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Convex hull for intersections of random lines
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The problem of finding the convex hull of the intersection points of random lines was studied in [4] and [8], and
algorithms with expected linear time were found. We improve the previous results of the model in [4] by giving a
universal algorithm for a wider range of distributions.
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1 Introduction
Numerous problems can be reduced to finding the convex hull of a set of points – halfspace intersection,
Delaunay triangulation, etc. An algorithm for finding the convex hull in the plane, known as Graham scan
[5], achieves anO(n log n) running time. This algorithm is optimal in the worst case. Another algorithm
[6] for the same problem runs inO(nh) time, whereh is the number of hull points, and outperforms
the preceding algorithm ifh happens to be very small. Kirkpatrick and Seidel [7] designed an algorithm
with O(n log h) runtime, which is always at least as good as the better of the above two algorithms. A
simplification of their algorithm has been recently reported by Chan [2].

For some special sets of points, it is possible to improve the results above. We concentrate on the
case when the set consists of all intersection points ofn lines. A straightforward application of the algo-
rithms above leads to a runtimeO(n2 log n). Attalah [1] and Ching and Lee [3] independently presented
O(n log n) runtime worst-case algorithms withO(n) space. Ching and Lee [3] also showed that this result
is best possible. Devroye and Toussaint [4] and Golin, Langerman and Steiger [8] studied the case when
the lines are random with certain distributions. (Note that our model is different from the model of [8].)
In both models, they presented algorithms with linear expected time.

Let us concentrate on the model of Devroye and Toussaint. It is convenient to use the representation of
lines by points. A line not passing through the origin is uniquely determined by its intersection point with
the line perpendicular to it from the origin. It is often useful to define a mechanism for selecting random
lines via a mechanism for a random selection of the corresponding intersection points.

In the model of Devroye and Toussaint [4] all lines are independent identically distributed. The polar
coordinates of the corresponding points are selected as follows. The distance from the origin is distributed
according to some distribution lawR (required to have a finite mean) and the angle is distributed uniformly
in [0, 2π); the distance and the angle are independent.

As mentioned earlier, their algorithm works in linear expected time. The linearity follows from a result
they claim for the set of outer layer points. Here, given a setS, theouter layerof S consists of those
pointsP ∈ S such that at least one quadrant aroundP does not contain any other point ofS. Clearly, any
point in the convex hull belongs also to the outer layer. Their theorem asserts that the expected number of
outer layer points is bounded above by some constant.

In fact, Devroye and Toussaint proved that, given a distributionR, there exists a constantC such that,
denoting byOn the number of outer layer points arising fromn lines, we haveE(On) ≤ C for sufficiently
largen. If one could find a constantC and anN0 such thatE(On) ≤ C for everyn ≥ N0, independently
ofR, the problem would be completely solved. However, we show by means of counter-examples that no
suchC andN0 exist.

As indicated above, the result of Devroye and Toussaint [4] regarding the expected number of layer
points was proved under the assumption that the distributionR has a finite mean. Here we construct a
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distribution with an infinite mean such that the expected number of points in the outer layer isΩ(n). Thus,
their approach cannot possibly be extended to such distributions.

In this work we present another algorithm for this model. The algorithm has expected linear time, where
the implied constant is global. Moreover, it works for any distribution lawR, be it of finite or of infinite
mean.

In Section2 we present the main results, and in the Sections3, 4 and5 – the proofs.

2 The Main Results
Given a point in the plane with polar coordinates(r, θ), denote byL(r, θ) the line passing through it
and perpendicular to the line segment linking the origin with this point. Ifr = 0, then the line is given
by the equationy = −(cot θ)x. Let R be a distribution on the positive half lineR+ = {x ≥ 0},
andR0, . . . , Rn−1 be independentR-distributed random variables. LetΘ0, . . . ,Θn−1 be i.i.d. random
variables, uniformly distributed on[0, 2π). For 0 ≤ i ≤ n − 1, denote byLi the lineL(Ri,Θi). Let
y = aix+bi be the equation ofLi. (Note that, with probability1, none of theLi’s is parallel to they-axis.)
Clearly,ai = − cot Θi and, with probability1, all ai’s are distinct. For each pair(i, j), 0 ≤ i < j ≤ n−1,
denote byVij the intersection point of the linesLi andLj . PutV (n) = {Vij : 0 ≤ i, j ≤ n−1}. LetN (n)

ch

be the number of points in the convex hull ofV (n) andN (n)
ol the number of points in the outer layer of

V (n). Suppose theLi’s are sorted by their slopes. Atallah [1] showed thatCH(V (n)) = CH({Vi,i+1 :
i = 0, . . . , n− 1}). (Here and elsewhere in the paper, the addition of indices is modulon.)

As mentioned above, the reason Devroye and Toussaint’s algorithm works in linear expected time is
Theorem A [4, Theorem 1]If R has a finite mean, then there exists a universal constantγ such that,
uniformly over alln,

EN
(n)
ch ≤ EN

(n)
ol ≤ γ <∞. (1)

The constantγ does not depend on the distributionR.
Going over the proof of the theorem, one realizes that the authors prove the existence of a constantγ

such that, given a distributionR, we haveE(On) ≤ γ for sufficiently largen. The following proposition
implies that, no matter how large we chooseγ to be in TheoremA, the initialn for which 1 holds may be
arbitrary large as we changeR.

Proposition 2.1 There exists a sequence of distributions(Rn)∞n=2 of the radius such that eachRn has
mean1 and the expected number of outer layer points inV (n) under the distributionRn exceeds1

2en.

What happens if the condition in Theorem A, whereby the distributionR has a finite expectation, is
dropped? Our next result is that then Theorem A is inapplicable.

Proposition 2.2 There exists a distributionR with an infinite mean such thatEN (n)
ol ≥ 1

2en for each
n ≥ 2.

Note that Propositions 2.1 and 2.2 do not refer to the expected size of the convex hull, which may be much
smaller than that of the outer layer. If this size is indeed uniformly bounded, the algorithm of Devroye and
Toussaint [4] does work in linear expected time independently ofR. However, this does not follow from
their approach.

We present here an alternative algorithm for finding the convex hull of the set of intersection points.
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Require: The input linesLi = L(Ri,Θi), 0 ≤ i ≤ n−1, are random and selected according to [4] (i.e.,
all variables are independent, theRi’s areR-distributed, and theΘi’s areU [0, 2π) ).

Ensure: H is the convex hull of the setV (n) of intersection points of the linesL(Ri,Θi), 0 ≤ i ≤ n−1.
1: Sort the lines according to theθ-coordinates of the points(Ri,Θi) defining them, using bucket sort.
2: For the sorted lines, find the indexk, 0 ≤ k ≤ n − 1, such thatΘi < π if i < k. PutL<π = {Li :
i < k} andL≥π = {Li : i ≥ k}. /* Each of the two sets is sorted by slope. */

3: MergeL≥π andL<π into a single list, sorted by slope.
4: Calculate the intersection points of the (sorted) consecutive lines{Li}: Vi = Li ∩ Li+1, 0 ≤ i ≤
n− 1.

5: Let (hi, ψi) be the polar coordinates ofVi. Sort theVi’s by theirψ-coordinates using bucket sort.
6: Calculatedi = ψi+1 − ψi, 0 ≤ i < n − 1 anddn−1 = ψ0 + 2π − ψn−1 (for the newly sortedVi’s).

Check if there exists0 ≤ k ≤ n− 1 such thatdk ≥ π.
7: if suchk existsthen
8: For eachj, 0 ≤ j ≤ n − 1, denote byUj the pointVj+k if 0 ≤ j ≤ n − k andVj+k−n oth-

erwise. The set of pointsUj determines a simple polyline. Use Melkman’s algorithm [9] to find
H = CH({Uj : 0 ≤ j ≤ n− 1}) = CH(V (n)).

9: else
10: The origin is an internal point ofCH(V (n)). Also, theVi’s are in sorted order around the origin.

Use Graham’s scan [11] with the origin as internal point to construct the convex hull H.
11: end if

Algorithm 1: CONVEX HULL FOR INTERSECTIONS OF RANDOM LINES

The next theorem is our main result.

Theorem 2.3 Algorithm 1 provides a construction of the convex hull ofV (n), consuming linear space
and expected linear time.

3 Proofs of the Negative Results
Proof of Proposition 2.1.Let n ≥ 3 be arbitrarily fixed. Denote:

Wij = L(1,Θi) ∩ L(1,Θj), 0 ≤ i < j ≤ n− 2.

Consider the random variableM = max{‖Wij‖ : 0 ≤ i < j ≤ n − 2}. Let a be the median ofM :
P (M < a) = 1

2 . Obviously,a > 1. Denote byRn the discrete distribution taking the two values1 and
a with probabilities1− 1

n and 1
n , respectively. LetR0, . . . , Rn−1 be independentRn-distributed random

variables, and
Vij = L(Ri,Θi) ∩ L(Rj ,Θj), 0 ≤ i < j ≤ n− 1.

Consider the random variables

Mk = max{‖Vij‖ : 0 ≤ i < j ≤ n− 1, i 6= k, j 6= k}, k = 0, . . . , n− 1.

Consider the events:A = {N (n)
ol ≥ n− 1}, Bk = {Rk = a,Rj = 1 ∀j 6= k}, Ck = {Mk < a} for

k = 0, . . . , n − 1. The eventsB0 ∩ C0, . . . , Bn−1 ∩ Cn−1 are equi-probable and pairwise disjoint. If
Bk ∩ Ck occurs for somek, then all pointsVij , i, j 6= k, are at a distance smaller thana from the origin,
while the pointsVij , i 6= k, are at a distance at leasta. Hence in this case all pointsVik, i 6= k, are outer
layer points; see Figure 1. (In fact, some of theLi’s may be parallel toLk, in which case we miss the
corresponding intersection points, but the probability for this is0.) Hence

⋃n−1
k=0(Bk ∩ Ck) ⊆ A.

Hence:

P (A) ≥ P

(
n−1⋃
k=0

(Bk ∩ Ck)

)
= nP (B0 ∩ C0) = nP (B0)P (C0|B0).

Further we obtain

P (C0|B0) = P (M0 < a|R0 = a,R1 = 1, . . . , Rn−1 = 1)

= P (M0 < a|R1 = 1, . . . , Rn−1 = 1) = P (M < a) = 1
2 .
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Fig. 1: Outer layer points

Therefore,

P (A) ≥ n
1
n

(
1− 1

n

)n−1 1
2
>

1
2e
.

Consequently,

EN
(n)
ol ≥ P (A) · (n− 1) + (1− P (A)) · 1 ≥ 1

2e
n.

Since forn = 2 we haveEN (2)
ol = 1, the inequality holds in this case as well.

2

Proof of Proposition 2.2
Define a sequence(am)∞m=1 inductively. Puta1 = 1. Letm ≥ 1 be arbitrary and fixed, and suppose

a1, a2, . . . , am have been defined. Let(Θi)m−1
i=0 be independentU [0, 2π)-distributed random variables.

Denote
W st

ij = L(as,Θi) ∩ L(at,Θj), 1 ≤ s, t ≤ m, 0 ≤ i < j ≤ m− 1,

Mm = max{‖W st
ij ‖ : 1 ≤ s, t ≤ m, 0 ≤ i < j ≤ m− 1}.

Let bm+1 be the median ofMm such thatP (Mm < bm+1) = 1
2 , and putam+1 = max(bm+1,m).

Define a distributionR by: R ∼ R if

P (R = am) =
1

m(m+ 1)
, m = 1, 2, . . . .

Clearly, E(R) = ∞. We shall prove thatR satisfies the required condition. LetR0, . . . , Rn−1 be
independentR-distributed random variables, and denote

Vij = L(Ri,Θi) ∩ L(Rj ,Θj), 0 ≤ i < j ≤ n− 1,

Hk = max{‖Vij‖ : 0 ≤ i < j ≤ n− 1, i 6= k, j 6= k}, k = 0, . . . , n− 1.

Consider the eventsA = {N (n)
ol ≥ n − 1}, Bk = {Rk ≥ an, Rj ≤ an−1∀j 6= k}, Ck = {Hk < an}

for k = 0, . . . , n− 1. According to the definition ofR,

P (R0 ≥ an) =
∞∑

m=n

1
m(m+ 1)

=
1
n
,

which implies

P (B0) =
1
n

(
1− 1

n

)n−1

.
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The eventsB0∩C0, . . . , Bn−1∩Cn−1 are equi-probable and pairwise disjoint and
⋃n−1

k=0(Bk∩Ck) ⊆ A.
Hence

P (A) ≥ P

(
n−1⋃
k=0

(Bk ∩ Ck)

)
= nP (B0 ∩ C0) = nP (B0)P (C0|B0).

Further, we obtain

P (C0|B0) = P (H0 < an|R0 ≥ an, R1 < an, . . . , Rn−1 < an)

= P (H0 < an|R1 < an, . . . , Rn−1 < an) ≥ P (Mn−1 < an) ≥ 1
2 .

Therefore,

P (A) ≥ n · 1
n

(
1− 1

n

)n−1

· 1
2
>

1
2e
.

Consequently,EN (n)
ol ≥ P (A) · (n− 1) + (1− P (A)) · 1 ≥ 1

2en.
2

4 Cyclic Functions
Our work depends on numerous computations involving angles. It will be convenient to view angles as
points of the circle groupT = R/2πZ. As representatives of the cosets we shall take points in[0, 2π)
(with the quotient topology ofR/2πZ). Addition modulo2π will be denoted by⊕ and subtraction by	.
LetX0, ..., Xn−1 ∼ U [0, 2π) be independent random variables.

Definition 4.1 A functionf : T× T 7→ T is cyclic if f(x⊕ α, y ⊕ α) = f(x, y)⊕ α, x, y, α ∈ T.

Letρ be the random permutation of{0 . . . n−1}which determines the index of the successor of eachXi

when the values are ordered onT. More accurately,ρ(i), i = 0, . . . , n− 1, is the indexj, 0 ≤ j ≤ n− 1,
such thatXj is the nearest point toXi on the unit circle (in the counterclockwise direction):

Xρ(i) 	Xi = min
0≤k≤n−1,k 6=i

(Xk 	Xi)

In the following two lemmas, we shall deal with functionsf : T2 × R2 7→ T whose restriction
f(·, ·, r1, r2) is cyclic for arbitrary fixedr1, r2. By R0, . . . , Rn−1 we shall denote i.i.d. random vari-
ables independent ofX0, . . . , Xn−1.

DenoteI = [0, 2π
n ) andM =

n−1∑
i=0

1I(f(Xi, Xρ(i), Ri, Rρ(i))). The proofs of the next two lemmas are

omitted due to their length. They can be found in the full version of the paper.

Lemma 4.2 E(M) = 1.

Lemma 4.3 E(M2) ≤ 3 + n(n−1)
(n−2)(n−3) .

5 Proof of the Main Result
This section is devoted to the proof of Theorem 2.3. For a pair of pointsθ, η ∈ [0, 2π), letA(θ, η) be the
arc fromθ to η, taken counterclockwise:

A(θ, η) = {ν ∈ [0, 2π) : (η 	 ν) + (ν 	 θ) = η 	 θ}.

The following lemmas describe some properties ofA. The proofs are simple, and will be omitted.

Lemma 5.1 Letα, β, γ, η, θ ∈ T be points such thatη ∈ A(α, β), θ ∈ A(β, γ) andβ ∈ A(α, γ). Then
β ∈ A(η, θ).

Lemma 5.2 Letα, β, γ, η, θ, ζ be points such thatθ ∈ A(α, β), ζ ∈ A(γ, η), β ∈ A(α, γ) and the two
setsA(α, β) andA(γ, η) intersect in at most the single pointγ. ThenA(β, γ) ⊆ A(θ, ζ) ⊆ A(α, η).
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Lemma 5.3 Letα, β, γ, η be points such thatβ 	 α < π andη, γ ∈ A(α, β). ThenA(γ, η) ⊆ A(α, β) if
and only ifη 	 γ < π.

For 0 ≤ θ < 2π, denoteθ = max{θ, θ ⊕ π} andθ = min{θ, θ ⊕ π}. Note that0 ≤ θ < π ≤ θ =
θ+ π < 2π. Thus,θ is always at the top half circle andθ at the bottom half circle (which is the reason for
our notation).

Lemma 5.4 Letα, β be angles such that− cotα < − cotβ. Thenα < β, α < β andβ 	 α > π.

Lemma 5.5 Let l = L(r, θ), l′ = L(r′, θ′) be two intersecting lines. Denote by(ψ, h) the polar repre-
sentation of the intersection pointl ∩ l′. If θ′ 	 θ > π, thenψ ∈ A

(
θ 	 π

2 , θ
′ ⊕ π

2

)
.

Lemma 5.6 Let r1, r2 ≥ 0 be two real numbers andθ1, θ2 be two angles such that− cot θ1 < − cot θ2.
DenoteV̂ = L(r1, θ1)∩L(r2, θ2). Let(r̂, θ̂) be the polar representation of̂V . Thenθ̂ ∈ A

(
θ1 ⊕ π

2 , θ2 ⊕
π
2

)
.

Proof Due to Lemma 5.4,θ2 	 θ1 > π. Using Lemma 5.5 and the fact thatθ 	 π
2 = θ ⊕ π

2 for any
θ ∈ [0, 2π), we have

θ̂ ∈ A
(
θ1 	

π

2
, θ2 ⊕

π

2

)
= A

(
θ1 ⊕

π

2
, θ2 ⊕

π

2

)
.

2

Lemma 5.7 Let J = A(θ, η) be an arc such thatη 	 θ < π. Let α, β, γ, ζ ∈ T be angles such that
− cotα < − cotβ < − cot γ andα⊕ ζ, γ ⊕ ζ ∈ J . Thenβ ⊕ ζ ∈ J .

Proof of Lemma 5.7 Using Lemma 5.4, we obtainγ 	 α < π. Therefore we can apply Lemma 5.3 to
conclude thatA(α ⊕ ζ, γ ⊕ ζ) ⊆ J . According to Lemma 5.4,α < β < γ andα, β, γ ∈ [π, 2π). Thus
β ∈ A(α, γ) andβ ⊕ ζ ∈ A(α⊕ ζ, γ ⊕ ζ) ⊆ J. 2

We now turn to prove Theorem 2.3. To this end, we have to deal with various stages of Algorithm1.
Recall that, after step 4 of Algorithm 1, the linesLi = L(Ri,Θi), 0 ≤ i ≤ n − 1, are sorted by slope.
Denote

V̂i = L(Ri,Θi) ∩ L(Ri+1,Θi+1), 0 ≤ i ≤ n− 1,

and letψ̂i be the angle between the positivex-axis and the line segment connecting0 with V̂i.

Lemma 5.8 LetJ = A(τ, σ) be an arc such thatσ 	 τ < π. For any n

n−1∑
i=0

1J

(
ψ̂i

)
≤

n−1∑
i=0

1J

(
Θi ⊕

π

2

)
+ 2.

Proof If the set{i : ψ̂i ∈ J} contains at most two elements, then the required inequality is trivial.
Suppose that|{i : ψ̂i ∈ J}| > 2. Denotel = min

0≤i≤n−2
{i : ψ̂i ∈ J}, k = max

0≤i≤n−2
{i : ψ̂i ∈ J}. Putting

V̂l = (ψ̂l, r̂l) and applying Lemma 5.6 withθ1 = Θl, θ2 = Θl+1, V̂ = V̂l, r1 = Rl, r2 = Rl+1, we
conclude that̂ψl ∈ A(Θl ⊕ π

2 ,Θl+1 ⊕ π
2 ).

Similarly, applying Lemma 5.6 withθ1 = Θk, θ2 = Θk+1, V̂ = V̂k, r1 = Rl, r2 = Rl+1, we
conclude that̂ψk ∈ A(Θk ⊕ π

2 ,Θk+1 ⊕ π
2 ).

SinceΘl ≤ Θl+1 ≤ Θk, we haveΘl+1 ⊕ π
2 ∈ A(Θl ⊕ π

2 ,Θk ⊕ π
2 ). Applying Lemma 5.2 with

α = Θl ⊕
π

2
, β = Θl+1 ⊕

π

2
, γ = Θk ⊕

π

2
, η = Θk+1 ⊕

π

2
, θ = ψ̂l, ζ = ψ̂k,

we obtain
Θl+1 ⊕

π

2
, Θk ⊕

π

2
∈ A(ψ̂l, ψ̂k)

and
ψ̂k 	 ψ̂l = ζ 	 θ ≤ η 	 α =

(
Θk+1 ⊕

π

2

)
	
(
Θl ⊕

π

2

)
.

Thusψ̂k 	 ψ̂l ≤ Θk+1 	Θl ≤ π. Applying Lemma 5.3 withα = τ, β = σ, γ = ψ̂l, η = ψ̂k, we get:

A(ψ̂l, ψ̂k) = A(γ, η) ⊆ A(α, β) = A(τ, σ) = J.

Taking into account that

Θl+1 ⊕
π

2
,Θk ⊕

π

2
∈ A(ψ̂l, ψ̂k),
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we therefore have
Θl+1 ⊕

π

2
,Θk ⊕

π

2
∈ J.

By Lemma 5.7, for anyl + 1 ≤ h ≤ k we haveΘh ⊕ π
2 ∈ J . Finally,

n−1∑
i=0

1J

(
ψ̂i

)
≤

n−2∑
i=0

1J

(
ψ̂i

)
+ 1 ≤ k − l + 2 ≤

n−1∑
i=0

1J

(
Θi ⊕

π

2

)
+ 2.

2

Similarly, let V̌i = L(Ri,Θi) ∩ L(Ri+1,Θi+1). Let
(
ři, ψ̌i

)
be the polar representation ofV̌i. Using

the same observations as in Lemma 5.8, we obtain

Lemma 5.9 LetJ = A(τ, σ) be an arc such thatσ 	 τ < π. For any n

n−1∑
i=0

1J

(
ψ̌i

)
≤

n−1∑
i=0

1J

(
Θi ⊕

π

2

)
+ 2.

We shall refer toVi as “far” if Θi+1 	 Θi > π and as “near” otherwise. LetF be the set of indices
i, 0 ≤ i ≤ n− 1, for whichVi is far, andN the set of those for which it is near. PutI = [0, 2π

n ).

Lemma 5.10 For anyn:

E

(∑
i∈F

1I (ψi)

)2

< 40.

Proof Clearly, ifVi is a “far” point, thenVi ∈ {V̂i, V̌i}, which implies

E

(∑
i∈F

1I(ψi)

)2

≤ E

(
n∑

i=1

1I

(
ψ̂i

)
+ 1I

(
ψ̌i

))2

.

Using Lemmas 5.8, 5.9 and the fact thatΘi ∈ {Θi,Θi + π}, we obtain that

E
(∑n

i=1 1I

(
ψ̂i

)
+ 1I

(
ψ̌i

))
≤
∑n−1

i=0 1I

(
Θi ⊕ π

2

)
+
∑n−1

i=0 1I

(
Θi ⊕ 3π

2

)
+ 4.

Therefore,

E
(∑

i∈F 1I(ψi)
)2 ≤ E

(∑n−1
i=0 1I

(
Θi ⊕ π

2

)
+
∑n−1

i=0 1I

(
Θi ⊕ 3π

2

))2

+16E
(∑n−1

i=0 1I

(
Θi ⊕ π

2

))
+ 16.

Now,
∑n−1

i=0 1I

(
Θi ⊕ π

2

)
and

∑n−1
i=0 1I

(
Θi ⊕ 3π

2

)
are bothB(n, 1

n )-distributed, and hence

E

(
n−1∑
i=0

1I

(
ψ̂i

))2

≤ 2E

(
n−1∑
i=0

1I

(
Θi ⊕

π

2

))2

+ 2E

(
n−1∑
i=0

1I

(
Θi ⊕

3π
2

))2

+ 32 ≤ 40.

2

Lemma 5.11 Letα, β be angles such thatβ 	 α ≤ π and− cotα < − cotβ. Thenα andβ belong to
the same semicircle i.e., eitherα, β ∈ [0, π) or α, β ∈ [π, 2π).

Proof Suppose, say, thatα ∈ [0, π) andβ ∈ [π, 2π). Thenα + π ∈ [π, 2π) andα + π ≥ β. Therefore
− cotα = − cot (α+ π) ≥ − cotβ, which contradicts the conditions. 2

Let ρ be the permutation of{0, 1, . . . , n−1} such thatΘρ(i) is the nearest toΘi in the counterclockwise
direction among allΘk ’s:

Θρ(i) 	Θi = min
0≤k≤n−1,k 6=i

(Θk 	Θi), i = 0, 1, . . . , n− 1.

Lemma 5.12 For all i ∈ N we haveρ(i) = i+ 1.
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Proof We may assume thatΘi 6= Θi+1, for any0 ≤ i ≤ n − 1, . According to Lemma 5.11, the angles
Θi,Θi+1 belong to the same semicircle. The function− cot is increasing on(0, π) and(π, 2π), therefore
Θi+1 > Θi. Suppose that there exists0 ≤ k ≤ n − 1 such thatΘi < Θk < Θi+1. It is easy to see
thatΘk belongs to the same semicircle asΘi,Θi+1, and thereforeai < ak < ai+1. This contradicts the
increasing order of the slopesai of Li’s. 2

Lemma 5.13 E
(∑

i∈N 1I (ψi)
)2
< 3 + n(n−1)

(n−2)(n−3) .

Proof Let (ψ′i, r
′
i) be the polar representation of the pointVi,ρ(i). We have, according to Lemma 5.12:

∑
i∈N

1I(ψi) ≤
n−1∑
i=0

1I (ψ′i) .

It is easy to verify that

ψ′i = arctan
(
Ri cos Θρ(i) −Rρ(i) cos Θi

Rρ(i) sinΘi −Ri sinΘρ(i)

)
.

Denote

f(θ1, θ2, r1, r2) = arctan
(
r1 cos θ2 − r2 cos θ1
r2 sin θ1 − r1 sin θ2

)
.

The function is cyclic according to Definition 4.1. Therefore, by Lemma 4.3:

E

(
n−1∑
i=0

1I (ψ′i)

)2

= E

(
n−1∑
i=0

1I

(
f(Θi,Θρ(i), Ri, Rρ(i))

))2

≤ 3 +
n(n− 1)

(n− 2)(n− 3)
.

2

Lemma 5.14 E
(∑n−1

i=0 1I(ψi)
)2

≤ 86 + n(n−1)
(n−2)(n−3) .

Proof According to lemmas 5.10, 5.13,

E

(
n−1∑
i=0

1I(ψi)

)2

≤ 2E

(∑
i∈F

1I(ψi)

)2

+ 2E

(∑
i∈N

1I(ψi)

)2

≤ 86 +
2n(n− 1)

(n− 2)(n− 3)
.

2

Lemma 5.15 Step5 of algorithm 1 sorts theψi’s in expected linear time.

Proof To show that bucket sort works in expected linear time on theψi’s , it is sufficient to show that

there exists a constant C, such thatE
(∑n−1

i=0 1I(ψi)
)2

< C. According to Lemma 5.14, this is in fact
true. 2

Proof of Theorem 2.3
The algorithm indeed calculates the required convex hull due to [1], [9] and [10]. The algorithm works

in expected linear time due to Lemma 5.15.
2
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