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Convex hull for intersections of random lines
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The problem of finding the convex hull of the intersection points of random lines was studied in [4] and [8], and
algorithms with expected linear time were found. We improve the previous results of the model in [4] by giving a
universal algorithm for a wider range of distributions.
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1 Introduction

Numerous problems can be reduced to finding the convex hull of a set of points — halfspace intersection,
Delaunay triangulation, etc. An algorithm for finding the convex hull in the plane, known as Graham scan
[5], achieves arD(n logn) running time. This algorithm is optimal in the worst case. Another algorithm

[6] for the same problem runs i@ (nh) time, whereh is the number of hull points, and outperforms

the preceding algorithm i happens to be very small. Kirkpatrick and Seidel [7] designed an algorithm
with O(nlog h) runtime, which is always at least as good as the better of the above two algorithms. A
simplification of their algorithm has been recently reported by Chan [2].

For some special sets of points, it is possible to improve the results above. We concentrate on the
case when the set consists of all intersection points lofes. A straightforward application of the algo-
rithms above leads to a runtini®n? log n). Attalah [1] and Ching and Lee [3] independently presented
O(nlogn) runtime worst-case algorithms with(n) space. Ching and Lee [3] also showed that this result
is best possible. Devroye and Toussaint [4] and Golin, Langerman and Steiger [8] studied the case when
the lines are random with certain distributions. (Note that our model is different from the model of [8].)
In both models, they presented algorithms with linear expected time.

Let us concentrate on the model of Devroye and Toussaint. It is convenient to use the representation of
lines by points. A line not passing through the origin is uniquely determined by its intersection point with
the line perpendicular to it from the origin. It is often useful to define a mechanism for selecting random
lines via a mechanism for a random selection of the corresponding intersection points.

In the model of Devroye and Toussaint [4] all lines are independent identically distributed. The polar
coordinates of the corresponding points are selected as follows. The distance from the origin is distributed
according to some distribution la® (required to have a finite mean) and the angle is distributed uniformly
in [0, 2); the distance and the angle are independent.

As mentioned earlier, their algorithm works in linear expected time. The linearity follows from a result
they claim for the set of outer layer points. Here, given a%ete outer layerof S consists of those
points P € S such that at least one quadrant arodhdoes not contain any other point 8f Clearly, any
point in the convex hull belongs also to the outer layer. Their theorem asserts that the expected number of
outer layer points is bounded above by some constant.

In fact, Devroye and Toussaint proved that, given a distribuioithere exists a consta6t such that,
denoting byO,, the number of outer layer points arising franines, we have?(0,,) < C for sufficiently
largen. If one could find a constarit and anN, such thatF(O,,) < C for everyn > Ny, independently
of R, the problem would be completely solved. However, we show by means of counter-examples that no
suchC and N, exist.

As indicated above, the result of Devroye and Toussaint [4] regarding the expected number of layer
points was proved under the assumption that the distribd®dras a finite mean. Here we construct a
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distribution with an infinite mean such that the expected number of points in the outer I&(enisThus,
their approach cannot possibly be extended to such distributions.
In this work we present another algorithm for this model. The algorithm has expected linear time, where
the implied constant is global. Moreover, it works for any distribution Taybe it of finite or of infinite
mean.
In Section2 we present the main results, and in the Sectiydsand5 — the proofs.

2 The Main Results

Given a point in the plane with polar coordinatesd), denote byL(r,8) the line passing through it
and perpendicular to the line segment linking the origin with this point. # 0, then the line is given
by the equationy = —(cotf)z. Let R be a distribution on the positive half lile,. = {z > 0},
andRy, ..., R,_1 be independerR-distributed random variables. L&Y,...,0,_; bei.i.d. random
variables, uniformly distributed of®, 27). For0 < ¢ < n — 1, denote byL; the line L(R;, ©;). Let
y = a;x+b; be the equation of;. (Note that, with probability, none of thel;’s is parallel to they-axis.)
Clearly,a; = — cot ©; and, with probabilityl, all a;'s are distinct. For each pa(f, j),0 <i < j <n-—1,
denote by;; the intersection point of the linds; andL;. PutV (n) = {V;; : 0 < i,j <n—1}. LetNC(ff)
be the number of points in the convex hullB{n) andNé{” the number of points in the outer layer of
V(n). Suppose thd.;’s are sorted by their slopes. Atallah [1] showed & (V' (n)) = CH{Viit1 :
i=0,...,n—1}). (Here and elsewhere in the paper, the addition of indices is medjlo

As mentioned above, the reason Devroye and Toussaint’s algorithm works in linear expected time is
Theorem A [4, Theorem 1]If R has a finite mean, then there exists a universal constesuch that,
uniformly over alln,

BN < ENJ <y < oc. ()

The constant does not depend on the distributidh

Going over the proof of the theorem, one realizes that the authors prove the existence of a gonstant
such that, given a distributioR, we haveE(O,,) < ~ for sufficiently largen. The following proposition
implies that, no matter how large we choos® be in TheorenA, the initial » for which 1 holds may be
arbitrary large as we change.

Proposition 2.1 There exists a sequence of distributiqf, )22, of the radius such that eacR,, has
meanl and the expected number of outer layer point¥im) under the distributiork ,, exceedgl—en.

What happens if the condition in Theorem A, whereby the distribuRohas a finite expectation, is
dropped? Our next result is that then Theorem A is inapplicable.
1

Proposition 2.2 There exists a distributio® with an infinite mean such thalfN(EI") > 5-n for each

n > 2.

Note that Propositions 2.1 and 2.2 do not refer to the expected size of the convex hull, which may be much
smaller than that of the outer layer. If this size is indeed uniformly bounded, the algorithm of Devroye and
Toussaint [4] does work in linear expected time independentiy.oHowever, this does not follow from
their approach.

We present here an alternative algorithm for finding the convex hull of the set of intersection points.
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Require: Theinputlinesl; = L(R;,0;), 0 <i < n—1, are random and selected according to [4] (J.e.,

all variables are independent, tRe's areR-distributed, and th®,'s areU|0, 27) ).

Ensure: H is the convex hull of the séf(n) of intersection points of the lines(R;,0;), 0 <i <n—1.
1: Sort the lines according to tifecoordinates of the pointsk;, ©;) defining them, using bucket sort.
2: For the sorted lines, find the indéx0 < &k < n — 1, suchtha®; < 7 if i < k. PutL.. = {L; :

it <k}andLs. = {L;:i> k}. [* Each of the two sets is sorted by slope. */
3: MergeL>, andL . into a single list, sorted by slope.
4: Calculate the intersection points of the (sorted) consecutive {ihgs V; = L; N L;11, 0 < i <
n—1.
5: Let (h;, ;) be the polar coordinates &f. Sort theV;’s by theiry-coordinates using bucket sort.
6: Calculated, = ¥;11 —¥;,0 < i <n —1andd,—1 = ¥ + 27 — ¥, (for the newly sorted’;’s).
Check if there existd < k < n — 1 such thatd;, > .
7: if suchk existsthen
8: Foreachj,0 < j < n — 1, denote byU; the pointV;,; if 0 < j < n — k andVj,_, oth-
erwise. The set of point§; determines a simple polyline. Use Melkman'’s algorithm [9] to find
H =CH{U;:0<j<n-1})=CH(V(n)).
9: else
10:  The origin is an internal point af'H (V' (n)). Also, theV;’s are in sorted order around the origjin.
Use Graham'’s scan [11] with the origin as internal point to construct the convex hull H.
11: end if

Algorithm 1: CONVEX HULL FOR INTERSECTIONS OF RANDOM LINES

The next theorem is our main result.

Theorem 2.3 Algorithm 1 provides a construction of the convex hulli6fn), consuming linear space
and expected linear time.

3 Proofs of the Negative Results

Proof of Proposition 2.1Letn > 3 be arbitrarily fixed. Denote:
W;; = L(1,0,) N L(1,0,), 0<i<j<n—2.

Consider the random variablé = max{||W;;]| : 0 < i < j < n — 2}. Let a be the median of\/:
P(M < a) = % Obviously,a > 1. Denote byR,, the discrete distribution taking the two valueand
a with probabilities] — % and%, respectively. LeR, ..., R,_1 be independerik,,-distributed random
variables, and

V;;j:L(Ri,@i)ﬁL(Rj7@j), 0<i<j<n—1.

Consider the random variables

My =max{||[V;;]|:0<i<j<n-—1,i#k, j#k} k=0,...,n—1.

Consider the eventsd = {NCEI”) >n—1}, By={Rr=a,R; =1 Vj#k}, Cy={M<a}for
k =0,...,n— 1. TheeventsBy N Cy,...,B,_1 N C,_1 are equi-probable and pairwise disjoint. If
By, N Cy, occurs for somé, then all pointsV;;, 4, j # k, are at a distance smaller thafirom the origin,
while the pointsV;;, i # k, are at a distance at least Hence in this case all poinig;,, ¢ # k, are outer
layer points; see Figure 1. (In fact, some of thgs may be parallel td;, in which case we miss the
corresponding intersection points, but the probability for thts)ﬂ-lenceuz;é(Bk NC) C A.

Hence:

k=0

Further we obtain

P(00|Bo) = P(Z\/[() < CL|R0 =a,R1=1,...,R,_1 = 1)

=P(My<alRi=1,....,R,_1=1)=P(M <a) = 3.
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Therefore,

Consequently,

ENSY > P(A)-(n—1)+ (1 - P(A) -1 > 2—1611

Since forn = 2 we haveENcEf) = 1, the inequality holds in this case as well.

Proof of Proposition 2.2
Define a sequende:,,,)>>_, inductively. Puta; = 1. Letm > 1 be arbitrary and fixed, and suppose

ai,as,...,a, have been defined. L¢O,)" ;' be independent/[0, 27)-distributed random variables.
Denote

ijt = L(as,0;) N L(at, ©;), 1<s,t<m, 0<i<j<m-—1,

My, = max{[|[W}| : 1<s,t<m,0<i<j<m-—1}
Let b,,,+1 be the median of\/,,, such thatP(M,,, < by,41) = %, and puta,,+1 = max(by,4+1,m).
Define a distributiorR by: R ~ R if

P(R=an) = _ m=1,2
=) = ) =1,2,....

Clearly, E(R) = oo. We shall prove thaRR satisfies the required condition. L&,...,R,_1 be
independenR-distributed random variables, and denote

Vii :L(Ri,@i)ﬂL(Rj,@jL 0<i<jgi<n—1,
H, =max{||Vi;]|:0<i<j<n-—1,i#k, j#k} k=0,...,n—1.

Consider the eventd = {N(EI") >n—1}, By ={Rr > an,Rj < an_1Vj # k}, Cr ={Hy < an}
fork = 0,...,n— 1. According to the definition oRR,

> 1 1
P(Ry>ap)=» ————=—,

mm+1) n

m=n

which implies
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The event3yNCy, ..., B,_1NC,_; are equi-probable and pairwise disjoint etg@;é(Bk NCy) C A.
Hence

n—1

P(A)>P (U (Br N ck)> = nP(By N Cy) = nP(By)P(Co|By).
k=0

Further, we obtain
P(Co‘Bo) :P(HO <an|R02an,R1 < Qp,...,Rn_1 <an)

= P(HO < a'n|R1 < gy, Ryp1 < an) > P(Mn—l < an) > %

Therefore,

4  Cyclic Functions

Our work depends on humerous computations involving angles. It will be convenient to view angles as
points of the circle grou = R/27Z. As representatives of the cosets we shall take poini8, i)

(with the quotient topology oR/27Z). Addition modulo27 will be denoted byd and subtraction by.

Let Xy, ..., Xn—1 ~ U[0, 27) be independent random variables.

Definition 4.1 Afunction f : T x T — T iscyclicif f(x ® o,y ® ) = f(x,y) B «, z,y,a € T.

Let p be the random permutation . . . n—1} which determines the index of the successor of each
when the values are ordered ®nMore accuratelyp(i),i = 0,...,n — 1, isthe indexj,0 < j <n — 1,
such thatX is the nearest point t&; on the unit circle (in the counterclockwise direction):

Mo O X = 2, (oK)

In the following two lemmas, we shall deal with functiorfs: T? x R? — T whose restriction
f(, -, m1, 7o) is cyclic for arbitrary fixedr;,rs. By Ry,..., R,—1 we shall denote i.i.d. random vari-
ables independent ofy, . .. X,L 1

Denotel = [0, 2%) and M = Z 17(f(Xs, X,0), Ri, Ry())). The proofs of the next two lemmas are
omitted due to their length. They can be found in the full version of the paper.
Lemma4.2 E(M) = 1.

Lemma 4.3 E(M?) <3+ %

5 Proof of the Main Result

This section is devoted to the proof of Theorem 2.3. For a pair of p8ints [0, 27), let A(0,n) be the
arc fromé to n, taken counterclockwise:

A(6,) = {v € [0,27) : (1O v) + (© 6) =n B},

The following lemmas describe some propertiesiofThe proofs are simple, and will be omitted.

Lemmab5.1 Leta, 3,7,n,0 € T be points such tha € A(a, 3), 0 € A(B,v) ands € A(a,~). Then
pe An,0).

Lemma5.2 Leta, 8,7, 7,0, ¢ be points such that € A(«, 5), ¢ € A(v,n), 8 € A(a,v) and the two
setsA(«, 8) and A(y,n) intersect in at most the single point ThenA(3,~) C A(6,¢) C A(a,n).
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Lemma 5.3 Leta, 3, v, n be points such that © o < 7w andn,~ € A(a, 8). ThenA(y,n) C A(a, 8) if
and only ifn & v < .

_ For0 < 0 < 2m, denotef = max{0,0 & 7} andf = min{f,0 & 7}. Note that0 < § < 7 < 0 =

0 + 7 < 2m. Thus,f is always at the top half circle arfdat the bottom half circle (which is the reason for
our notation).

Lemma 5.4 Leta, 3 be angles such that cot o < — cot . Thena < 3,a < fandfoa > .

Lemma5.5 Let! = L(r,0),I’ = L(+',0") be two intersecting lines. Denote by, i) the polar repre-
sentation of the intersection poihti /. If ¢ © 6 > w, thenyy e A (0 © 5,0' & 5).

Lemma 5.6 Letry,ry > 0 be two real nymbers ang , 95 be two angle§ such that cot 01 < — cot .
DenoteV = L(ry,61)NL(r2,8,). Let(7,6) be the polar representation &f. Therd € A (0, & Z.60, & 5).

Proof Due to Lemma 5.4, © 6; > m. Using Lemma 5.5 and the fact that> 2 = 6 @ Z for any
6 € [0,27), we have

éeA(?leg,QQ@g) 4(e, ® 2.8, @2)
O

Lemma5.7 LetJ = A(6,n) be an arc such that © 0 < 7. Leta,,v,( € T be angles such that
—cota < —cotf < —cotyanda® (,y® ¢ € J. Thendd ¢ € J.

Proof of Lemma 5.7 Using Lemma 5.4, we obtain © o < w. Therefore we can apply Lemma 5.3 to
conclude thatd(a @ ¢,y ® ¢) € J. According to Lemma 5.4y < 3 < vy anda, 3,7 € [r,27). Thus
B€Ala,y)andBa ¢ € Alad (,y® () C J O
We now turn to prove Theorem 2.3. To this end, we have to deal with various stages of Algbrithm
Recall that, after step 4 of Algorithm 1, the linés = L(R;,0;),0 < i < n — 1, are sorted by slope.
Denote
%:L(Ri,@i)ﬂL(Ri+1,@i+l), OSZ Sn—l,

and Iet;@i be the angle between the positivexis and the line segment connectihgith V;.
Lemma5.8 LetJ = A(r, o) be an arc such that © 7 < 7. Forany n

n—1 n—1

ZIJ (Jh) < le (@i@g) +9
1=0 i=0

Proof If the set{i : ¢; € J} contains at most two elements, then the required inequality is trivial.
Suppose thal{i : ¢); € J}| > 2. Denotel = 0<n§n 2{i s € Jhk = o Jnax 2{i : 1, € J}. Putting
<i<n— <i<n—

Vi = (41, #) and applying Lemma 5.6 with, = ©;, 6, = ©,,1, V. =V, r1 = Ry, 72 = Rj41, We
conclude thaty € A(©,® Z,0,,, ® I).

Similarly, applying Lemma 5.6 wit); = Oy, s = Q4 1, V. = Vi, 71 = R;, 12 = Ri1, We
conclude thaty, € A(Q, & T,0,,, @ I).

Since®, < 9,,, <0O,,wehaved,,, ® § € A(©, ® 5,0, @ §). Applying Lemma 5.2 with

O‘*@lEB aﬂ @H-l@ , Y = ek@ >77 6k+1@ 9*1/11,( 'l/)ka

we obtain
®l+1 @ @k EB (1/)171/%)

and
o =Co0<noa= (@Hl@g)@(@l@g)'

Thusyy, © ¢y < 0,1 ©©, < 7. Applying Lemma 5.3 withv = 7, 3 = o, v = 1y, 1 = ¥y, we get:
A, k) = A(7,m) € A, B) = A(7,0) = J.

Taking into account that
[T @ , O @ A, ),
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we therefore have - -
@H-l ©® §,Qk SY 5 e J

By Lemma5.7, forany + 1 < h < k we have®, © 7 € J. Finally,

:21(1(1/31') Zl;( )+1<k—l+2<:§§1j(9@ ) +9.

O
Similarly, letV; = L(R;,©,) N L(R;4+1,0:41). Let (7;,v;) be the polar representation Bf. Using
the same observations as in Lemma 5.8, we obtain

Lemma5.9 LetJ = A(r,0) be an arc such that © 7 < 7. Forany n

n—1 n—1
- — m
) < . _
Zlf(%) < ZlJ (61@ 2) +2
=0 =0
We shall refer tol; as “far” if ©,,1 © ©; > 7 and as “near” otherwise. Ldf be the set of indices
i,0 < i <n— 1, for whichV; is far, andN the set of those for which it is near. Plt= [0, 27).
Lemma 5.10 For anyn:
2
E (Z 1; (w)) < 40.
ieF

Proof Clearly, if V; is a “far” point, thenV; € {Vi, V;}, which implies

E<Z1I(¢i)> <E<le( Bi) + 11 ( wl)>2.

i€EF

Using Lemmas 5.8, 5.9 and the fact tiate {©;,©; + 7}, we obtain that

B (S () 10 (5)) < K00 1 (006 5) + S0 1 (0 %) +4.

Therefore,
2 n—1 T n—1 3 2
E (ZiEF 11(1/}1')) < E (Zizo 1; (9%’ ® 5) + Zi:o 1; <®i ® 7))
+16E (Y05 11 (89 5) ) + 16.

Now, 327" 1, (0, @ Z) and>_"" 17 (6; ® 3F) are bothB(n, 1)-distributed, and hence

E<§1, (1/;))2 <2E (nfh (@i@g)>2+2E (Sh <@,;@32”)>2+32§40.

i=0 i=0
O

Lemma5.11 Let«, 8 be angles such that © o < 7 and — cot @ < — cot 5. Thena and 3 belong to
the same semicircle i.e., either 3 € [0, 7) or «, 8 € [m, 27).

Proof Suppose, say, that € [0,7) andj € [r,27). Thena + = € [r,27) anda + 7 > 5. Therefore
—cota = —cot (o + m) > — cot 3, which contradicts the conditions. O

Let p be the permutation df0, 1, ..., n—1} such thaB ,;, is the nearest t®; in the counterclockwise
direction among alb,’s:

(i)

O, ©O; = nggﬂgl_nm#(@k ©0;), i=0,1,...,n—1.

Lemma5.12 For all i € N we havep(i) =i + 1.
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Proof We may assume th&; # O,,1, forany0 < i <n — 1, . According to Lemma 5.11, the angles
0,, 0,41 belong to the same semicircle. The functierot is increasing or{0, ) and(r, 27), therefore
0,11 > 0;. Suppose that there exifis< k£ < n — 1 such that9; < O, < ©,,;. Itis easy to see
that©, belongs to the same semicircle@g O, 1, and therefore,; < a; < a;+1. This contradicts the
increasing order of the slopegof L;'s. O

2 n(n—
Lemma5.13 E (3, 11 (v4))” < 3+ g

Proof Let (¢, ;) be the polar representation of the pdifat, ;). We have, according to Lemma 5.12:
n—1
Do Li(w) < D1 (%)
i€EN =0

It is easy to verify that

W) = arctan <Ri €os O (i) — R(i) cos Gi) .

Rp(i) sin @i — Ri sin @p(i)
Denote

71 cos by — ro cos
f(01,02,11,1r0) = arctan( ! 2 2 1) .

rosinf; — rq sin 6y

The function is cyclic according to Definition 4.1. Therefore, by Lemma 4.3:

n—1 2 n—1 2
E <Z 1; W;)) =EB (Z 17 (f(©:, 0,0, R, Rp(i)))) <3+ m
i=0 i=0

O
n—1 2 n(n—1)
Lemma5.14 B (X715, 1(v)) <86+ 2551
Proof According to lemmas 5.10, 5.13,
1 2 2 2 on( 3
n{n —
E(Y 1w <2B(Y 1)) +2E () 1r(v) | <86+ R T m—
i=0 i€l ieN (n —2)(n—3)
O

Lemma 5.15 Step5 of algorithm 1 sorts the);’s in expected linear time.

Proof To show that bucket sort works in expected linear time onfig, it is sufficient to show that

2
there exists a constant C, such thﬁ(Z?;ol 11(1/12-)) < C. According to Lemma 5.14, this is in fact
true. O
Proof of Theorem 2.3
The algorithm indeed calculates the required convex hull due to [1], [9] and [10]. The algorithm works
in expected linear time due to Lemma 5.15.
O
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