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Quadratic exact-size and linear
approximate-size random generation of
planar graphs

Éric Fusy1

1Algorithms project, INRIA Rocquencourt, France

This extended abstract introduces a new algorithm for the random generation of labelled planar graphs. Its principles
rely on Boltzmann samplers as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the
Boltzmann framework, a judicious use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and
Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was
recently obtained by Giḿenez and Noy. This gives rise to an extremely efficient algorithm for the random generation of
planar graphs. There is a preprocessing step of some fixed small cost. Then, for each generation, the time complexity
is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the
best previously known time complexity for exact-size uniform sampling of planar graphs withn vertices, which was
a little overO(n7).
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1 Introduction
A graph is said to be planar if it can be embedded in the plane so that no two edges cross each other.
In this article, we will consider labelled planar graphs, where vertices receive distinct labels. Statistic
properties of planar graphs have been intensively studied [2, 7, 8]. Very recently, O. Giménez and M.
Noy [8] solvedexactlythe difficult problem of asymptotical enumeration of planar graphs. They also
provide exact analytic expressions for the asymptotic probability distribution of many parameters such as
for example the number of edges and the number of connected components. Since many other statistics
on random planar graphs remain analytically and combinatorially untractable, it is an important issue to
find an efficient procedure to generate planar graphs at random. In addition, it makes it possible to validate
algorithms and programs on planar graphs, for example planarity testing, embedding algorithms, efficient
procedures for finding geometric cuts, etc...

A first algorithm for the random generation of planar graphs was proposed by Denise, Vasconcellos, and
Welsh [3], where a Markov chain on the setGn of planar graphs withn vertices is defined. By symmetry of
the transition matrix of the Markov chain, the probability distribution converges to the uniform distribution
onGn. This algorithm is very simple and seems to work well in practice. However, it onlyconvergesto
the uniform distribution, so that any execution of the algorithm is bound to provide non-uniform results.
This is aggravated by the fact that the rate of convergence is unknown.

A second approach for uniform random generation onGn was developed by Bodirsky, Gröpl and
Kang [1]. It relies on therecursive methodintroduced by Nijenhuis and Wilf [10] and formalized by
Flajolet, Van Cutsem and Zimmermann [5]. The recursive method is a general framework that can be
implemented for any class of objects admitting a recursive decomposition. Thus, producing an object
of the class uniformly at random boils down to producing thedecomposition treecorresponding to its
recursive decomposition. Then, the branching probabilities that produce the decomposition tree with suit-
able probability are computed using thecoefficientscounting the objects involved in the decomposition.
As a consequence, this method entails a preprocessing step where large tables of large coefficients are
calculated using the recursive relations that they satisfy.

Bodirskyet al apply the recursive method for planar graphs, which admit a well known combinatorial
decomposition according to successive levels of connectivity. The coefficients enumerating planar graphs
do not seem to satisfy nice recursive relations, so that the time requirement of the preprocessing step is

1365–8050c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Auxiliary memory Preprocessing time Time per generation

Markov chains O(log n) O(1) unknown {exact size}
Recursive method O(n5 log n) O

(
n7(log n)2(log log n)

)
O(n3) {exact size}

Boltzmann sampler O((log n)k) O((log n)k) O(n2) {exact size}
O(n) {approx. size}

Tab. 1: Comparison between the complexities of the algorithms of random generation of planar graphs.

large. More precisely, for the random generation of planar graphs withn vertices (and possibly also a
fixed numberm of edges), the time and memory requirements of the preprocessing step are respectively
O

(
n7(log n)2(log log n)

)
andO(n5 log n). Once the tables are computed, the time requirement of each

generation isO(n3)
In this article, we introduce a new algorithm for the random generation of planar graphs that combines

the efficiency of Markov chains [3] and the uniformity property and precise complexity analysis of the
recursive method [1]. It can be implemented to produce planar graphs with a fixed size uniformly at
random. Furthermore it has an approximate-size version where a small relative range, say a few percents,
is allowed for the size of the output. For practical purpose, approximate-size random sampling often
suffices. The approximate-size algorithm we propose is very efficient as it has linear time complexity (see
Theorem 1). With this algorithm, we estimate that a careful implementation should allow the random
generation of planar graphs with several tens of thousands of vertices, whereas the recursive method of
Bodirskyet alseems to be limited to sizes of about 100.

Our algorithm is based on the principle of Boltzmann samplers, a very powerful framework for random
generation of combinatorial structures recently developed by Duchon, Flajolet, Louchard, and Schaeffer
in [4]. The idea of Boltzmann samplers is to relax the constraint of exact size sampling. More precisely,
given a combinatorial class, a Boltzmann sampler draws an object of sizen with probability proportional to
xn (or proportional toxn

n! for labelled objects), wherex is a certainreal parameter that can be appropriately
tuned. As a consequence, the probability distribution is spread over all objects of the class, but objects
with the same size receive the same probability. In particular, the probability distribution is uniform
when restricted to a fixed size. Like the recursive method, Boltzmann samplers can be found for any
combinatorial class admitting a recursive decomposition. This time, the branching probabilities used to
produce the decomposition tree of a random object are not based on thecoefficients(recursive method)
but on thevaluesatx of the generating functions of the classes involved in the decomposition.

Theorem 1 Letn ∈ N be a target size. There exists anexact-sizealgorithmAn producing planar graphs
of sizen uniformly at random. Letε > 0 be a fixed size-tolerance. There also exists anapproximate-
sizealgorithmAn,ε producing random planar graphs with size in[n(1 − ε), n(1 + ε)], and such that the
distribution of planar graphs is uniform on each sizek ∈ [n(1− ε), n(1 + ε)].

AlgorithmAn is of quadratic time-complexity: the expected running time of each generation is asymp-
totically bounded byC · n2, for some constantC. Algorithm An,ε is of linear time-complexity: the
expected running time for each generation is asymptotically bounded byCε · n, where the constantCε

depends onε as follows:Cε ∼ε→0
C
ε .

In addition, the auxiliary memory and preprocessing time required byAn,ε andAn are small, being of
orderO(log n)k.

Let us also comment on the preprocessing complexity. The implementation ofAn,ε andAn requires
the storage of a fixed number of real constants, which are special values of generating functions. Using
adaptative methods discussed in [4], we in fact only need to storeO (log n)k bits of these special values,
wherek is a fixed integer. The generating functions we need to evaluate are those of different families
of planar graphs (connected, 2-connected, 3-connected). A very crucial result, recently established by
O. Giménez and M. Noy [8], is that there exist exact analytic expressions for these generating functions.
Hence their evaluation can be done efficiently, with a linear time complexity in the number of bits we need
to compute.

The complexity model used for the analysis of the algorithm is that of the number of arithmetic op-
erations over real numbers assumed to be known exactly. Fixed-size truncation of real numbers leads to
algorithms with a probablity of failure (caused by the lack of precision) that can be made arbitrarily close
to 0. No failure will arise with a precision of 20 digits in practice. To achieve a complete correctness,
adaptative precision routines can be called in case of failure.
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Fig. 1: The chain of reductions from planar graphs to binary trees.

The performances of the two previously existing algorithms for the random generation of planar graphs
are compared with the performances of our algorithm in Table 1.

2 Overview
The algorithm we propose relies on several ideas. First we extend the classical construction rules for Boltz-
mann samplers, as detailed in [4], and develop the more complicated case of substitution constructions, see
Section 3.2. We exploit in Section 4 the recursive decomposition of planar graphs according to successive
levels of connectivity (already used in [1]) and adapt it to the Boltzmann framework. This decomposition
reduces the realization of a Boltzmann sampler for planar graphs to the realization of a Boltzmann sam-
pler for so-called 3-connected planar graphs (more precisely for edge-pointed ones). Contrary to classical
recursive decompositions (e.g. binary trees) studied in [4], the transposition of the decomposition into
Boltzmann samplers is not straightforward. It is also crucial to introduce new rejection techniques into the
Boltzmann framework.

Then the second step, developed in Section 5, is to realize a complete Boltzmann sampler for edge-
pointed 3-connected planar graphs. To do this, we use a very recent result of bijective combinatorics found
by the author, D. Poulalhon and G. Schaeffer [6]: there exists a surprisingly simple correspondence (not
detailed in this article) between binary trees and edge-pointed 3-connected planar graphs. The realization
of a Boltzmann sampler for binary trees is straightforward and is transported by the correspondence of [6],
combined with a careful rejection procedure (see Lemma 8 and Lemma 6), into a Boltzmann sampler for
edge-pointed 3-connected planar graphs. The chain of reductions from planar graphs to binary trees and
the techniques we will use to perform the reductions are illustrated on Figure 1.

However the size distribution of the Boltzmann sampler for planar graphs, obtained from Section 4
and Section 5, is too concentrated on objects of small size. To improve the size distribution, wepoint
the objects, in a way inspired by [4]. The precise singularity analysis of the generating functions of
planar graphs, recently done in [8], indicates to us that we have to point planar graphs three times to get
a satisfying size distribution. In Section 6 we explain how to take the pointing operation into account
in the decomposition of planar graphs. We obtain a Boltzmann samplerΓG•••(x) for “triply pointed”
planar graphs. The complexity of this Boltzmann sampler, for a well tuned valuex = xn, is analyzed in
Section 7. This yields the complexity results stated in Theorem 1.

3 Boltzmann samplers
3.1 Definition
Boltzmann samplers, introduced and detailed by Duchonet al in [4], are a very general and powerful
framework to perform random generation of objects of a combinatorial classC. Instead of fixing a par-
ticular size for the random generation, objects are drawn under a probability distribution spread over the
whole class. This distribution gives to each object of a combinatorial classC a weight essentially propor-
tional to the exponential of its size. More precisely, ifC is an unlabelled class, we consider the generating
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functionC(y) :=
∑

γ∈C y|γ|, where|γ| stands for the size (e.g. the number of nodes in a tree) ofγ. It
is well known that the sum definingC(y) converges ify is smaller than the radius of convergenceρC of
C(.). If it is the case,y is saidcoherent. Then, the probability distribution assigining to each objectγ of
C a weight,

Py(γ) = y|γ|/C(y)

, is a well defined distribution, called Boltzmann distribution of parametery. A Boltzmann samplerΓC(y)
is simply a procedure that draws each object ofC with probability y|γ|

C(y) , i.e. the objects ofC are drawn
under a Boltzmann distribution. The authors of [4] give automatic recursive constructions of Boltzmann
samplers for combinatorial classes that are assembled recursively using basic combinatorial constructions
(union, product,...).

Boltzmann samplers can similarly be assembled in the framework of labelled objects (e.g. graphs with
labelled vertices). This time the generating function of the classC is defined aŝC(x) =

∑
γ∈C

x|γ|

|γ|! . The
“labelled” Boltzmann distribution assigns to each object ofC a weight

Px(γ) =
x|γ|

|γ|!Ĉ(x)
.

Then, a Boltzmann sampler for the labelled classC is a procedure that draws objects ofC at random
under their “labelled” Boltzmann distribution. As in the unlabelled framework, the authors of [4] develop
automatic rules of assemblage of Boltzmann samplers from basic combinatorial constructions

In this extended abstract, we detail in Section 3.2 the principle of assemblage of Boltzmann samplers
for the case of a mixed combinatorial class. In a mixed classC = ∪n,mCn,m, an object hasn labelled
“atoms” andm unlabelled “atoms”, for example a graph withn (labelled) vertices andm (unlabelled)
edges. The associated generating functionC(x, y) is defined asC(x, y) =

∑
n,m Cn,m

xn

n! y
m where

Cn,m is the number of objects ofC with n labelled andm unlabelled atoms. For a fixed real valuey0,
we denote byρC(y0) the radius of convergence ofx → C(x, y0). A pair (x, y) is said to becoherentif
x ∈ (0, ρC(y)), which means that

∑
n,m Cn,m

xn

n! y
m converges and thatC(x, y) is well defined. Given a

coherent pair(x, y), theBoltzmann distributionis the probability measurePx,y such that an objectγ with
n labelled andm unlabelled atoms has probability

Px,y(γ) =
1

C(x, y)
xn

n!
ym.

An important property of this measure is that two objects with the same size parameters have the same
probability. A Boltzmann samplerΓC(x, y) is a program that produces objects ofC at random under
the Boltzmann distributionPx,y. Observe that the development of the Boltzmann framework for mixed
classes is an extension of the two classical frameworks (i.e. labelled and unlabelled) studied in [4]. Indeed,
the unlabelled case can be recovered by setting the variablex (marking labelled atoms) to 1, and the
labelled case can be recovered by setting the variabley (marking unlabelled atoms) to 1.

3.2 Construction rules
A nice feature of Boltzmann samplers is that they can be obtained straightforwardly for finite sets, and
that the basic combinatorial constructions (union, product, set) can be transposed into simple rules of
construction for the associated Boltzmann samplers. Here we have to suppose that we know exactly the
values of the generating functions at a given coherent pair. We will also need two basic distributions:
given0 < p < 1, the Bernoulli LawBern(p) is given by the random variableX such thatP(X = 1) = p
andP(X = 0) = 1− p. Givenλ > 0, the Poisson LawPois(λ) is given by the random variableX such
thatP(X = k) = e−λ λk

k! .
Starting from combinatorial classesA andB for which we have valid Boltzmann samplers, we explain

in Table 2 how to derive a valid Boltzmann sampler for a classC constructed fromA andB using five
fundamental rules (these are the rules we will use in this article):

Proposition 1 For the five construction rules described in Table 2, the programΓC(x, y) is a valid Boltz-
mann sampler for the combinatorial classC.

Proof. Let us just detail the case of union. An object ofAn,m has probability 1
A(x,y)

xn

n! y
m, by definition

of ΓA(x, y) multiplied by A(x,y)
C(x,y) , of being drawn byΓC(x, y). Hence it has probability 1

C(x,y)
xn

n! y
m of
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Construction GeneratorΓC(x, y)

union
C = A ∪ B
C(x, y) = A(x, y) + B(x, y)

if Bern
“

A(x,y)
C(x,y)

”
then return ΓA(x, y)

else returnΓB(x, y)
endif

product
C = A ? B
C(x, y) = A(x, y)B(x, y)

γ ← (ΓA(x, y), ΓB(x, y)) {independent calls}
DISTRIBUTERANDOMDISTINCTLABELS(γ)
return γ

set
C = Set(A)
C(x, y) = exp(A(x, y))

k ← Pois(A(x, y))
γ ← (ΓA(x, y), . . . , ΓA(x, y)) {k independent calls}
DISTRIBUTERANDOMDISTINCTLABELS(γ)
return γ

x-substitution
C = A ◦x B
C(x, y) = A(B(x, y), y)

γ ← ΓA(B(x, y), y)
for v ∈ labelledatoms(γ) do
γv ← ΓB(x, y) {independent calls}
substitutev by γv in γ
endfor
DISTRIBUTERANDOMDISTINCTLABELS(γ)
return γ

y-substitution
C = A ◦y B
C(x, y) = A(x, B(x, y))

γ ← ΓA(x, B(x, y))
for e ∈ unlabelledatoms(γ) do
γe ← ΓB(x, y) {independent calls}
substitutee by γe in γ
endfor
DISTRIBUTERANDOMDISTINCTLABELS(γ)
return γ

Tab. 2: The transposition into Boltzmann samplers of 5 classical rules of construction of combinatorial classes.

being drawn. Similarly, an object ofBn,m has probability 1
B(x,y)

xn

n! y
m ·

(
1− A(x,y)

C(x,y)

)
= 1

C(x,y)
xn

n! y
m of

being drawn. HenceΓC(x, y) is a valid Boltzmann sampler forC. The proof for the four other cases is
similar, still more intricate (the two substitution constructions, that are not in [4], are new). 2

Example We take the example of the (unlabelled) classC of binary trees where the atoms are the inner
nodes. The classC has the following decomposition grammar:

C = (C ∪∅) ? {•} ? (C ∪∅)

Hence the seriesC(y) counting binary trees is given byC(y) = y (1 + C(y))2. ThusC(y) can be
easily evaluated for a fixed real parametery < 1

4 .
Using the construction rules for union and product given in Table 2, we obtain the following Boltzmann

sampler for binary trees:
ΓC(y) : return(ΓleafOrTree(y), {•},ΓleafOrTree(y)) {independent calls}
ΓleafOrTree(y) : if Bern

(
1

1+C(y)

)
return∅

else returnΓC(y)

Remark The function DISTRIBUTERANDOMDISTINCTLABELS(γ) throws distinct (uniformly) rand-
omly permuted labels on the labellable atoms ofγ. It is necessary to call this procedure on top of the
combinatorial construction (for example “return (ΓA(x),ΓB(x))” for the cartesian product) to ensure
that the atoms of the returned object bear distinct labels. If we consider a combinatorial class whose
construction involves the 5 rules given in Table 2, the call to DISTRIBUTERANDOMDISTINCTLABELS

can be postponed to the end of the algorithm, i.e. we can apply the labelling to the finally output object
(this is also mentioned by Flajoletet al [5, Sec3]). Hence the labels do not really matter and introduce
no additional complexity in the Boltzmann samplers: for a classC whose combinatorial decomposition
involves these five construction rules, we just have to generate the (unlabelled)shapeof an objectγ
produced byΓC(x, y); then we call DISTRIBUTERANDOMDISTINCTLABELS(γ).

Pointing In the following sections, we will make much use of thepointingoperation: Given a mixed (or
labelled) combinatorial classC = ∪n,mCn,m, the pointed classC• is defined as the class of objects ofC
with a marked labelled atom. As a consequence, the generating function ofC• is

∑
n,m nCn,m

xn

n! y
m =

x∂C
∂x (x, y). For the particular case of a class of planar graphs, we will also consider objects with a marked
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unlabelled atom, i.e. planar graphs with a pointed edge. This time the corresponding generating function
is given by

∑
n,m mCn,m

xn

n! y
m = y ∂C

∂y (x, y).

4 Decomposition of planar graphs and Boltzmann samplers
We present here a well known combinatorial decomposition of planar graphs (also used by Bodirskyet
al [1]) according to successive levels of connectivity, and we adapt it to Boltzmann sampling. We recall
that a graph is said to be 2-connected (resp. 3-connected) if at least 2 (resp. 3) of its vertices have to
be removed to disconnect it. The decomposition can be summarized as follows: a planar graph can be
decomposed into its connected components; and a connected planar graph can be seen as a decomposition
tree in which the nodes are occupied by 3-connected planar graphs with a marked edge. Using the rules
stated in Table 2, a topdown approach yields a chain of reductions. In this section, each reduction of the
chain has a corresponding lemma, from Lemma 1 to Lemma 5. The concatenation of the reduction-lemmas
finally gives the following Proposition:

Proposition 2 Finding a Boltzmann sampler for labelled planar graphs comes down to finding a Boltz-
mann sampler for edge-pointed 3-connected planar graphs.

4.1 Planar graphs from connected planar graphs

In this section, we consider Boltzmann samplers in one variablex marking the (labelled) vertices of the
graphs. We recall that the rules of Table 2 are still valid when settingy = 1. We writeG(x) =

∑
n gn

xn

n!

andC(x) =
∑

n cn
xn

n! for the series counting respectively labelled planar graphs and connected labelled
planar graphs by their number of vertices. A planar graph can be decomposed into the set of its connected
components, which yields the equationG(x) = exp(C(x)).

Lemma 1 Finding a Boltzmann samplerΓG(x) for planar graphs reduces to finding a Boltzmann sampler
ΓC(x) for connected planar graphs.

Proof. We use Rule 3 (set construction) of Table 2: a Poisson law of parameterC(x) is used to draw
the numberk of connected components. Then we return a planar graph made ofk independent calls to
ΓC(x). 2

4.2 Connected from 2-connected planar graphs

We describe here a well-known decomposition, detailed in [9, p10]. It is calledblock-decompositionand
establishes a relation between pointed connected and pointed 2-connected planar graphs. Each vertex-
pointed connected planar graph can be uniquely constructed by composition in the following way: take
a set of vertex-pointed 2-connected planar graphs and attach them, by merging their marked vertices
into a unique marked vertex. Then for each non marked vertexv of each 2-connected component, take
a vertex-pointed connected planar graphγv and merge the marked vertex ofγv with v (this operation
corresponds to anx-substitution). This construction implies the relationC•(x) = x exp(B′(C•)) where
C•(x) := xC ′(x) is the series counting vertex-pointed connected planar graphs.

Lemma 2 Finding a Boltzmann samplerΓC(x) for connected planar graphs reduces to finding a Boltz-
mann samplerΓC•(x) for vertex-pointed connected planar graphs.

Proof. We use the following algorithm with rejection, where we write|γ| for the number of vertices of a
graphγ:

ΓC(x): γ ← ΓC•(x)
if Bern

(
1
|γ|

)
returnγ else reject and restart

The probability for a graphγ to be drawn withΓC(x) is proportional to|γ|x
|γ|

|γ|! (because ofΓC•(x))

multiplied by 1
|γ| (because of rejection). Hence it is proportional tox|γ|

|γ|! , which ensures thatΓC(x) is a
valid Boltzmann sampler for connected planar graphs. 2

Lemma 3 Finding a Boltzmann samplerΓC•(x) for vertex-pointed connected planar graphs reduces to
finding a Boltzmann samplerΓB•(x) for vertex-pointed 2-connected planar graphs.

Proof. Using construction rules set andx-substitution of Table 2, the block decomposition explained above
is directly transposed into the following Boltzmann sampler for vertex-pointed connected planar graphs:
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ΓC•(x): k ← Pois(B′(C•(x))
γ ← (ΓB•(C•(x)), . . . ,ΓB•(C•(x))) {k independent calls}
merge thek components ofγ at their marked vertices
for each non marked vertexv of γ replacev by γv ← ΓC•(x) {independent calls}
returnγ.

4.3 2-connected from 3-connected planar graphs
A second well-known decomposition due to Trakhtenbrot [11], that we callnetwork-decomposition, en-
sures that a 2-connected planar graph can be decomposed into 3-connected planar components. This
combinatorial decomposition allows us to reduce the definition of a Boltzmann sampler for 2-connected
planar graphs to the definition of a Boltzmann sampler for 3-connected planar graphs. We rely on [12]
for the description of the decomposition. Anetworkis a connected graphN with two poles labelled0
and∞, such that the graphN∗ obtained by adding an edge between0 and∞ is a 2-connected planar
graph. Aseries-networkor s-network is a network made of at least 2 networks connectedin chainat their
poles. Aparallel networkor p-network is a network made of at least 2 networks connectedin parallel, so
that their respective∞-poles and0-poles coincide. A networkN such thatN∗ is 3-connected is called
a pseudo-brick. A polyhedral networkor h-network is a network that can be obtained by substituting a
networkNe in each edgee of a pseudo-brick (these networks will put the bridge between 2-connected and
3-connected planar graphs).

Proposition 3 (Trakhtenbrot)Networks with at least 2 edges are partitioned intos-networks,p-networks
andh-networks.

Now we explain how to obtain a precise recursive decomposition and exact equations for the different
families of networks. We writeD(x, y), S(x, y), P (x, y), H(x, y) for the series counting respectively
networks,s-networks,p-networks,h-networks by their number of non-pole vertices (variablex) and their
number of edges (variabley). Proposition 3 ensures that:

D(x, y) = y + S(x, y) + P (x, y) + H(x, y) (1)

An s-network can be uniquely decomposed into a non-s-network (the head of the chain) followed by a
network (the trail of the chain):

S(x, y) = (y + P (x, y) + H(x, y))xD(x, y) (2)

A p-network has a uniquemaximalparallel decomposition into a set of parallel components which are
notp-networks. Observe that we consider here graphs without multiple edges, so that at most one of these
components is an edge. Whether there is one or no such edge-component gives:

P (x, y) = y exp≥1 (S(x, y) + H(x, y)) + exp≥2 (S(x, y) + H(x, y)) (3)

whereexpd(z) =
∑

k≥d
zk

k! .
Finally, the series forh-networks clearly corresponds to any-substitution. If we writeG3(x, y) for the

series counting 3-connected labelled planar graphs, then the series counting pseudo-bricks is2
x2

∂
∂y G3(x, y),

and we have:

H(x, y) =
2
x2

∂G3

∂y
(x,D(x, y)) (4)

Lemma 4 Using rejection, a Boltzmann samplerΓB•(x) for (vertex-) pointed 2-connected planar graphs
can be “efficiently” obtained, in anO(1) expected number of trials, from a Boltzmann samplerΓ∂B

∂y (x, y)
for edge-pointed 2-connected planar graphs.

Proof. Once again, we use rejection. A Boltzmann samplerΓB•(x) is obtained as follows, where we
write respectivelyi andj for the number of vertices and edges of a graphγ:

ΓB•(x): γ ← Γ∂B
∂y (x, 1)

if Bern
(

i
j

)
returnγ else reject and restart

By construction,ΓB•(x) draws a 2-connected planar graphγ with probability proportional toj xi

i!

(because ofΓ∂B
∂y (x, 1)) multiplied by i

j (because of rejection). Hence it draws a 2-connected planar graph
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with probability proportional toixi

i! , which corresponds to a valid Boltzmann sampler for (vertex-) pointed
2-connected planar graphs. Let us now comment the word “efficient”. The crucial point is that the graphs
we consider are planar, so that Euler relation applies and givesi

j ≥
1
3 . Hence the probability of success

at each trial is bounded away from 0 (this was not the case for the transition fromΓC•(x) to ΓC(x)
described in Lemma 2). 2

Lemma 5 Finding a Boltzmann samplerΓ∂B
∂y (x, y) for edge-pointed 2-connected planar graphs reduces

to finding a Boltzmann samplerΓ∂G3
∂y (x, y) for edge-pointed 3-connected planar graphs.

Proof. If we write K(x, y) for the series counting networks where poles are not connected by an edge,
we have bothx2

2 K(x, y) = ∂B
∂y (x, y) and(1 + y)K(x, y) = 1 + D(x, y), so that(1 + y)∂B

∂y (x, y) =
x2

2 (1+D(x, y)). Hence, finding a Boltzmann samplerΓ∂B
∂y (x, y) reduces to finding a Boltzmann sampler

ΓD(x, y) for networks.
Then, the combinatorial decomposition of networks, summarized by Equations 1-4, can be directly

transposed into a Boltzmann samplerΓD(x, y) for networks, using the rules of construction of Table 2.
The only terminal nodes of this decomposition grammar are the so-called pseudo-bricks. As we have seen,
these objects correspond to edge-pointed 3-connected planar graphs, which concludes the proof.2

5 Boltzmann sampler for 3-connected planar graphs
The preceding section has ensured that the realization of a Boltzmann sampler for planar graphs comes
down to the realization of a Boltzmann sampler for edge-pointed 3-connected planar graphs. This last task
is possible since 3-connected planar graphs are combinatorially tractable.

A first well known result, due to Whitney, ensures that such graphs have a unique topological embedding
(in general a planar graph can have many embeddings in the plane). More precisely, we define arooted
3-connected mapas an unlabelled 3-connected planar graph embedded in the plane, together with the
choice of a marked and oriented edge, called theroot. Writing M(x, y) =

∑
i,j Mi,jx

iyj for the series
counting rooted 3-connected maps by their number of vertices and edges, Whitney’s Theorem yields:
M(x, y) = 4y ∂G3

∂y (x, y). Hence, rooted 3-connected maps correspond to the unlabelled shape of edge-
pointed 3-connected labelled planar graphs. In addition, according to the remark of Section 3.2, it is
sufficient to draw only the unlabelled shape of the objects, so that we have the following lemma:

Lemma 6 Finding a Boltzmann samplerΓ∂G3
∂y (x, y) for edge-pointed 3-connected planar graphs reduces

to finding a Boltzmann samplerΓM(x, y) for rooted 3-connected maps.

Now we use a combinatorial result (which relies on an explicit bijection) found by the author, D. Poulal-
hon and G. Schaeffer [6]. This result establishes a surprising correspondence between binary trees and
rooted 3-connected maps. We define abicoloredbinary tree as a binary tree (each node has a left son and
a right son that are possibly empty) whose nodes are colored in black or white so that two adjacent nodes
are always differently colored. These trees are partitioned into black-rooted and white-rooted depending
on the color of their root node. WritingT (x•, x◦), T•(x•, x◦) andT◦(x•, x◦) for the series counting
respectively bicolored, black-rooted and white-rooted binary trees, we have:

T = T• ∪ T◦
T• = {•} ? (∅ ∪ T◦)2

T◦ = {◦} ? (∅ ∪ T•)2


T (x•, x◦) = T•(x•, x◦) + T◦(x•, x◦)
T•(x•, x◦) = x• (1 + T◦(x•, x◦))

2

T◦(x•, x◦) = x◦ (1 + T•(x•, x◦))
2

Remark The classes of rooted planar maps and bicolored binary trees are unlabelled classes with two
parameters (vertices and edges for maps, black and white nodes for binary trees). This case is not treated
in Section 3, but it is clear that a Boltzmann sampler of parameter(x, y) has to be defined as a program

that draws an object withi atoms of the first kind andj atoms of the second kind with probabilityx
iyj

C(x,y) .
With this definition, it is easy to establish that the construction rules given in Table 2 for union and product
are valid.

Lemma 7 The decomposition grammar for bicolored binary trees yields acompleteBoltzmann sampler
for bicolored binary trees, where “complete” means that no auxiliary Boltzmann sampler is needed.

Now we state the combinatorial correspondence with rooted 3-connected maps, detailed in [6]:
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Proposition 4 Let Ti,k be the set of bicolored binary trees withi black nodes andk white nodes. There
is a mapping, called closure-mapping, that establishes a bijection betweenTi,k × {1, 2, 3, 4, 5, 6} and
Di+3,k+3 × {1 . . . i + k + 2}, whereDi+3,k+3 is a “small” superset of the setMi+3,i+k+4 of rooted
3-connected maps withi + 3 vertices andi + k + 4 edges.

Lemma 8 Settingx• = x · y andx◦ = y, the correspondence of Proposition 4 transports a Boltzmann
samplerΓT (x•, x◦), as defined in Lemma 7, into a sampler for rooted 3-connected maps such that the
probability of drawing an object ofMi,j is proportional to(j − 2)xiyj .

Adding a rejection step with probability of success equal to1j−2 on top of this sampler, we obtain a
Boltzmann sampler for rooted 3-connected maps.

This lemma ends our decomposition chain and also ends the corresponding chain of lemmas, which
indicate to us how to realize a Boltzmann sampler for planar graphs. However more is needed to achieve
the complexity stated in Theorem 1, as explained in the next section.

6 Size distribution
In the last section, we have described a procedure for finding a Boltzmann samplerΓG(x) for labelled
planar graphs. We are interested in the distribution of size of the planar graphs output byΓG(x). Typically,
we need totune the real parameterx in order to ensure that the distribution of the size of the object
produced is concentrated around a specific target valuen. However, this tuning operation does not always
apply depending on thesingularity typeof G(x).

Definition Givenα ∈ R\N, a generating functionF (x) is saidα-singular if the following expansion
holds in a Camembert-neighbourhood of its dominant singularityρF (see [4] for technical conditions of
such neighbourhoods),

F (x) =
x→ρF

P (x) + cα

(
1− x

ρF

)α

+ o

(
1− x

ρF

)α

,

whereP (x) is a polynomial.
The following lemma, Theorem 6.3 of [4], ensures that the tuning operation mentioned above applies

well for α-singular functions withα < 0.

Lemma 9 [4] Let there be given a Boltzmann samplerΓF (x) for a combinatorial class and assume
that the associated generating functionF (x) is α-singular with α < 0. For each integern, define
xn = ρF

(
1 + α

n

)
and denote byX the size of an object output byΓF (xn).

Then, for each fixed tolerance-ratioε > 0, we have

P (X ∈ [n(1− ε), n(1 + ε)])→n→∞ pε ,

where the positive constantpε ∈]0, 1] varies in proportion toε: pε ∼ε→0 σ · ε for some constantσ.
Moreover, we have

P (Σn = n) ∼n→∞
σ

n
.

Now the following lemma indicates how to modify the Boltzmann samplerΓG(x) for planar graphs so
that the size distribution of the output gets the behaviour required by Lemma 9.

Lemma 10 Given a combinatorial class whose associated generating functionF (x) is α-singular, the
generating functionF •(x) = xF ′(x) associated to the pointed classF • is (α− 1)-singular.

The generating functionG(x) counting planar graphs is52 -singular, see[8].
As a consequence, the generating functionG•••(x) is

(
− 1

2

)
-singular. Hence, Lemma 9 applies for the

size distribution of the output ofΓG•••(x).

Observe that the pointing operator can be easily injected in the basic rules of construction that we use
for the decomposition of planar graphs. For example, ifC = A∪B thenC• = A• ∪B•; if C = A ?B then
C• = A• ? B ∪A ? B•; if C = Set(A) thenC• = A• ? Set(A). As a consequence, the pointing operator
can be injected in the chain of reductions from planar graphs to 3-connected planar graphs. For example,
Lemma 3 becomes:

Lemma 11 Finding Boltzmann samplersΓG•••(x), ΓG••(x), ΓG•(x), ΓG(x) for planar graphs reduces
to finding Boltzmann samplersΓC•••(x), ΓC••(x), ΓC•(x), ΓC(x) for connected planar graphs.
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Proof. Starting fromG(x) = exp(C(x)) (i.e.G = Set(C)), we find successivelyG•(x) = C•(x) exp(C(x)),
G••(x) = C••(x) exp(C(x))+C•(x)2 exp(C(x)), G•••(x) = C•••(x) exp(C(x))+C••(x)C•(x) exp(C(x))+
2C••(x)C•(x) exp(C(x)) + C•(x)3 exp(C(x)). The corresponding combinatorial decompositions are
then directly transposed into Boltzmann samplers, using the rules of Table 2. 2

In the same way, the pointing operator can be injected into the decomposition from connected to 2-
connected and into the decomposition from 2-connected to 3-connected planar graphs. This yields:

Proposition 5 Finding a Boltzmann samplerΓG•••(x) reduces to finding Boltzmann samplersΓ∂G3
∂y (x, y),

Γ∂G3
∂y

•
(x, y), Γ∂G3

∂y

••
(x, y). According to Whitney’s Theorem (see Section 5), this comes down to finding

Boltzmann samplersΓM(x, y), ΓM•(x, y), ΓM••(x, y) for non-pointed, vertex-pointed and vertex-bi-
pointed rooted 3-connected maps.

From Lemma 8, we already have a Boltzmann samplerΓM(x, y), and the following lemma completes
the construction for pointed and bi-pointed objects:

Proposition 6 Using the correspondence“binary-trees↔rooted-3-connected-maps”stated in Proposi-
tion 4 and using rejection, Boltzmann samplersΓM•(x, y) and ΓM••(x, y) can be “efficiently” ob-
tained, in anO(1) number of trials, from Boltzmann samplersΓT (xy, y) and ΓT •(xy, y) of bicolored
and black-node-pointed bicolored binary trees. AsT andT • have simple complete decomposition gram-
mars, complete Boltzmann samplers can be directly derived for these two classes.

Hence, Proposition 5 ensures that a Boltzmann samplerΓG•••(x) for triply pointed planar graphs can
be obtained.

Proof. Let us detail the caseΓT (xy, y)→ ΓM•(x, y). As stated in Lemma 8, the correspondencebinary
trees↔rooted 3-connected mapsyields a sampler for rooted 3-connected maps where each object withi
vertices andj edges has probability proportional to(j − 2)xiyj . It just remains to pile up on top of this
sampler a rejection step with success-probabilityi

j−2 . As opposed to Lemma 8, the probability of success

is bounded away from 0 because Euler relation ensures thati
j−2 ≥

1
3 . 2

To conclude, we have to point the objects so that the size distribution of the outputs of Boltzmann
samplers has rather good concentration properties. Then it is possible to inject the pointing operator into
the decomposition of planar graphs and to obtain a Boltzmann samplerΓG•••(x) for triply vertex-pointed
planar graphs, which have a satisfactory size-distribution. We have also seen that the rejection step that
we add on top of our samplers (in particular for rooted 3-connected maps in Proposition 6) works better
for pointed objects than for non-pointed objects.

7 Algorithm scheme and Complexity results
The sampler we finally propose in order to produce planar graphs is the “triply pointed” Boltzmann sam-
plerΓG•••(xn) with the valuexn = ρG

(
1− 1

2n

)
tuned as indicated in Lemma 9. The complete scheme,

from binary trees to triply vertex-pointed planar graphs, is recapitulated on Figure 2 and Figure 3. The
following proposition implies directly the time complexity stated in Theorem 1.

Proposition 7 Let Λn be the expected running time ofΓG•••(xn) wherexn = ρG

(
1− 1

2n

)
. Let ε > 0

be a fixed size-tolerance parameter.

• The quantityΛn is linearly bounded:Λn = O(n) asn→∞.

• The expected running time ofΓG•••(xn) conditioned (by rejection) to output an object of size
Σ = n is quadratic. More precisely, it is asymptoticallyn

σ Λn, where the constantσ is introduced in
Lemma 9.

• The expected running time ofΓG•••(xn) conditioned (by rejection) to output an object of size
Σ ∈ [n(1− ε, n(1 + ε)] is linear. More precisely, it is asymptotically1pε

Λn, where the positive
constantpε is introduced in Lemma 9.

Proof. The second and third points are trivial using Lemma 9 and the following easy technical result: if a
rejection algorithmA has expected running timeτ and success-probabilityp at each trial, then the expected
running time till success isτp . The third point is more difficult. A complete proof requires to develop
calculation rules for the expected numberΛC(x) of operations performed during one call to a Boltzmann
samplerΓC(x). For a classC assembled recursively using classical combinatorial constructions (like
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point point







T • = T •

•
∪ T •

◦

T •

•
= . . .

T •

◦
= . . .







T = T• ∪ T◦
T• = {•} ? (∅ ∪ T◦)

2

T◦ = {◦} ? (∅ ∪ T•)
2

ΓT (x•, x◦) ΓT •(x•, x◦)

Procedure 2: binary trees → 3-connected planar graphs





γ ← ΓT (x•, x◦)
i← nr black nodes(γ)
j ← nr white nodes(γ)

Procedure 1: bicolored binary trees





γ ← ΓT •(x•, x◦)
i← nr black nodes(γ)
j ← nr white nodes(γ)

Γ∂G3

∂y
(x, y) Γ∂G3

∂y

••

(x, y)

derivative
w.r.t. •

Γ∂G3

∂y

•

(x, y)

1) Pkeep(γ) = i+3
i+j+2

2) closure(γ)

1) Pkeep(γ) =
(i+3)2

4i(i+j+2)

2) closure(γ)

1) Pkeep(γ) = 1
i+j+2

2) closure(γ)

Procedure 3: 3-connected planar graphs → 2-connected planar graphs

network-decomposition (Eq 1 to 4)

Γ∂B
∂y

••

(x, D)





γ ← Γ∂B
∂y

••

(x, 1)

i← nr vertices(γ)
j ← nr edges(γ)





γ ← Γ∂B
∂y

(x, 1)

i← nr vertices(γ)
j ← nr edges(γ)





γ ← Γ∂B
∂y

•

(x, 1)

i← nr vertices(γ)
j ← nr edges(γ)

Γ∂B
∂y

•

(x, D)Γ∂B
∂y

(x, D)















D =
. . .

. . .

involves ∂G3

∂y















D• =
. . .

. . .

involves ∂G3

∂y
, ∂G3

∂y

•















D•• =
. . .

. . .

involves ∂G3

∂y
, ∂G3

∂y

•

, ∂G3

∂y

••

ΓB•(x) ΓB••(x) ΓB•••(x)

Pkeep(γ) = i
j

Pkeep(γ) = i
j

Pkeep(γ) = i
j

Fig. 2: The algorithmic scheme producing Boltzmann samplers for 2-connected planar graphs from Boltzmann sam-
plers for bicolored binary trees.
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decomposition in connected components

G•••=expr. with:
C, C ′, C ′′, C ′′′

G=exp(C)

Procedure 4: 2-connected planar graphs → connected planar graphs

block-decomposition

uses:ΓB•(x)

ΓC•(x) ΓC••(x)

[

γ ← ΓC•(x)
i← nr vertices(γ)

uses:ΓC•(x), ΓC••(x)
ΓB•(x), ΓB••(x), ΓB•••(x)

uses:ΓC•(x)
ΓB•(x), ΓB••(x)

ΓC(x)

G•= C• exp(C) G••=expr. with:
C, C ′, C ′′

uses:ΓC(x),
ΓC•(x), ΓC••(x),
ΓC•••(x)

ΓG(x) ΓG•(x) ΓG••(x) ΓG•••(x)

uses:ΓC(x), ΓC•(x)

Procedure 5: connected planar graphs → planar graphs

C•••(x)=expr. with:
C ′, C ′′, B′,

B′′, B′′′

uses:ΓC(x),
ΓC•(x), ΓC••(x)

ΓC•••(x)

uses:ΓC(x)

C••(x)=expr. with:
C ′, B′, B′′

C•(x)=x exp(B′(C•(x)))

Pkeep(γ) = 1

i

Fig. 3: The algorithmic scheme producing a Boltzmann sampler for triply vertex-pointed planar graphs from Boltz-
mann samplers for 2-connected planar graphs.
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union, product), simple rules of composition can be developed for the calculation ofΛC(x). For example,
if C = A ? B thenΛC(x) = ΛA(x) + ΛB(x), if C = A ∪ B thenΛC(x) = A(x)

C(x)ΛA(x) + B(x)
C(x)ΛB(x).

Other simple rules can be derived for the three other construction (set,x-substitution,y-substitution) used
by our algorithm. Injecting these rules of calculation into the successive decomposition grammars used
by our algorithm (see Figure 2 for a summary), we finally obtain thatΛG•••(xn) isO(n).

Let us now give an intuitive explanation of the linear complexity result. All operations used in the
algorithm (assemblage of connected components, closure-mapping ...) have linear cost. Hence the steps
that can make the complexity of the algorithm increase are the rejection steps. For example, the transition
from ΓC•(x) to ΓC(x) requires a rejection step where the accepting-probability is1

i with i the number
of vertices of the object. It seems that rejection arises very often if the expected number of verticesΣn

of an output ofΓC•(xn) is of ordern. Fortunately this is not the case because the size distribution of
the output ofΓC•(xn) is concentrated on objects of small size, so that we haveΣn = O(1). In our
algorithm, there are also rejection steps where the expected size of the objects to reject is large, inO(n).
This is for example the case for the transition fromΓ∂B

∂y

••
(x, 1) to ΓB•••(x). However, see the proof

of Lemma 4, the acceptance probability is greater than1
3 , so that this rejection step does not make the

complexity order increase. To sum up, the rejection steps involving large objects are always such that the
acceptance probability is bounded away from 0. 2
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