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We solve the recursionSn = Sn−1−qnSn−p, both, explicitly, and in the limit forn→ ∞, proving in this way a formula
due to Merlini and Sprugnoli. It is also discussed how computer algebra could be applied.
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1 Fountains and histograms
Merlini and Sprugnoli [6] discussfountainsandhistograms; for the reader’s convenience, we review a
few key issues here.

A fountain with n coinsis an arrangement ofn coins in rows such that each coin in a higher row touches
exactly two coins in the next lower row.

A p-histogramis a sequence of columns in which the height of the( j +1)st column is at mostk+ p, if
k is the height of columnj; the first column has heightr, with 1≤ r ≤ p.

It can be shown that the enumeration of coins in a fountain is equivalent with the enumeration of
1-histograms. The paper [6] addresses the enumeration ofp-histograms with respect to area (=number of

cells). Let f [p]
n be the numberp-histograms with arean andF [p](q) the corresponding generating function

F [p](q) = ∑n f [p]
n qn. The authors of [6] use two different approaches: one produces the answer in the form

F [p](q) = lim
m→∞

Dm

Em
,

†Partially supported by SFB grant F1305 of the Austrian FWF.
‡The research was started when this author visited the RISC in 2002. Partially supported by NRF grant 2053748.

1365–8050c© 2003 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/


102 Peter Paule and Helmut Prodinger

with some polynomialsDm, Em defined in the next section, and the other gives it as

F [p](q) = ∑
k≥0

(−1)kqp(k+1
2 )

(1−q) . . .(1−qk)

/

∑
k≥0

(−1)kqk+p(k
2)

(1−q) . . .(1−qk)
.

According to [5], it would be nice to have a direct argument that these two answers coincide. This is
the subject of the present note.

2 Generalized Schur polynomials
The polynomials mentioned in the introduction are for fixedp≥ 1 defined as follows:

En = En−1−qnEn−p, n≥ p, E0 = · · · = Ep−1 = 1,

Dn = Dn−1−qnDn−p, n≥ p, Di = 1−
i

∑
j=1

q j
, i = 0, . . . , p−1.

They can be compared with the classical Schur polynomials [8], which occur forp= 2 andq=−1. Then
Merlini and Sprugnoli want a direct proof of the formulæ

E∞ := lim
n→∞

En = ∑
k≥0

(−1)kqp(k+1
2 )

(1−q) . . .(1−qk)
,

D∞ := lim
n→∞

Dn = ∑
k≥0

(−1)kqk+p(k
2)

(1−q) . . .(1−qk)
.

We will not only achieve that but actually deriveexplicit expressions for these polynomials!
It should be mentioned that Cigler [4] developed independently a combinatorial method to deal with

recursions as ours, but also more general ones.

Let us study the generic recursion

Sn = Sn−1 + tqn−pSn−p,

with unspecified initial valuesS0, . . . ,Sp−1. For p = 2, these polynomials were studied by Andrews (and
others) in the context ofSchur polynomials, see [2].

We will use standard notation fromq–calculus, see [1]:

(x)n = (1−x)(1−xq) . . .(1−xqn−1),

[

n
k

]

=
(q)n

(q)k(q)n−k
.

It will be convenient to define
[n

k

]

= 0 for n < 0 ork > n.
Now we will proceed as in [1] and consider noncommutative variablesx, η, such thatxη = qηx; all

other variables commute.

Lemma1.
(

x+xpη
)n

=
n

∑
k=0

[

n
k

]

qp(n
2)−pnk+p(k+1

2 )xk+p(n−k)ηn−k
.
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Proof. We write
(

x+xpη
)n

=
n

∑
k=0

an,kx
k+p(n−k)ηn−k

,

and
(

x+xpη
)n+1

=
(

x+xpη
)n(

x+xpη
)

resp. as
(

x+xpη
)n+1

=
(

x+xpη
)(

x+xpη
)n

, compare coeffi-
cients, and get the recursions

an+1,k = an,k−1 +an,kq
k+p(n−k)

,

an+1,k = an,k−1qn+1−k +an,kq
p(n−k)

.

From this we derive, taking differences,

an,k =
1−qn+1−k

1−qk q−p(n−k)an,k−1.

The result follows from iteration by noting thatan,0 = qp(n
2).

Of course we also have

(

x+ txpη
)n

=
n

∑
k=0

[

n
k

]

qp(n
2)−pnk+p(k+1

2 )xk+p(n−k)tn−kηn−k
.

Now we derive the generating function for

F(x) = ∑
n≥0

Snxn;

the following procedure is inspired by [2]. Note that we can alternatively viewη as an operator, defined
by η f (x) = f (qx). Cigler worked also much with this technique [3, 4]. We find

∑
n≥p

Snxn = ∑
n≥p

Sn−1xn + ∑
n≥p

tqn−pSn−pxn = x ∑
n≥p−1

Snxn + txp ∑
n≥0

ηSnxn

or
F(x)− ∑

n<p
Snxn = xF(x)−x ∑

n<p−1
Snxn + txpηF(x),

and

F(x) =
1

1−x− txpη

(

∑
i<p

Six
i
− ∑

i<p−1
Six

i+1
)

.

Now we can apply our lemma and write

F(x) = ∑
n≥0

(

x+ txpη
)n

(

∑
i<p

Six
i
− ∑

i<p−1
Six

i+1
)

= ∑
n≥0

n

∑
k=0

[

n
k

]

qp(n
2)−pnk+p(k+1

2 )xk+p(n−k)tn−kηn−k
(

∑
i<p

Six
i
− ∑

i<p−1
Six

i+1
)

= ∑
n≥0

n

∑
k=0

[

n
k

]

qp(n
2)−pnk+p(k+1

2 )xk+p(n−k)tn−k
(

∑
i<p

Siq
i(n−k)xi

− ∑
i<p−1

Siq
(i+1)(n−k)xi+1

)
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= ∑
n≥0

n

∑
k=0

[

n
k

]

qp(k
2)xn−k+pktk

(

∑
i<p

Siq
ikxi

− ∑
i<p−1

Siq
(i+1)kxi+1

)

= ∑
k,n≥0

[

n+k
k

]

qp(k
2)xn+pktk

(

∑
i<p

Siq
ikxi

− ∑
i<p−1

Siq
(i+1)kxi+1

)

= ∑
k≥0

qp(k
2)xpktk 1

(x)k+1

(

∑
i<p

Siq
ikxi

− ∑
i<p−1

Siq
(i+1)kxi+1

)

.

From this we find an explicit formula forSn (the quantityS−1 has to be interpreted as 0):

Sn = ∑
0≤i<p

(Si −Si−1) ∑
k≥0

[

n− (p−1)k− i
k

]

qp(k
2)+iktk

.

Now we specialize this to our instance. Here,t = −qp, and thus

Sn = ∑
0≤i<p

(Si −Si−1) ∑
k≥0

[

n− (p−1)k− i
k

]

qp(k+1
2 )+ik(−1)k

.

Therefore

En = ∑
k≥0

[

n− (p−1)k
k

]

qp(k+1
2 )(−1)k

.

From this, the limit ofEn is immediate. ForDn we eventually get the following form

Dn = ∑
k≥0

[

n− (p−1)(k−1)

k

]

qk+p(k
2)(−1)k

,

from which the formula forD∞ is immediate. To prove it, we need a simple lemma whose proof is just a
routine calculation.
Lemma2.

[

m− i
k

]

qi(k+1) = g(i)−g(i −1) where g(i) = −

[

m− i
k+1

]

q(i+1)(k+1)
.

Now we can plug into the general formula above and compute

Dn = En−

p−1

∑
i=1

∑
k≥0

[

n− (p−1)k− i
k

]

qp(k+1
2 )+i(k+1)(−1)k

= En− ∑
k≥0

(−1)kqp(k+1
2 )

p−1

∑
i=1

[

n− (p−1)k− i
k

]

qi(k+1)

= En− ∑
k≥0

(−1)kqp(k+1
2 )

{

qk+1
[

n− (p−1)k
k+1

]

−qp(k+1)

[

n− (p−1)(k+1)

k+1

]}

= 1− ∑
k≥0

(−1)kqp(k+1
2 )qk+1

[

n− (p−1)k
k+1

]

,

which is the announced formula after a simple change of variable. Note that in the penultimate step the
telescoping property of the lemma has been used.
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3 Computer algebra proofs
The polynomial families(En) and(Dn) give rise to the following study with respect to possible computer
proofs. Let us take as input our sum representations ofEn andDn:

En = ∑
k≥0

[

n− (p−1)k
k

]

qp(k+1
2 )(−1)k

,

Dn = ∑
k≥0

[

n− (p−1)(k−1)

k

]

qk+p(k
2)(−1)k

.

(3.1)

Then, if p is chosen as a specific positive integer, Riese’s packageqZeil [7] returns the recurrencesSn =
Sn−1−qnSn−p (n≥ p) together with a certificate functionCert for independent verification. Despite the
fact that for general “generic” integer parameterp there is no algorithm available, a general pattern can
be easily guessed from running the algorithm forp = 1, p = 2, andp = 3, say.

For example, letF(n,k) be thekth summand in our sum representation (3.1) ofEn, then the recurrence
for En can be refined to the following statement.

Theorem 3.1. For n≥ p andδk f (n,k) = f (n,k)− f (n,k−1), we have

F(n,k)−F(n−1,k)+qnF(n− p,k) = δkCert(n,k)F(n,k), (3.2)

where

Cert(n,k) = qn (qn−p(k+1)+1)p

(qn−(p−1)(k+1))p
.

Proof. After dividing both sides of (3.2) byF(n,k) the proof reduces to checking equality of rational
functions. Namely, note that

F(n−1,k)
F(n,k)

=
1−qn−pk

1−qn−(p−1)k
,

F(n,k−1)

F(n,k)
= −

qpk

1−qk

(qn−pk+1)p

(qn−(p−1)k+1)p−1
,

and

F(n− p,k)
F(n,k)

= q−n
Cert(n,k).

Analogously, there is a refined version of the recurrence forDn. The certificate in this case is

Cert(n,k) = qn (qn−pk)p

(qn−(p−1)k)p
.

Summarizing, with the sum representation forEn andDn in hand, the corresponding recurrences follow
immediately by summing both sides of the computer recurrences (3.2) over allk≥ 0.
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