rooted and unrooted version make sense.

Proposition 6. Let R be the class of rooted planar trees and Jet be a pattern. Let(z,u) be the
(weighted) bivariate generating function whareounts size and counts the number of occurrencés.
Leta;(z,u),0 < i < L be the solutions of the system of equati@fiswith ¢»; = 1 Vj. Thenr(z,u) is
given by:

T(x,U) - x+xkz—1 k log 1 *p(zk,uk) ’ m(;D (-Z iq) @Z(Cd/p(s)’ail(x’u) o 'aid(x7u))(u )
= S=(21,-..524

0<i1,eig<L

wherep(k) is Euler’s totient functionD C N is finite, k,.(s) is a computable function (number of addi-
tional occurrences) angd(s) is the smallest period of the sequeriég .. ., iq4). (E.Q-(4,2,3,4,2,3) has
period 3.)

Proposition 7. Let 7 be the class of unrooted planar trees and.let be a pattern. Let(z,u) be the
(weighted) bivariate generating function whareounts size and counts the number of occurrencés.
Leta;(z,u),0 < ¢ < L be the solutions of the system of equati@f)svith ¢»; = 1 ¥;. Then the bivariate
generating function(z, v) of unrooted planar trees is given by:

L

1 . 1 L

t(z,u) = r(x,u) — 3 E ai(x,u)aj(a:,u)uk‘(”) + 3 E ai(:c2,u2)uk"("‘)
0<i,j<L i=0

wherek, (i, j) is a computable function (number of additional occurrences).

The proofs are very similar to tHeee case.

3.2.1 Chains

Proposition 8 (Chains). Let P resp. 7 be the class of planted resp. unrooted planar trees. LEbe
a linear pattern withm internal nodes. Then the bivariate generating functipfis, u), resp. t(x, u)

_1)



228 Gerard Kok

counting nodesa) and pattern occurrences in trees ofP resp.7 fulfill
e (@ —1)(u—1)

p(x,u) = {E(]. —p(x,u))_ 1— zu —|—xm(u — l)p(wvu) (6)
1 (1-2)1—2u) 271 m L —zmum mZm =1
Hz,u) = 2(1 = p(z,v)) 1_2p(l’u)2+(1—xu+xm(u—1)) (2 =

L
x"u 1 z™u o
Fa (e =D g lae” —e - W 1)(m)2> plzu) +> Y eyai(alw)
i=0 j>2

wherec;; are some computable real numbers.

4  Analytic background

4.1 Singularity Analysis

It is a well known fact (see Drmota and Gittenberger (1999)) that the generating funetions p(x, 1)
resp. r(xz) = r(z,1) that count the numbers, resp. r,, of planted resp. rooted trees of sizéhave a
square root singularity of the following kind:

p(z) = g1(2)— ha(x) 1—50 ®)
r(@) = ga(x) — ha(x) 1—1%, ©)

wherez, is the radius of convergence pfz) andr(z) and whergy; (x) andh;(z), ¢ = 1,2 are analytic
functions (locally around: = (). Further,xz = z is the only singularity on the circle of convergence.

This is true for labeled, unlabeled, planar and simply generated trees (that are non-periodic). Thus, the
numbersp,, andr,, are asymptotically always of the forgy, ~ h;(xo)/(2y/7)zy "n~>/2. For planted

planar trees we get for example the (explicit) expresgion = 1/2—1/2y/1 — 4z andp,, = %(2:__12) ~

(1/\/%)47171”73/2. /

The situation is a little bit different for unrooted trees. Here one has a representation of the form

3/2
t(x) = g3(x) + hs(x) (1 — ;()) (10)
and consequently, ~ hs(z)/((4/3)y/7)zy "n~>/2. In fact, (10) follows from (8) and (9) sincgx) =
r(z) — 5p(z)* + 3p(a?) (or t(z) = r(z) — 3p(x)?).
Interestingly,p(z, u), r(z,u) andt(x, u) behave almost the same.
Proposition 9. There exists functiong, (z, ), h1 (z,«) and f(u) that are analytic around: = x4 and

u = 1 such that
xr
p(x,u) = g1 (z,u) — ha(z,u), [1 - T

Furthermorez = f(u) is the only singularity on the circle:| < |f(u)| if u is sufficiently close ta.

Proof. We can apply the concept of Drmota (1997) (compare also with the appendix of Chyzak et al.
(manuscript)) for systems of functional equations with strongly connected dependency graphs.
Of course, Proposition 9 immediately implies a corresponding property(for) andt(x, u).

Proposition 10. There exists functiong (z, u), gs(z, u), he(x, u), hs(x, u) that are analytic around: =
zo andw = 1 such that

r(z,u) = go(x,u) — ha(x,u) 1—%
o) = galu) = ha(w )y [1 = 5o,

wherehs(zo,1) = 0 and f(u) is the same function as in Proposition 9. Furthermate= f(u) is the
only singularity on the circléx| < |f(u)| if w is sufficiently close ta.
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Note thathi(:c, 1) = hl(x), i = 1,2,3 and thUShl(Z(,‘o,l) 7é 0, hQ(Z‘o,l) # 0, h3($0,1) =
05 %hg(l’o,l) 7é 0.

4.2 Limiting Distributions

By definition it is clear the(z, u) can be interpreted as

t(x,u) = Z tpEuXr 2™
n>0

Thus, if we setu = €' then then-th coefficient oft(x, ¢*) is (despite of the asymptotically known factor
t,,) precisely the characteristic function &f,.
Our main (analytic) theorem is the following one:

Theorem 4. Suppose thak,, is a sequence of random variables amyda sequence of positive numbers
such thatt(z,u) = Y, - tnE uXn 2" has the form

t(z,u) = g(z,u) — h(z,u), /1 — ) (11)

whereg(x, u), h(z,u) and f (u) are analytic functions around = f(1) andu = 1 that satisfyh(f(1),1) =
0, hy(f(1),1) #0, f(1) > 0, and f'(1) < 0. Furthermorex = f(u) is the only singularity on the circle
|z| < |f(w)] if wis sufficiently close ta.

ThenE X,, ~ un andVar X,, ~ o?n, wherey = —f/(1)/f(1) ando > 0. Furthermore, ifc > 0
then(X,, — E X,,)/v/Var X,, converges to a limiting distribution with densityl + Bt2)e~C** for some
(computable) constantd, B, C > 0. We haveB = 0 if and only if%h(f(u), u)|u=1 = 0.

Proof. SetCy(u) = h(f(u),u) = Di(u—1)+ Da(u—1)>+O((u—1)3), C1(u) = f(u)Zh(f(u),u),
pw=—f(1)/f1)andpus = p® + p— f"(1)/f(1). Then the assumption (11) 8ar, «) and Flajolet and
Odlyzko (1990) directly imply that, = C;(1)/(4/3/7)f(1)""n=%/2(1 + O(1/n)) and

itX, _ 2Cy(e") Co(e") | Ci(e") l (ipt— L pat®+0(t%))n
e <3cl<1)" e T am "o\ '

In particular we gelE e™*X»/" — (1 4 it(2D;)/(3C;1(1)))e™**. Because the absolute value of the left
side is at most 1, it follows thaD; = 0 and thatX,, /n is concentrated gi. More precisely we get, as
n — oo,

; 2D 1,42
B t(Xn—pn)/v/n 1 2 42 o gmat®
‘ - 30,(1) )€
Of course, this (limiting) characteristic function corresponds to a distribution with density of the form

(A + BtQ)e—C‘f2 and B = 0 if and only if Dy = 0. Finally expected value and variance can be easily
computed. O

Remark.If h(f(1),1) # 0 then it is even easier to show th&t, satisfies a central limit theorem with
p=—f'(1)/f(1)ando? = p? + p — f"(1)/ f(1).

By combining Propositions 9 and 10 and Theorem 4 our main results follow (Theorems 1-3).

In the case ofhainswe can be more precise since the system of equations can be reduced to a single one.

A precise analysis similar to thetar case(see Drmota and Gittenberger (1999)) yield$ f (u),u) = 0
(see Kok (2005)). Thus, the limiting distribution is surely normal.
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