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We study a gcd algorithm directed by Least Significant Bits, the so—called LSB algorithm, and provide a precise
average—case analysis of its main parameters [number of iterations, number of shifts, etc...]. This analysis is based
on a precise study of the dynamical systems which provide a continuous extension of the algorithm, and, here, it is
proved convenient to use both a 2—adic extension and a real one. This leads to the framework of products of random
matrices, and our results thus involve a constamthich is the Lyapunov exponent of the set of matrices relative to

the algorithm. The algorithm can be viewed as a race between a dyadic hare with a speed of 2 bits by step and a “real”
tortoise with a speed equal 49/ log 2 ~ 0.05 bits by step. Even if the tortoise starts before the hare, the hare easily
catches up with the tortoise [unlike in Aesop’s fable [1]...], and the algorithm terminates.

1 Introduction

Like any gcd algorithm, the LSB algorithm performs a sequence of divisions and exchanges, and the
divisions are used to “shorten” the integers. However, the LSB division aims to create zeroes on the right of
the binary extension [whereas usual ones create zeroes on the left], which right—shifts then easily suppress.
At a first glance, it resembles the Binary Algorithm. However, both algorithms are quite different: in the
Binary Algorithm, the exchange is performed as soon as the remairEomes smaller than the divisor

u, whereas the LSB algorithm performs an exchange as soon as the remdiadex dyadic norm smaller
thanu. In this sense, the Binary algorithm tends to shorten integers both on the right and on the left, while
the LSB algorithm is totally dyadic, only shortens on the right, and may even increases the size on the
left...

To the best of our knowledge, the LSB algorithm was introduced for the first time byeStell Zim-
mermann [21], who use it in their improvement of the recursive gcd algorithm. This algorithm appears
to be interesting, because it is more “stable” than other gcd—algorithms. The authors provided a worst—
case analysis of the algorithm, which proves that, for a fixed input-size, the maximal number of iterations
grows linearly with the size of data. They also made experimental observations [20]; for instance, they
remark that the size of remainders is not generally decreasing, a quotigeftadcurs with probability

1/3, and the average number of iterations appears to be linear with respect to size.

We succeed to prove these experimental observations. The analyses provided here are instances of dynam-
ical analysis, [described in [22] for instance], where one proceeds in three main steps: First, the (discrete)
algorithm is extended into a continuous process, which can be defined in terms of a dynamical system,
where executions of the gcd algorithm are then described by particular trajectories [i.e., trajectories of “ra-
tional” points]. Second, the main parameters of the algorithm are extended and studied in this continuous
framework: the study of particular trajectories is replaced by the study of generic trajectories. Finally, one
operates a transfer “from continuous to discrete”, and proves that the probabilistic behaviour of gcd algo-
rithms [related to “rational” trajectories] is quite similar to the behaviour of their continuous counterparts
[related to generic trajectories].

Particulars of the LSB Algorithm. In the LSB case, the analysis will be more involved. We have

to record the number of zeroes produced on the left of integers, and this is easily done by the 2—adic
valuation. But, we also have to take into account the total size of integers, and this cannot be done in the
dyadic framework. In short, the topology is ultrametric, but the size is archimedean.

It will prove convenient to use the set of matricE’s

N = {Ny = ( (1) ; );q=;;k> Laodda € [-2" +1,2" — 1]}, 1)
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where each matrixVy, is drawn with probabilityd, := 1/]¢|3 = 272*. The choice of probabilities is
related to the 2—adic topology, while the Euclidean norm of ma\ris used to deal with the usual notion
of size. Then, the Lyapunov exponenbf this set of matrices plays a fundamentakrin our paper. Itis
classically defined as the limit

1 .
v = EHILIQOE[Iog\|N1-N2 o Nyl

[when each matrixVy, is independently drawn i]. More precisely, the exponenfy := v/log2
measures the average increase of integer size at each step. On the other hand, tHeim{éyés equal

to the right—shift, and thus the decrease of the integer size; in our probabilistic model inherited from the
dyadic topology, its average value is equal to 2. We have then explained our title: our tortoise lives in the
real world, and moves [on average] according to the Lyapunov exponent, while the move of our hare is
directed by dyadic rules.

Random matrices and iterated functions systems.In summary, our first step transforms the analysis
of the LSB algorithm into a study of the s&f of random matrices. The subject of random matrices has
been widely studied in works of Furstenberg [12], Guivarc’h and Raugi [14], Le Page [18], and is well
summarized in the book of Bougerol and Lacroix [4]. In particular, Chapter Il of Part A of this book and
the whole Part B are devoted to the case of matrices of order 2. We are now in the “real” world, and the
dyadic topology is just translated on probabilities. Like in [4], we then consider the action of ma{figes
on the real projective line, and it proves more convenient to transport the whole framewok on the compact
torusJ := R/xZ [via the “tangent” map]. Our seY is now transformed into a sgtof random functions
¢ : J — J (where each functio#d is drawn with dyadic probability,), and we find ourselves within the
framework of Iterated Functions Systems (IFS), where it is classical to deal with transfer op€tators
defined as

G.[f](x) =) - €' (@) - f o b(w),

el

which depend on a parametgract on functions : J — C and “summarize” all the properties of the set
N. Note that parameter“marks” the “real” size (symbolized by our tortoise).

In our study, we need a double generalization of these transfer operators, and introduce two new param-
eters, a parametey which “marks” the dyadic size (symbolized by our hare), and a (third) parameter
which marks the step—costhat we wish to study. Accordingly, the whole paper deals with the operator

G wlf] = 255 ~exp [we (O)] - |¢']7 - fod.
LeLl

Like in previous dynamical analysgsve prove that this operator plays tiide of a generating operator,
which itself generates all the objects of “classical” analysis of algorithms —namely (Dirichlet) generating
functions, or the moment generating functions. The main properties &f sématrices can be “read” on

the (dominant) spectral objects of the operator, namely its dominant eigenv@luew). Notably, the
Lyapounov exponent is related to the derivative af — A(1, z,0) atz = 0,

1

The main results. Our first result confirms and proves all the experimental facts observed in [20, 21], and,
more generally, describes, in a very precise way, a generic execution of the LSB—algorithm. On an integer
input (u, v), the LSB algorithm perform®(u, v) iterations, with a total numbék (u, v) of right-shifts, a

total numberS(u, v) of subtractions; during the execution, a quotiewccursC, (u, v) times. It performs

a total of B(u, v) elementary operations on bitB(u, v) is often called the bit-complexity]. What are the
average values of these parameters when) is a random pair of binary lengtN, for sufficiently large

N? We prove, in Theorem 1, that all the mean values of these parameters [except the bit—complexity] are
of asymptotic orde®V, and the mean value of the bit—-complexity is of asymptotic ofd&rFurthermore,

all the constants that appear in the dominant terms involve the Lyapunov exponent in base 2, namely
Yo =7/ log2,

LN, ExK]~2-En[Pl,  Ex[S|~JEx[P],  En[B]~En[S+K]-D

T Remark that all previous dynamical analyses used dynamical systems, not iterated functions systems.
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1 1
3 g1
A numerical value for constang, is o ~ 0.0344/log 2 ~ 0.0497. Then, we obtain

and, for a quotient with £(a) binary digits, Ex[C,] -En[P].

En[P] ~0.51-N  Eyn[K+S]~230-N, En[B] ~ 1.15- N2.

This must be compared to the behaviour of the Binary Algorithm, which has already been analyzed in
[23], where it is proven that

En[P] ~0.39-N,  Ey[K+ B] ~2.11-N, En[B] ~ 1.10- N2.

Then, it appears that the behaviour of LSB algorithm is quite similar to the Binary Algorithm.

Our second result provides an analysis of the continuous extension of the LSB algorithm. Since the LSB
algorithm is based on th-adic norm, this extension is quite naturally a 2-adic extension, and we then
work in the fieldQ- of 2-adic numbers. This extension generates the (2—adic) continued fraction expansion
of a dyadic numbez, and in particular provides after steps a rational approximatiap,, of z, its n-th
convergent. Theorem 2 studies the siZg),,) of the n—th convergent, and proves that it asymptotically
follows a Gaussian Law. Notably, the expectation of the size satisfies

E[L(Qn)] ~ (2 +0) - n.

Plan of the paper. We present in Section 2 the LSB algorithm, the 2-adic continued fraction expansion
and state our main results, Theorems 1 and 2. Section 3 introduces the LSB dynamical system, which is
further extended into an iterated functions system (IFS). We present the main actor, the transfer operator
relative to this IFS. Then, Propositions 1 and 2 perform transfers “from continuous to discrete”, and relate
the transfer operator to generating functions. Finally, Theorem 3 [proved in section 5] describes the main
analytical properties of the operator which make possible to apply the Tauberian theorem and the Quasi-
Power theorem for proving Theorems 1 and 2.

2 The LSB algorithm.

This section is devoted to describing the general framework of this paper. First, we present the LSB
algorithm, and make precise the probabilistic model used in our analysis. Then, we state our first main
result [Theorem 1] which provides the mean values of the main parameters of the LSB algorithm. In a
second stage, we extend this algorithm into a continuous process, namely the 2-adic (centered) continued
fraction expansion. Our second main result [Theorem 2] exhibits the Gaussian behaviour of the length of
continuants.

2.1 The LSB Division.

The division directed by the least significant bits [LSB’s] of integers resembles the usual one, which is
directed by the most significant bits [MSB'’s]; however it aims to create zeroes on the right of the binary
expansion of the integers, whereas the usual division creates them on the left of this expansion. Since
the 2—adic valuation equals the number of zeroes on the right, it is then quite natural to describe the LSB
division with the help of th&-adic norm : Indeed, the LSB division can be defined by replacing the usual
norm by the2-adic one in the definition of the classical Euclidean division.

Let us first recall some facts about the 2-adic valuation. The 2-adic valuation of an iatedgérdenoted

by v(a), is the largest such thaR* dividesa. The valuation of the rational/b € Q is then defined by:

v(a/b) = v(a) — v(b). From this valuation, one defines the 2-adic absolute value of a rational

|,’E|2 = 2_1/(3;).

The 2-adic distance between two integerandy is then closely related to the number of significant bits
which are common betweenandy. This is why it is very useful in the case when the division between
andv is directed by the least significant bitswandv. It is a ultrametric absolute value, and the relations

|z 4+ ylo < max (|z|2, |y|2), |z + ylo = max (|z2, [yl2) if |z]2 # |yl

always hold.
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First, we denote by~) the set of valid inputs of the division,
Q := {(u,v) € Z*; v odd u every. &)

Given a valid input(u,v) € Q, the centered LSB division returns a remaingdamaller (with respect to
the2-adic norm) than, and a quotieng such that

. 1
v=uq+r, with  |¢| <1, 0<|r]2 < §|u\2 (©)]

Since the paifr, u) satisfies/(r) > v(u), the shifted pair’, ') := (277 . r 27¥(%) . 4) belongs to
the set: this will be the new pair for the next step.

For instance, the division between= 29 = 11101, andu = 12 = 1100, is naively made as follows, in
order to obtain a remainderwith at least three zeroes on the right: with a right binary shift, we “forget
the two zeroes on the right afand the difference betwedn101; and11; equalsi1010,. There is only
one zero on the right, then we “forget” it and we continue; the differdnéé, — 11, = 1010 creates one
supplementary zero on the right: we “forget” it and we continue; finally the differédtg— 11, = 105
creates a third zero on the right. Then, we stop and finally the division can be written as

1o +105 +1
11101, = 11005 x % + 10005,  d.e., 29= 212+8.
2

Such a process leads to a division of the form
1
vzuq—&-r,0<q<2and0§|r\2§§|u|2. (4)

Since we wish to obtain a division of type (3), we finally center the quotjemtd write

—1s
+ 1000005,
2

-1
20 = —12+32 111015, = 1100
1 + 32, 2 2 X 100

and the pair(r,u) is (32,12). The new pair(+’, ') is then obtained by right-shifting the pair, ).
Finally, the new pair generated by the divisior26fby 12 is(8, 3).

Generally speaking, the (centered) quotient (also called the “digig’of the form

_a . . _ u 1 kil
4= o5 with &k :=v(u), a—v-(w) cmod 27T,

Herex cmod y denotes the centered remainder-ahody. Remark that is odd and belongs te-2% +
1,2 —1]. Itis easy to prove that the set of possible digits relative to all valid gairs) is

Qi={ ik =1T,aoddae [-2"+1,2 — 1]} ®)

Remark that, in the LSB division = qu + r, the absolute valule| of the remainder may be strictly larger
than|ul; It can be true even for the shifted. Of course, this situation cannot occur with the classical
division.

In the sequel, we will make a deep use of the matrix representation of the division: if we define @r

the matrices i

then the old paifu, v), the intermediate pair, ) and the new paitr’, u') satisfy

()-nl2) (2)mel2)

We denote byM, [resp. N] the set of matrices\f, [resp. Ni,] wheng € Q. The setV plays an
essentialdle in the paper.



The Lyapunov tortoise and the dyadic hare

75
Input : (u,v) = (72001, 2011176)
In base 2u,v) = (1111010110000001010002, 100011001010000012).

) u; [base 2]| u;[base 10] continuantr; 1 continuanip; ;1 | quotienta; /2%

0 10001100101000001 72001 1 0
1| 1111010110000001000 2011176 -11 1000 -3/8
2 11001001101101@DO0O 826192 1101 1000 1/2
3 11000011000101000000 1598080 -100011 10001000 1/8
4 1001100011100000000 626432 11110011 -1000 -1/2
5| 11101001010200000000 1911296 -101111111 1000101000 -1/2
6 1100000100@000000000 1582080 1001001101 1000001000 1/2
7 | 100010001@0000000000, 1120256 -100001001001 11010011000 -1/2
8 | 100000101@00000000000 2142208 11101011 111010111000 1/2
9 110000000000000d 49152 -100000101011101 10000110111100d 1/4
10 | 100000D00000000000000 2129920 100100010110101 11001001001000 -1/2
11 | 10001D000000000000000 1114112 -1011110010111111 10100000000101000 1/2
12 110000000000000000000 1572864 | 10000011101100001011 -110001110001001000 -5/8
13 | 1000000000000000000000 2097152 10001100101000001 111101011000000101000 3/4

Fig. 1: An execution of the LSB Algorithm.

2.2 The LSB Algorithm.

On the valid inpu{u, v) of Q, the LSB algorithm performs a sequence of steps, each step being composed
by a LSB division, followed by a binary shift and an exchange. The total execution on the(input

v,u; := u) is described as follows

Uy = q1u1 + 71,
U1 = qau2 + T2,

Ug i= 9—v(u1) -7y,
Uug 1= 9~ v(u2) 79,

uy =277 gy
Ug 1= 9—v(u2) - Usg,

Ui—1 = QUi + 74, Ujq1 = 271/(1“) R U; 1= 271/(1”) < U

and stops at the-th iteration withu, 1 = 0. Figure 1 describes an instance of such an execution.
On an input{u, v) whose gcd equalg, the previous execution creates matrix products of the form

0
d

0
2kd

( >:N< ) with - M = Mg, - My

q2]

1

2

M[ N =

apl?

M, (7)

wherek = ki + --- + k, is the total number of shifts performed. It also creates the continued fraction

expansion of the rational/v,

8

u 1
v 1
v
q1 + 1
q2 + . 1
qp +0
If hig(z) denotes the linear fractional transformation (LFT) associated to mafgjx[or N, ], defined
as
1 2k
g (@) = g+z  a+2kz’

then the previous continued fraction expansion can be written as

u

- = Mgy 0 higyp © - hyg, ) (0) = h(0).

Remark that the LFT. and the matrix\/ are of the form

=

ax + 3

yx 46

a B
v 6

h(x)

9)

(10)

with «, 3, v, 6 coprime integers. When the algorithm perforpiterations, it thus gives rise to a continued

fraction of depthp.
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2.3 Probabilistic behaviour of the LSB Algorithm.

We wish to study this algorithm from a probabilistic point of view, and then provide a theory which
explains the experimental facts already observed by &l Zimmermann in [21] or [20]. These authors

have studied this algorithm from the worst—case point of view. They have established that the algorithm
runs in quadratic time (in the worst—case) and they have exhibited the precise worst—case number of
iterations: It arises when each division—step uses the minimal—-size quotient, eg&ldad involves the
absolute value of the smallest eigenvalue of the maltfix,; equal to(v/17 — 1) /2. Then, the maximum
number of iterations of the LSB Algorithm on a péir, v) with max(|u|, [v|) < N, is asymptotic to

log yi7_1 N.
2

They have also observed that the sequence of remaitagrs, , us, . . ., u,) is not generally decreasing.

Here, we wish to describe the probabilistic behaviour of some important parameters related to this algo-
rithm, in order to compare them with already known results concerning other gcd algorithms.

In fact, we consider two sef$ and(2: the second one is formed with all the valid inputs of the algorithm,
while the first one only contains the valid inputs that are coprime. We mainly deal with th& siet

may seem strange —at least from an algorithmic point of view— to study the sets of inputs for which the
answer of the algorithm is trivial! However, we shall see that this (trivial) set is in a sense generic, and it
will be easy to transfer the results Gnto the (more natural) sél.

For the LSB Algorithm, the set? andf2 are

Q := {(u,v) € Z*;v odd u every, Q= {(u,v) € Q, ged(u,v) = 1}.

We then endow these sets with a size. It is convenient here to deal with the Euclideafj. jpsm that
the square of the norm of the inplat, v) is (u? + v2). We then choose as the size of the input the quantity
L(u,v) defined from the binary length [¢(x) := |log, | + 1],

L(u,v) = %E(uQ +0?). (11)
Finally, the sets
Q= {(uv) €% Llww) =N}, Oy = {(wv) € Lwv) = N} (12)

gather valid inputs of siz&/ and are endowed with uniform probabilities denotedhy, P . We wish to
analyze the probabilistic behavior of the main observables (as digits or continuants) on(hg sdten

the sizeN of the input becomes large. We then (easily) returf ta

The complexity analysis of each algorithm first aims to quantify the number of iterations that are per-
formed during the execution (3). More generally, we wish to study general additive parameters which
only depend on the sequence of the digjtsWe consider a costdefined on the sap, and we attach to

the execution (3) of the LSB algorithm on the infut v) the total costC(u, v) defined by

P

Clu,v) ==Y clq)- (13)
=1
Here, we consider a large class of digit-caster which the average
1
ple] == Z W ~c(q) (14)
qeQ 42

is finite. This class contains some particular parameters which are are of great algorithmic interest. For
instance, ifc = 1, thenC = P is the number of iterations. K is the characteristic function of some
particular quotien, thenC' is the number of occurrences of this particular quotient during the execution

of the algorithm. Ifc is the digit-size/, thenC is the length of the binary encoding of the continued
fraction. If ¢(q) := k, thenC = K is the total number of binary shifts performed by the algorithm.

If ¢(q) := s(a) isthe number of ones in the binary representatiom,athen.S is the total number of
subtractions performed by the algorithmc(fs, ¢) := ¢(u) - [k(q) + s(a)] then

P

B(u,v) = Zé(u,)[k(q,) + s(a;)]

i=1

is the complexity in bits of one execution of the algorithm.
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2.4 The first result.

As is usual in probabilistic analysis of algorithms, generating functions are the basic tools in our study.
When interested in a total coSt we deal with the bivariate generating functia (s, w),

So(s,w) = Z exp[wC’(um)}’

2 2)s
(u,v)e (U, T )

and we look for an alternative expression for it [see Proposition 1]. Then, the Dirichlet $efiesand
T1(s),

C(u,v) tn 1 |2
T = _— —_— T = —_—
c(s) > (W2 + 02) > ns’ )= > (w2 1 v2)* > e
(u,v)e n>1 (u,v)€Q n>1

satisfy

Te(s) = %SC(&U))]w:O» Ti(s) = Sc(s, 0),

and they inherit the alternative expression obtainedsfefs, w). On the other hand,, is the cumulated
costC on the set of pairéu, v) for which (u? + v?) equalsn. Then, the expectation of caStonQ can
be expressed with the partial sums of the coefficients of the two series

22N

— — t7
Ex[C] = Zgpevrln,
Z7L:22N*1 |Q’ﬂ|

Finally, Tauberian Theorems will be used for “extracting” coefficients from a Dirichlet series [see Theorem
Al.

Remark that the serie&-(s, w) [the analogue 0F (s, w) on] is closely related t&¢ (s, w). This is due

to the fact that, fo(u, v) € €, the two costs”(du, dv) andC'(u, v) are equal. Then,

S(s,w) = Z(s) - S(s,w), where Z(s) := Z m
(u,v)eQ

is a Zeta function closely related to the Zeta functior¥Zoi.

Consider the seV := {N},; ¢ € Q}, where each matri¥V}, is chosen with probabilityg|, 2. This is
a set of random matrices, and we can define the binary Lyapunov exponent of tRis set

1 .
0= nlgrololE[log2 [[N1 - Ng-...N,l].
This quantity will be proved to exist and to be strictly positive. Extensive computations [11] have shown
that~, is small, and close t0.0497. This quantity will play a centraldle in the whole paper.

Our first theorem provides the asymptotic behaviour of the expectation of a general additivVeorostts
Qn, Qn, and we focus on particular parameters of algorithmic interest, namely the nithab@erations,

the total numbek of binary shifts, the numbe¥ of subtractions. We obtain also the asymptotic behoviour
of the compexity in bits3.

Theorem 1. Consider an additive cost C associated to a digit—cost c. On the sets Q, Q ~, endowed with
the uniform probability, the average value of C' is asymptotically linear with respect to the input size N,

En[C] ~ En[C] p[C]- N,

2—70.

Here 7y is the binary Lyapunov exponent of set N and p|C] is [by definition] equal to the average yi[c| of
digit—cost c
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For costs P (number of iterations), K (number total of shifts), S (number of subtractions), C, (number of
occurrences of quotients with numerator equal to a), the constants are

On the sets Q, Q. endowed with the uniform probability, the average value of the bit—complexity B is
asymptotically linear with respect to the input size N,

N2

~ 1
En([B] ~ En[B] ~ Cy——

Remark. This theorem perfectly fits the following heuristic model. An execution of the algorithm is a
race between the Lyapounov Tortoise and the Dyadic Hare. At any step of the algorithm, the hare is on the
right of the number, while the tortoise is on the left. At the beginning, the tortoise is\tthits ahead the

hare. The average speed of the tortoisgibits by step, and the hare runs much faster since its average
speed is 2 bits by step. The hare thus wins ~, bits by step to the tortoise and finally catches with it
after N/(2 — vo) steps.

2.5 Extension of the LSB algorithm.

Our second result provides an analysis of the continuous extension of the LSB algorithm. Since the LSB
algorithm is based on th&-adic norm, this extension is quite naturally a 2-adic extension, and we then
work in the fieldQ, of 2-adic numbers. We refer to Gouvea [13] and Koblitz [17] for a good introduction

on p-adic numbers. The s&), is the completion of) with respect to th@-adic absolute value. It is an
ultrametric locally compact space and the@ds dense infQ,. The Hensel expansion provides a natural
representation of 2-adic numbers : Each Q4 has a unique expansion of the form

y= Y a,2", witha, € {0,1} andng € Z. (15)

n>ng

This expansion is in a sense dual to the binary expansion of aréébwever, in the Hensel expansion,
the exponents belong to a set of the forfin € Z;n > ny} and may tend te-oo while in the binary
expansion, the exponents belong to a set of the foing Z; n < ng} and may tend te-occ.

From the Hensel expansion, it is easy to define2tfaglic (non—centered) integer paut|, and the (non—
centered) fractional paft:}» of a2-adic number

0
|x]2 = Z 2", and{z}, := Z oan2”.

n=v(z) n>1

Then, ||, is a rational of the formu/2*, with ¢ odd andl < a < 2*+! so that|x |, belongs tg0, 2|.
The quantity{z}, defines a 2—adic number which belongs to the open unitthall Q,, (it is also the
closed ball of radiug /2),

B .= {iCEQQ, |$|2<1}{IEQ27 |1’|2§;} (16)

We can “center” the rationdl: |, in order to get a rationglx |, which belong td — 1, +1[:

If |x]2>1,then[z]s:=|z]2—2, {ala:={z}2+2,
else[z]s := |[z]2, {{z}}2 = {z}o.

Then, each 2- adic numberadmits a unique decomposition of the form
z = [z]|s+ {z}}2, with [z € Q,|[z]2| < 1,{z}}2 € B.

Remark that, when the integer p&ir, v) belongs tof), the rationak:/v belongs tos, and the previous
decomposition, applied to the rationglu is closely related to the LSB division on the integer dairv)
of the formv = uq + r given in (3):
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Then, the mappind : B — B defined as

ro= [ {2 weso oo @)

extends one step of the LSB algorithm: on a ratianal of B, it produces the rational/u = ' /v’

This mapping is for instance described by Browkin in [6, 5]. With this mapping, we can define the (infinite)
trajectory(y, T(y), T%(y), ..., T(y), .. .) of anyy € B, and also its 2-adic continued fraction expansion,
of the form

Yy = 1 ) (18)

Gn + -
where each digig; = ¢;(y) = |T"~'(y)| belongs to the se.
Our second main result deals with the probabilistic analysis of this continuous process. We deal with the
Haar measure defined on the balls, and we are interested in the behaviour of truncated trajectories
(y, T(y),...T"(y)) at a fixed depthn, for a randomly chosep. We wish to describe the evolution of
parameters of these (truncated) trajectories, when the truncation depth becomes large. There are two main
types of parameters.
First, we consider, as previously, a digit-cestand attach the total cost on the truncated trajectory
(y,T(y),...T™(y)) defined as

CM(y) = elai(y)).
i=1
Such costs have already been analysed by Daireaux in [7] for digit—costs of moderate growth, and they
are proved to follow an asymptotic gaussian law. In the more general casepavhiédefined in (14)) is
finite, the Ergodic Theorem shows that

E[C™] ~ pld] - n.

Remark. Our Theorem 1 also proves that rational trajectories behave (on average) as generic trajectories.

2.6 The second result

Here, we are interested in a second type of parameters, the so—called continuants, which are more difficult
to analyse. Consider a 2-adic numiee B and its CFE expansion, given in (18), truncated at depth
This defines a vectdp,,(y) := (pn(v), r»(y)), via the relation

" 0
( fngzg ) = Mig,) - Migg) - - Mg, ( 1 ) ) (19)

and the rationgb,, (y) /7, (y) = hig,10h[gs]0- - -0 hq,(0) approximates the 2-adic numhgjwith respect
to the2—adic norm]. We wish to study the random variablg ||Q..(y)|| when the ball5 is endowed with
the Haar measure. This quantity is equal to the size of theth approximant of;. We shall deal with
the Levy Moment Generating FunctioB[exp(w log ||@.||)], which is defined by

Elexp(w log [|@n|])] =/Bexp[wlogI\Qn(y)\lldn(y)- (20)

wherer, is the Haar measure defined on the I#ll
Our second main result proves that the random varialg@,, || follows an asymptotic gaussian law.

Theorem 2. Consider any x in the open unit ball B of Q2 and denote by Q.,(x) := (p,(z),r,(x)) the
vector of Z* whose components form the n-th convergent p,/r, of the dyadic x. Denote by ||.|| the
Euclidean norm. When B is endowed with the uniform density with respect to the Haar measure 1, the
random variable log ||Q,,|| asymptotically follows a Gaussian Law, with an optimal speed of convergence
in O(1/+/n). Moreover, the mean and the variance satisfy

Eflogy [|Qnll] = 2+10) -n+a+0(™"),  Vogy [|@n|[]=b-n+c+O0(7™")
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Here, o is the binary Lyapunov exponent of set of matrices N, where each matrix Ny is chosen with
probability \q|52, and a, b, c, T are constants, withb > 0,7 < 1.

Remark. If we wish to deal with the sizé defined in (11), we obtain
E[L(Qn)] = (2470) - n+ O(1).

Once again, this result can be explained by our heuristic Aesop’s model. Here, the tortoise and the hare
no longer race one against each other, but work together and add their respective speeds. Then the total
speed i + vy bits per step, and, aftersteps, they have performeda+ o) - n long run.

2.7 Comparison of the two results.

Comparing our two Theorems leads to a rather surprising phenomenon. If a rational number of size
N behaves as a generic dyadic number, the size of-ith convergent would be equal {8 + o) - n

[from Theorem 2]. On the other side, [from Theorem 1], the LSB algorithm terminatesiafféy :=

N/(2 — ) steps, the length of thB(N)—th convergent should be equal to

2
N. +’Yo,
2=

whereas it must be equal t§. In all the previously known cases (see [22]), the constant involved in
Theorem 1 is the inverse of the constant of Theorem 2. Here, the difference suggests (and shows) that the
continuants of a rational number do not behave in the same way as the continuants of a generic dyadic
number. We have never seen this situation before, and, at the moment, we do not have a good explanation
of this phenomenon.

3 Dynamical systems relative to the LSB algorithm

We first present the dynamical system underlying the 2-adic CFE, and explain why it is necessary to
perform a further extension which both considers real trajectories in addition to 2-adic ones. We then
introduce our main tool, the transfer operator, which we use as a generating operator. Finally, we state
Theorem 3, which describes the main analytical properties of our transfer operators, and explain how to
“transfer” analytical properties from the operator to our problem.

3.1 The LSB Dynamical System.

We recall that a dynamical system is a p@axr, S) formed by a compact séf and a mapping : X — X

for which there exist a suitable countable partition&uch that the restriction &f to each element of

the partition isC and invertible. Here, the pai3, T) (defined in (16, 17) defines a dynamical system
which extends the LSB Algorithm. We now describe its main characteristics, and list some of its important
properties.

Let ¢ € Q be an allowed digit defined in (5). We denote By the open ball of center/q and of radius

1/4l3:
2 2
=qx € B, .
2 2

Whengq varies inQ, the ballsB, are disjoint and form a partition @ \ {0}:

1
r— =
q

‘1 1
< |= Tr— =

q

q

g,

2

By = {xEB, .

1’1

2 2

| B, =B\{0},andB, N B, =Pforq #q.
geEM

For allq € Q, the restrictiorll}, : B, — B of T' to the ball3, is of the form

1

Tig(z) = — — 4,

and defines a surjective mappind, (B,) = B. Its inverse branch is the LFf, : B — B, already
defined in (9)
1 2k

= = if g = —
Cg+zx 2z +a =

hig)(2) ok "
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Remark that for: € B, its denominatoR”x + a has a&2-adic norm equal ti2*z + a|s = |a|, = 1. Then,
the 2-adic norm of the derivati\l@{q] is constant o,

22k

1
—2k Vo € B. (21)

h/ = |— :2 =
()12 '(2kx+a)2‘2 [deth|’

This property will be central in our study [see Section 3.2].
We denote byH the set of the inverse branches

H = {h[q],q S Q},

by H™ the set formed by all possible compositionoélements of{ and byH* the semi-group generated
by H.

3.2 The transfer operator.

The main study in dynamical systems concerns itself with the interplay between properties of the trans-
formationT" and properties of trajectories —or encoded trajectories— under iteration of the transformation.
The behaviour of typical trajectories of dynamical systems is more easily explained by examining the flow
of densities.

Here, the seB3 is endowed with some initial distribution relative to some dengity f, with respect to

the Haar measurg. The time evolution governed by the m&@pmodifies the density, and the successive
densitiesfy, fo, ..., fn, ... describe the global evolution of the system. Since the laws governing change
do not change with time, there exists an operdbfor which f; = H][f], fo = H[f1], and more
generally f,, = H[f,—1] = H"[fo] for all n. This operator is called the density transformer, or the
Perron-Frobenius operator. It can be defined as

H(f](z) = Y [W(«)]2- f o h(x). (22)

heH

In previous dynamical analyses, which deal with real extensions, the quiifity| is the square of the
denominator of(0) and thus the operator can be used as a generating operator for the input sizes. Now,
the equality (21)|/(x)|2 = 1/| det h| entails an alternative form for the transfer operator

H(f](x) = ) |deth|™" - foh(z).

heH

We observe two main facts. First, good news: since each brahah a constant derivative, this dynamical
system is “memoryless” : if the initial densiffy is 1, then each step is independent on the previous history
and chooses the matrix|, [or the LFTh ;] with probability|q\2_2. Second, bad news: we have “lost” the

input sizes ..., and we are led to perform a new extension of the dynamical system where the (extended)
transfer operator generates input sizes.

3.3 A new dynamical system.
Indeed, we aim generating, fore 9, the quantities

|I(u, v)| > - ( 0 2 ) k k( 01 )
_MEYN - with My, = — 2k N, =2 . 23
Mgy (w, )| W=\ 2+ 4 1 g @3)

These are real objects, that we wish to generate according to the 2—adic rules, and we are now in the
context of products of random (independent) matrices; we adopt the point of view described in [4], and
we consider the projective real line, endowed with the usual projective topology [not the real topology].

It is homeomorphic [via the map “tangent”] to the tordis:= R/7Z which can be identified with the
interval] — = /2, +/2[ (where the two points-7 /2 and+ /2 are the same).

Consider now, for each branch, of the LSB dynamical system, the mdp, : J — J which is
conjugate off{, by the map “tangent” and by, the inverse off';,

1
any

T\ (y) = arctan (t - q) . hy(y) = arctan (

tany—|—q> '
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Foru/v = w = tan y, the equality

[ T I
[INg (@, 0)[7 T+ w+g? 7
entails that, for any: € B,
|I(w, )| 1 [(u,v)]]? / /
= —_— = h N h . 24
||M[q] (u7 ’U)||2 22k HN[q] (’U,, U)HQ ‘ lq] (I)|2 |7[q] (y)| ( )

We are then led to introduce the following dynamical syst@m J, V') defined as follows: the partition
is ((By x J)qe0), the restriction oft” to B, x J is the surjectionT},, ;) : By x J — B x J, and
the set of inverse branches is the set/of;, ;). The Jacobian of the map, y) — (h(z), h(y)) is the

product|h’ (z)]2 - |/ (y)| = on - |A' (v)|, whered,, is equal tg det k| 1. Then, the transfer operator related
to the dynamical system

G s[Fl,y) = ) & - Ih' (y)|° - F(h(x), h(y))
heH

is, with (24), a generating operator for the quantities (23).

3.4 A system of iterated functions.

We need in fact a slightly different operator which depends on two parameteds, but acts on functions
of the unique variablg,

G- [flw) ==Y o I ()" - f(B(y)).

heH

If £ denotes the set := {h; h € H} and if we lets;, := §,*, we adopt the final expression:

Gi:lfl(y) =D 8- |- folly), Ge:=Gsy. (25)
el

In this operator, the probabilities contain all the informations which come from the 2—adic topology,
while the functiond contain all the informations on the input sizes.

Remark that Equation (24) can be extended (with multiplicative properties) to any(#iglg V) whose
components are relative to the same elemest (¢, q2,...,¢,) € Q*. For any(u,v,y) with u/v =

tan y, [and notably for(0, 1, 0)], and for anyg € Q*, one has

[ (, v)II? 1

Ol = D op: O %= e e (26)

If we wish also generate the total casStu, v) of the algorithm on the inputu, v), we use a weighted
transfer operator. This operator depends on digit—¢astd involves a third parameter, which is used
to “mark” the cost,

Gl f1(y) := D 6} - explwe(t)] - [€'(y)|* - f o Lly). (27)
lel

Remark: Since = /|, for someq € Q, the digit—cost can be also defined directly ©pand it can be
extended orC* by additivity:

c(l) :==c(q) for L=y, c(lyolyo...oly):=clly)+c(la)+...4+c(ly). (28)

3.5 Transfer operator viewed as a generating operator.

The transfer operators defined in (25,27) can be viewed as generating operators for data size and/or for
costs. Then-th iterate of the operator has exactly the same expression as the operator itself, except that
the sum is now taken over the-th power of the initial set, namelg”,

G 1) =Y 6 - explwe(0)] - |€'(y)]* - f o L(y), (29)

LeLm

T We extend the quantity with multiplicativity and use it with an indey € Q*, or with an index inM*, orin £* ...
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and then-th iterate of the transfer operator describes the data sizes:dterations.

When we wish to describe the evolution of data sizes during all the possible executions of the algorithm,
which correspond to the semi—grodp, we are led to work with the quasi-inverse of the transfer operator,
which generates all the possible iterations, and, in a quite general framework, the quasi-inverse

(I = Gizw) " [1)(0)

will generate all the input sizes together with execution costs.

More precisely, the following results provide alternative forms for the two main objects involved in our
analyses.

Proposition 1. The bivariate Dirichlet series relative to an additive cost C' relative to a digit—cost c satisfies
Sc(s,w) = (I = Ga,s) " [1(0),
and the (univariate) Dirichlet series of cost C' satisfies
To(s) = (I = Go) ™o G o (I = Go) 7 1](0). (30)

cl

Here the operator G[S is the derivative of operator G 5 ., atw = 0,

GUf =67 -c0)- 1) f (31)
el

The (univariate) Dirichlet series of bit—complexity B satisfies

Ta(s) = (I —G,) Lo GFlo(I-G,) 1o diic;s o (I — Gy)  1](0). (32)

Proof. This proof is a particular instance of a generic proof which can be found in [22] or in [7]. Notice
that relation (10) defines a bijection between the sufdsatd the set{*, and thusC*. And, for any input
(u,v) € Q, relative to a functiof € L£*, the rational(u/v), the Euclidean normi(u,v)||> and the cost
C(u,v) can be expressed by means of functipwith (26) and (28),

N
[|(u, v)[?

Thus, the bivariate generating functié‘@(s, w) satisfies

=60 - |0 (0)], Clu,v) = c(f).

Y _ arctan £(0),
v

explwC'(u, v) _
Scts.w) = 3 CEFEG = 3 - expluc(f)] | OF = (1 = Gn) M 110)
(u,v)EN leL*

Then the alternative expression® (s) is obtained by taking the derivative (with respecitpatw = 0
of the quasi-inverse.
For the bit-complexity, the proof is similar to the original proof provided in [2] or in [85],

Proposition 2. Consider any x in the open unit ball B of Qs and denote by Q, () = (pn(x), qn(z))
the vector of Z* whose components form the n-th convergent p,, /q,, of the dyadic x. Denote by ||.|| the
Euclidean norm. When B is endowed with the uniform density with respect to the Haar measure 1, the
moment generating function of the logarithm of the continuant norm ||Q,,|| satisfies

Elexp(2wlog||Qn|])] = G, - [11(0).

Proof. With the expression (19) of the continuant, and definition of the moment generating function in
(20), one has:

Elexp(2wlog ||Qull)] = Y 1Mg)(L, 0)[[** - nlhyg (B)].

qeQ™
Using the fact that the measure of the bigl} (B) equalsy,, and Equality (26), one obtains
Elexp(2wlog||@nl))] = Y 84 164(0) " -6, = GI_,, _,[1](0). =

qe Qn
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4 Two main theorems.

Proofs of Theorems 1 and 2 are obtained from Propositions 1 and 2 by applying two main theorems.
We prove Theorem 1 by using the alternative expression of the Dirichlet §gfi@$ obtained in Propo-
sition 1, together with the following Tauberian theorem, due to Delange, which extracts coefficients of
Dirichlet series.

Theorem A. [Tauberian Theorem.] [8Let T'(s) := >, -, tp,n~° be a Dirichlet series with non negative
coefficients such that T'(s) converges for R(s) > oo > 0. Assume that

(1) T(s) is analytic on R(s) = 0, s # o, and

(i1) for some v > 0, one has T(s) = A(s)(s —o)™7~t + C(s), where A,C are analytic at o, with
A(o) # 0. Then,

22N
> b= s (-2 @log2) YN M) Jim (V) =0,

n=922N-1

We prove Theorem 2, by using the alternative expression oféfig moment generating function obtained
in Proposition 2, together with the following Theorem, due to Hwang, which proves the Gaussian behavior
of a sequence of random variables as soon as their moment generating functions behave like quasi- powers.

Theorem B.[Quasi-Power Theorem.] [16Assume that the moment generating functions E[exp(wR,,)]
for a sequence of functions R,, are analytic in a complex neighborhood W of w = 0, and satisfy

Elexp(wR,)] = exp[B,U(w) + V(w)] (1 + O(k, ")) , (33)

with 3, K, — 00 asn — oo, U(w), V(w) analytic on W and the O—term uniform in W. Then, the mean
and the variance satisty

E[R,] = U'(0) - B, + V'(0) + O(k,; 1), V[R,] = U"(0) - B, + V"(0) + O(x,; ") .

Furthermore, if U"(0) # 0, the distribution of R,, is asymptotically Gaussian, with speed of convergence
Ok + 82'1%).

R, (z) = U (0)n

Py | | T 0y

1 v 2
<Y|=— eV 2dy+ Okt + p12).
- ‘| @/700 y (n /Bn )

4.1 Our main result in Functional Analysis.

We now state the following result [proved in Section 5] which will allow us to apply respectively the
Tauberian Theorem [Theorem A] [8] and the Quasi-Power Theorem [Theorem B] [16] in order to obtain
Theorems 1 and 2.

Theorem 3. Denote by A := {(t,2) € C% Rt > 1/2}, by Dy a suitable (complex) neighborhood of
(1,0) and by D, a suitable (complex) neighborhood of (1, 1). The following is true:

(i) For (t,z) € A, the operators Gy ., GLC]Z [defined in (25, 31)] act on the functional space C*(.J).
Moreover the map (t, z) — G . is analytic.

(ii) For (t,2) € DoUD, the operator Gy ., when it acts on C*(.J) admits a unique dominant eigenvalue
A(t, z) separated from the remainder of the spectrum by a spectral gap.

(#4i) The dominant eigenvalue \(t, z) satisfies the following relations

21—2t

A(t,0) = T o2

At, z) = At 1 — z), A(1,0) =1=A(1,1),
and the Lyapunov exponent +y of the set N satisfies
27 = \.(1,1) = —\.(1,0).

(iv) The map w — log A\(1 — w, —w) has a second derivative which is non zero at w = 0.
(v) On the punctured plane s > 1, s # 1, the spectral radius R(s) of G is strictly less than 1.
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4.2 Proofs of Theorems 1 and 2.

As we already said, we prove Theorems 1 and 2 with applying Theorems A and B to thes€rigsand
Elexp(2wlog ||@x|])]. The link provided in Propositions 1 and 2 between these series and the transfer
operator extends to the properties of these objects: Analytic properties of the generating functions can be
deduced from spectral properties of the operator, so that Theorems A and B finally apply. We precise this
in the next two propositions, whose proofs are in the appendix.

Proposition 3. With Theorem 3, the Dirichlet series T¢(s) and T (s) fulfill the hypotheses of Tauberian
Theorem [Theorem A] (at o = 1).

Proof. From Proposition 1, the operators relative to Dirichlet sefiegs), andTy(s) involve (one or two)
occurrences of the quasi-inverée— G)~![f](y) [see (30)]. First, Propertyw) of Theorem 3 entails
that the quasi-inverse is analytic wherbelongs to the punctured half-plafiés) > 1,s # 1, so that
Hypothesig(i) of Theorem A is satisfied. Second, Propes) of Theorem 3 entails, fofs, s) € Dy, the
following spectral decomposition

A(s)

mps[f](y) + (I =Ny f](y),

(I = Go)'flly) =
whereP, is the dominant projector anB is the operator “for the remainder of the spectrum” whose
spectral radius is less tha\(s)| (with p < 1). Then, for(s, s) € Dy, one has

1 -1
(s =) N(1)

and, sincda; is a density transformer, the dominant projedrsatisfies

Pi[fl(y) = w(y)/Jf(t)dt

wherey is the dominant eigenfunction fd&, [i.e., the invariant density]. Then, fds,s) € D;, the
dominant part off o (s) is
1 1 lc] 1 1
Te(s) (s —1)2 )\/(1)2P1 0 Gy o Py[1](0) (s — 1)2 N(1)2
for some constantl, and the serie¥(s) thus has a pole of order 2 at= 1, while Ty (s) has a simple
pole ats = 1,

(I = Go)"'[f)y) ~ Pi[fl(y) ~ when s—1

A - 9(0),

1 -1 1 -1
———Pi[1](0) = ————— - .
Then, hypotheses of Theorem A are fulfilled 35 (s) andTj(s). Remark furthermore that

A:/]G[f][ y)dy =S 6, c(l /w' o l(y) =D b c(l

Lel lel

To(s) ~

and, with Theorem 3iii), one has :

IN(D)] = [A(1,1) + AL(1,1)] = 4log2 + \,(1,0) = 4log2 —2y. =

Proposition 4. With Theorem 3, the moment generating functions E[2 exp(w log ||Q||)] fulfill the hy-

potheses of Quasi-Powers Theorem [Theorem B].

Proof. Let W be a complex neighborhood of zero such tHat w, —w) belongs to the sé®, of Theorem
3. Then Propertys) of Theorem 3 implies that the moment generating funct®fsp (2w log ||Q.||)]

are analytic forv € W. Theorem 3ii) entails a spectral decomposition of the form

1w, —wlf1(@) = A"(1 —w, —w)P1w, —w[fl(z) + R, _,[f](z)

whereP ., ; is the projector on the dominant eigensubspaceRingd s the operator for the remainder of
the spectrum, whose spectral radius is less gz, t) [with p < 1 for (¢,2) = (1 — w, —w) € Dy).
Then||Ri—y,—w||T < 7"A(1 —w,—w)|™ for p < 7 < 1, and

?—w,—w[l](x) = exp [n IOg )‘(1 - w, —U)) + logPI—w,—w[l](Z‘)] (1 + O(T_n)) .
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Then, from Theorem Biv), Theorem B can be applied with
U(w) =logA\(1 —w,—w), V(w)=logPi_, _,[1](0) andk, =7"".
With Theorem Jiii), the derivativel’(0) is equals to

U'(0) = A(1,0) — A.(1,0) = 4log2+2y. =

5 Functional Analysis: Proof of Theorem 3

This last Section is devoted to the proof of Theorem 3. We first introduce another set of matrices, formed
by the inverses of the matricég,;. Then, we recall the main results needed on random matrices, which

we summarize in Theorem D. These results are a first step for proving Theorem 3. We explain why they
are not sufficient for our purpose, and we establish in Propositions 6, 7, 8, the main steps that are necessary
for proving Theorem 3.

5.1 Sets N and N !

As we previously remarked in Section 3.4, the dynamics of the LSB Algorithm is closely related to the set

N of random matrices

0 1
N = {Nig; N[qw:(l q>7 q€Q},

relative to the se® of dyadic rational numbers
a
Q:={q= 27;/{ >1,a0dd a € [-2% +1,2F — 1]},

whereq is drawn with probability{g|;2. Itis also related to sef of functions,

E = {f[qh f[q] : J — J7 g[q] ((I}) = arctan ( ) q S Q}7

q+tanx)

whereq is drawn with probability1q|2_2. Quite often, we omit the index, and a generic element afis
denoted by, and its probability is denoted hy.
We shall need another set of matrices, the set

N7L= {N[;]1 iq € 9},

where each matrixv[;]1 is chosen with probability,. For an element € L, relative to some matrix
Nig. the element~! is associated to matriN[;f, with a relative probability,. The involution(z, 1) —
(—1,x) of the projective line is exactly expressed by the involutive map Tilde on the thrdsfined as

yry—y+m/2. (34)
Then, the expressions of matricdg,, N[;f
lead to the following relation betweerand/—!

=y, @) =) (35)

As it is mentionned in [4] [Part B, Proposition Ill. 2.5 page 243], this will provide nice relations between
G; . and the operato@t 1, relative to setsv—!, £, defined by

Ge:lflw) = > 8- 1) folly). (36)
LeL—1t
The transfer operatdF(z) introduced by Bougerol in [4] is defined as

I s
= 3 o (gt oo

MeM
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whereh is the LFT relative to matrix\/ and (u,v) is any vector ofR? associated to point of the
projective lineP(R). Remark that, with (26)T'(z) is just the conjugate [via the tangent map] of our
operatorG, _, /5 /2.

We shall use the results obtained in [4] for the oper@tor , _, for z near0 in order to derive the analysis
of operatorsG; ; for s and¢ nearl. In [4], it is proven thatG,_, _., when acting on the spad&, (.J)

of o Holder functions, is quasi-compact femear0 [see Theorem D]. Here, we shall prove that such a
result holds on the spac® (.J) when(s, t) is near(1,0) or (1,1). We also need studying operatdss

in the half plane(s; f(s) > 1}.

5.2 Quasi—-compactness.

We first recall the main notions about spectrum, essential spectrum and quasi—compactness.

For an operatoL acting on a Banach spacg, the spectrunw (L) is the set of elements for which

L — M is not inversible. There are two types of spectral values: an elemer(fgffor whichL — A1

is not injective is called an eigenvalue and is of type 1; a spectral value which is not an eigenvalue is a
spectral value of type 2: for such a spectral valyéhe operatol. — \I is not surjective.

The notion of essential spectrum was introduced by Nussbaum [19]. An eléroén{L) belongs to the
essential spectrum denoted bY! (L) if it satisfies at least one of the three following properties:

(A) X is an eigenvalue of infinite multiplicity,

(B) Xis not isolated in the spectrum

(C) The image ofG — A is not closed.
Moreover, an eigenvalue which belongs to the essential spectrum is either ¢ftypeof type(B) [19].

The spectral radiug (L) is the supremum of modulA| when is an element o (L), and the essential
spectral radiusk(¢/(L) is the supremum of moduli\| when \ is an element of°/(L). For compact
operators, the essential radius equals 0.

An operatorL is quasi-compact if the strict inequali§l (L) < R(L) holds. Then, except for the part
of the spectrum inside the closed disk of radRig (L), the operator behaves just like a compact operator
(in the sense that its spectrum consists of isolated eigenvalues of finite multiplicity).

The following theorem, due to Hennion [15] is a generalisation of previous theorems due to lonescu-
Tulcea and Marinescu, or Lasota-Yorke. It provides an upper bound for the essential spectral radius. It
deals with two norms, a weak norfii= and a strong norn.|| =, for which the unit ball of(F, ||.]|) is
compact in(F, |.|).

Theorem C.[Hennion, lonescu-Tulcea and Marinescu, Lasota-YorKeppose that the Banach space F
is endowed with two norms |.| and ||.||, and the unit ball of (F,||.||) is compact in (F,|.|). LetL be a
bounded operator on (F, ||.||). Assume that there exist two sequences {ry} and {t,,} of positive numbers
such that, for all n > 1, one has

LA < - 11+t LS (37)
Then, the essential spectral radius of the operator L on (F, ||.||) satisfies RIl(L) < lim,, o inf (1,)'/™.

We use this Theorem C for an alternative proof of Theorem D, with the dffa¢€) of o Holder functions;
the strong norm is tha-Holder norm|.|,, and the weak norm is the! norm. We also use this Theorem
in Proposition §iii) with the spac€®(.J) of continuous functions; the strong norm is the sup nfria,
and the weak norm is the* norm.

We shall often use the following Lemma which makes precise the relations between the spectrum and the
essential spectrum of an operator acting on two spages F».
] the

7

Lemma 1. Let L be a linear operator acting on two Banach spaces F; and F», and denote by o;, o

spectrum, and the essential spectrum of L as an operator on F;, i = 1, 2.

(a) Suppose that Fy, F» satisfy the following three properties: (i) F1 C Fa, and F; is dense in Fo — (it)

The injection F; — F» is continuous — (ii%) the unit ball of F1 is Fa—compact in Fo. Then, the inclusion

o1 C o9 holds.

(b) If, in addition, JF;, F» satisfy (iv) the unit ball of F is Fo—compact in F, then the inclusion a&e] -
[e]

o5 holds.

Proof. We denote byG the operatoG := L — AI. In this proof, we use twice the following sublemma.
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Sublemma. Let the spaces F and F» satisfy hypothesis (ii) of the Lemma. Let G be a linear operator
acting on both spaces. Assume that there are g ¢ G[F1] and a sequence ( f,,) of functions of F» for which
the F»-limit of the sequence G|f,] is g. Then, there exists a sequence () in Fy with ||, ||1 = 1 such
that || G[¢n]]]2 goes to 0.

Proof of the sublemma. Becausg is not in G[F;], the sequencéf,,) has no limit points for theF;-

topology : since the convergenceiff implies the convergence ifi,, any F;—limit point » would satisfy
G[h] = g. In particular,(f,,) is not a Cauchy sequence. Thus, there exists0 and a subsequeneg,

such that for alk € N, one hag| f,,, — fn,., |1 > €. Definegy, := fn, — fn,,, andyy = Hd?ﬁ' Now,
1%]l1 = 1 and the inequalityjé, ||; > € proves that the sequen€&;,] goes ta) in F,. m

We now return to the proof of Lemma 1.

(a) Inclusion o1 C o9. If \is an eigenvalue di as an operator off;, then it is also an eigenvalue &f
as an operator oft.

Let A be an element of; of type 2, which is not an element ef. ThenG is not surjective orF; but
is surjective onF; : there existyy € F; which is not inG|[F;]. But g belongs toG|[F,] and there is
f € Fy such thaty = G[f]. SinceF; is dense inF», there is a sequencg, of functions of F; which
converges tqg in F». Then the sequendd|f,] converges t&z[f] = g in F». Now, using the sublemma
and hypothesiéiii) shows that the sequengg has a non zero limit poinp (for the 7, topology) which
belongs taF,; and satisfiesz[¢)] = 0. This means thak is an eigenvalue dL in 7, which provides a
contradiction. So, we have proven that any elemermt;dfelongs tars.

(b) Inclusion age] C o—g@}. If X is an essential spectral value of ty@#) or (B) of L as an operator o,
then it is also an essential spectral value of tya¢ or (B) of L as an operator off,.

Suppose now that is an essential spectral value bfas an operator otf; of type (C). Then, the set
G[F1] is not Fi—closed and there exists ¢ G[F;] which is theF;—limit of a sequencez|f,,], with

fn € F1. Theng is also theF,—limit of the sequencé&|[f,,]. Now, using the sublemma and hypothesis
(iv) shows that there exists a non zero limit poihof the sequence, (for the 7, topology) which
belongs toF; and satisfiedz[¢)] = 0. This means thak is an eigenvalue oL in F;. Since\ is an
element ofage], we know that it is either of typ€A) or of type(B). Then, itis also an essential spectral
value of type(A) or (B) of L as an operator off,. So, we have proven that any elementréff belongs

to Jée] [ ]

In the sequel, we consider the four spa€égJ) c H,(J) C C°(J) c L'(J). We apply Lemma 1a)
to the following pairs:C*(J) andH,(.J) [in Prop. 6(ii)], C°(J) and L' (.J) [in Prop. 8(i)]. We apply
Lemma 1(b) to the pairC(J) andC®(J) [Prop. 6(iii)].

5.3 Classical results for random matrices.

We shall deal with the general framework of random matrices and use many results from [4]: we consider
a denumerable sé&t of random matriceg x 2 with determinant, and, we associate to each elemgmf

S its LFT h, and also the map: J — J conjugated td with the tangent map [i.e/,:= arctan ohotan].

We denote byS the semi—group generated 8y Let

LT(S) := sup{log™ ||S]|,log™ ||S!||} with  log™ 2 := sup(0, log ).

We now define some important properties for such aset

(P1) [Contraction] There exists a sequence (S,,) of S for which ||S,,||~* - S,, converges to a rank one
matrix.

(P2) [Strong Irreducibility] There does not exist a finite union W of lines V1, Vs, . . . V}, which is invariant
byall SinS.

(P3) E[exp(wL*(S))] < oo for w positive real small enough.

We shall apply in the sequel three main theorems, due to Furstenberg [12], Guivarc’h and Raugi [14] and
Le Page [18], and well-summarized in the book of Bougerol [see [4] pages 66, 67, 105, 119], which we
gather into the next theorem, where we use our notations. The original proof of Bougerol does not use
Theorem C, but it is possible to use Theorem C to get a shorter proof of Theorem D.

Theorem D.[Product of random matrices.] [Furstenberg, Guivarc’h and Raugi, Le Bagpbse that a
set S of random matrices fulfills (P1, P2, P3). Then,
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() the Lyapunov exponent of S defined as
1.
V= hrlln]E[log [|IS1 S2 ... Shll]

is strictly positive.

(#4) Denote by H, (.J) the space of a-Hoélder functions on J. For sufficiently small o, z, the transfer
operator G1 , : H,(J) — H,(J) is quasi-compact, and admits a unique dominant eigenvalue \(1, z);
the Lyapounov exponent -y of set S satisfies 2y = —\’,(1,0).

5.4 The LSB matrices.

We now show that we can apply Theorem D to the LSB framework. We also prove three supplementary
properties P4, P5, P6) which will be useful in the sequel, and make precise propeffids P3).

Proposition 5. Consider the set N, L associated to the LSB Algorithm. The set of matrices N fulfills
hypotheses (P1, P2, P3). Moreover, the set of functions L satisfies the following:

(P4) [Fixed point] There exists ¢ € L and « € J such that {(z) = .

(P5) [Bounds on derivativesfor any ¢ € L, and any x € J, one has ¢=2 < |0/ (x)]| < ¢

(P6) [Bounded DistortionJFor any x € J and any ¢ € L, one has [¢" (x)| < /5 |¢'(x)].

Remark. It is clear, with (35), that the sef§'~!, £~ also satisfy all these properties. It is also clear that
the setM fulfills (P1, P2, P3).

Proof. Any matrix Ny, in AV is symmetric, with determinant equal to -1. It has two distinct eigenvalues,
A (the dominant one) andl,", with

1
MT=5d+ Ve +4) =1

Then, the Euclidean norm of matrix, is equal to)\]|. Since any; of Q satisfiegq| < 1, one has
INgll <o, NGl <o, LH(Nyg) < logé.

This proveq P3). Then Relation (26) entailg”5). Now, choose a$, then-th power of any matrixVi,,

whose eigenvalues have modiif |, [\, '|". Then Lemma Iil.1.4 of Bougerol [page 45] enta(l81).

Finally, the existence of eigenvectors f¥rentails the existence of fixed points florand thus for: This
proves(P4).

Proof of (P2). Suppose that suchl& exists. Then, for ang € S, there exists a permutatiery of [1..k]

for which S(V;) = V,, ), so that eacly; is invariant by all the matriced’*' relative toN € N. This
implies thatk = 2, and that{V;, V»} is a common eigenbase for all the matridé$. This would entail
that any pair of matriced’?, N2 commute, which is not true.

Proof of (P6). Fix ¢ € Q. The quantityy, () := {7 (x) /¢, (z) relative to the distortion ofj,) is

2q(tan?z + gtanz — 1)
1+ (¢ + tanz)?

Yg(T) =

)

and the extremal values of, are equal tatq./¢? + 4. Since anyg of Q satisfies—1 < ¢ < 1, one
deducesy,(z)| < V5, Vg€ Qandzc J m

Then, Proposition 5 entails that Theorem D can be applied to\§eté !, M, so that the operatofS; .,
G, Gi_, _, are quasi-compact on the 4&,(J) whena andz are small. However, it is not sufficient
for our purpose, since we need quasi—compacityder, for z near to 1.

5.5 Action of the transfer operator on C°(.J) and C'(J).
We mainly work in both space®' () andC®(.J), endowed with the norms

[ f]lo := sup | f(=)] L1 = 11f1lo + 11 1o,
xeJ

and we shall often use Lemma 1 with intermediary spatgs/) and L' ().
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Proposition 6. The following holds:

(i) Denote by A := {(t,z) € C% Rt > 1/2}. When (t, z) € A, the operators G, ., Gy.. and G} act
on C1(.J) and C°(.J) ; Moreover, the maps (t, z) — Gy... (t, z) — Gy, are analytic.

(#3) The operators G, and GLO are quasi-compact on the space C'(.J). More precisely, the decom-
position holds :

/= / fdv +RZ 1],

where v is a probability measure on .J, invariant by the dual operator Gi , and R ¢ is a continuous
operator on C1(.J) whose spectral radius is strictly less than 1. The same decomposition holds for G 1,0 01
CY(J) (with ¥ and R o).

(iii) The essentiel spectral radius of the operator G1 1 when it acts on the space C*(J) or C°(J) is
strictly less than 1.

(iv) On each of the two spaces C*(J)or C°(J), the following decomposition holds :

arlf] = w/'f dt +R7, [f].

Here, p € C*(J) is a density of probability and R ; is a continuous operator on C*(.J) [and C°(J)] whose
spectral radius is strictly less than 1.

(v) There exists complex neighborhoods Dy of (1,0) and Dy of (1,1) for which the following is true:
for (t, z) € Dy UD; the operators Gy ., CA-}t’Z, when acting on C*(.J), admit a unique dominant eigenvalue
denoted by \(t, z), X(t, z) separated from the remainder of the spectrum by a spectral gap. For (t, z) € D,
the operators Gy ., ét’z [when acting on C°(.J)] admit a unique dominant eigenvalue denoted by \(t, ),
X(L z) separated from the remainder of the spectrum by a spectral gap.

Proof.
(i) Consider(t, z) € A, and leto := Rz, 7 := Rt. Remark first that, if¢, z) € A, the series of weighted
probabilitiesd, is convergent whefy, z) € A, and satisfies

21727

7_) _ Z‘SZ _ 2[21727]16 _ m

teL k>1

Each component ter@&, . ) of G, . defined asz, . ,[f] := |¢']* - f o £ satisfies, with( P5),
G0 [llo < 671+ | [lo,

(Grzolf]) (@) =207 () - £(2)"" - folla)+ £ (@) f o),
so that
(Gl Mo < VB - 670 [ - [ Fllo + 6> £ llo,
and finally
1Gizllo < 971 S(m),  (IGezllh < 2] - ¢?171+2 - S(7). (38)

This proves that the sum definig; . converges normally on all compact subsetoboth inC°(.J) and
in C1(J). Then,G, . is a bounded operator a?f(.J) and onC!(J), and the map$t, z) — G, , are
analytic. R

The proofs for operator&:; . are of the same spirit.

(i1) Theorem C(ii) entails that the decompositions holdHih, (/). To see that they hold of' (.J), we
first recall that the operato&; o andG, o act onC'(.J). Then, from relations

Rio[f] = Giolf /fdl/ 1:Ailo[ GlO /de

the operator®; o andﬁl,o act also orC!(.J). Now, Lemma 1 proves th&, o, when it acts or€*(.J),
has a spectral radius strictly less thian

(iii) We study now the operat@; := G1; onC°(.J) and prove that it fulfills the hypotheses of Theorem
D: we choose as the strong norm the nadfi, and as the weak norm the noifrj| .:.
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First, the unitbalB = {g € C°(J); |lgllo < 1} iscompactinL!(J): Since functions of3 are uniformly
bounded, they aré!-bounded and uniformly equi-integrable.

Second, consider a functighin C°(.J), denote byl (f) := [, f(u)du, and decompos¢ = g + I(f)
with g := f — I(f). Then,g satisfies/(g) = 0, and any primitiveF’ of g is aC'(.J) function on.J [i.e., it
satisfiesF'(5) = F(—%)]. We fix a pointa in J and we consider the operat®y, defined as

£(x)

Rlale) = [ Gl = Y 6 [ 1e@lgottwan= Y 6 [ gy

tecr tecr (a)

= Y §lF ol(z) — Fol(a)] = Gio[F](x) — GTo[F](a) = RY o[F](2) — RY o[F](a).
LeLm

Now, sinceR, o : C'(J) — C!(J) has a spectral radiys< 1, we have, for any < x < 1, and some
constanti(y,
IEalglll < 2[RYo[Fllln < K- s"[[Fl1

SinceF is a primitive ofg, we havel|F||; < (7 + 1)|g]lo. SinceF,[g] is a primitive of G} [g], one has
IEwlglllL = [1GTg]llo, and finally

IGT[glllo < K2 - £"[g]lo- (39)

Now, we return to functiory, with ||gllo < (7 + 1)||f|lo @and|I(f)| < ||f||z:- Then, for some constant
K,
1G[f1llo < 1GT[glllo + (AN 1GT[Ullo < K3 [£"[|fllo +tn - [[fll1] (40)

with t,, = ||G}[1]]lo. This relation shows that the opera®@n, when it acts orc®(.J), fuffills the hy-
potheses of Theorem C, and its essential spectral radius is strictly less than 1. Now, Léimeotes
that the same holds @' (/).

(iv) The relation| G} [f](u)du = [ f(u)du proves that the spectral radius equals 1. Together with the
fact that the essential spectral radius is strictly less than 1, this shows the existence of an eigenvalue of
modulus 1.

Let X be an eigenvalue of moduldswith an eigenfunctiory. Then, using the relatiofi G [| f|](v)du =

[ |f (u)|du together with the triangular inequality, we deduce ®af| f|] = | f|. Then, f equalsay with

a of modulus 1, an@ an eigenfunction relative td = 1. Now, the relationG;[f] = Af entails that, for

any/ € £, and anyr € J, the equality o £(x) - p o £(x) = Aa(x) - p(x). Now, with (P4), we use as

a fixed point for some functiof, and we conclude that = 1.

Let us prove that 1 is simple as an eigenvalueGaf on C!(.J). Let » and1 be two eigenfunctions
associated to 1 witli(p) = I(¢)) = 1. ThenI(p — ¢») = 0. Applying (39) to the functionp — v :

le = dllo = 1GT e = ¥lllo < Kz - £" [l = ¢llo (41)

provides the equality = 1, so that 1 is a simple eigenvalue.
(v) Follows from perturbation theory, see e.g. Dunford-Schwartz VI1.6 ([#0]).

5.6 Duality between G,;_. and G...

For z near0 andt¢ near 1, we now make precise the relations between the dominant eigeivalugof
G, onC'(J) and the dominant eigenvalugt, 1 — z) of G; 1, onC°(.J) or onC®(.J). [see also [4]]

Proposition 7. One has: R

(i) For (t,z) € Do UD1, A(t, 2) = A(t, 2).

(#4) For a real pair (t,z) € Dy, the following relation between ét,z and G 1_, holds : for all f €
CY(J), g €COJ), foralln € N,

/ Gr.[f] - gdz = / Gry .l fd. (42)

and entails the equality : A\(t,1 — 2) = A(t, 2).



92 Bendt Daireaux and éronique Maume-Deschamps and Brigitte &all

Proof. (i) Using the~involution Tilde defined in (34), we denotef);he mapping/ — J which is defined
from f : J — J by f(y) = f(y). Then, with (35),

G lI@ =D 6 1 @) - fot @) =3 8- 10 - F(Ey))

Lel LeLl

=D 6 0@ - Folly) = Ge:lfly):
tec
This proves, for(t, z) near(1,0) or (1, 1), the equality between the dominant eigenvalgg z) of G; .
and the dominant eigenvaluét, z) of ét,z.
(ii) Considerf € C1(J), g € C°(J), andn € N. The following relation holds

/J GP [/ -g(w)du = 3 4 / 10 () [ F () g(u)du = 3 6 / 100 ()~ got = (v)-f(v)dv

LeLm leLn

=S a1 gor 0 swde = [ & lal)- ro).

leLn J

Now, for (¢, z) near (1, 0), the quasi-compacity of operat6s, onC!(J) andG¢ ;. [on C°(J) or on
CY(J)] entails the relation

At 2)" = At 1—2)" - [1+ O(k")],

which proved(ii).

Finally, we have proven tha{(t, z) = A(¢,1— z), [for (¢, z) near (1, 0)]. This entails, with Theorenm(D)
the equality2y = -\, (1,0) = A, (1,1). m

5.7 Aperiodicity and strict convexity.
Finally, we have to check supplementary spectral properties.

Proposition 8. (1) For the operator G, when acting on C*(J) or C°(.J), the following holds

(i) For any s with Rs > 1, the spectral radius R(s) of G is stricly less than 1.

(#4) On the line Ns = 1, s # 1, the spectral radius R(s) of Gy is stricly less than 1.
(2) The dominant eigenvalue I(s) := \(1 — s,—s) of the operator G1_5 s on C'(J) has its second
derivative I (0) which is non zero.

Proof. (1)(i) We have, forr := Rs > 1,

\IGs[f]Hu:/J\Gs[ |dy<26e/|£' )7 Al |dy<265/|f' )7 f(x)|da

Lel Lel

2(o—1) 2(c—1) 2- ¢ o
<GS Nl = < (5) il

LeLl

Then, the spectral radius @, on L' is at most(¢/2)2(°~1), which is strictly less than 1 foRs > 1.
With Lemma 1, the same holds fé, acting onC®(.J) or onC*(.J).

(1)(it) The previous argument implies that, for= 1 + it, the spectral radius @& onC°(J) is at most
1. There are now two main steps in the proof. We first prov@jrthat the essential spectral radiusf
onCY(J) is strictly less than 1. Then, we prove(ib) that there is no eigenvalue of modulus 1.

(a) The inequality| |G, ;,[flllo < ||GT[|f]]|lo, the relation (40) applied to the functigh := |f| and
Theorem D prove that the essential spectral radius of;; [when acting orC®(.J)] is strictly less than 1.

(b) Suppose now that, for = 1 + it,t # 0, the spectral radius d&; is equal to 1. Since the essential
spectral radius is strictly less than & has an eigenvalue of modulus one. Following the proof of
Proposition 9 in [24] entails the existence of a functjomith || = 1 such that for alln € N, for all
e lm,

St ol = p. (43)
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Then, there is a bounded functignsuch that, for any € £, there exists an integef(¢) for which,
2
log 8¢ +log || = € — €0l + %J(ﬁ).

This entails that/ is additive, i.e.,J ({1 o l3) = J(¢1) + J({2), andE, [J] = nE[J]. Denote byl" the
Lyapounov exponent of s¢¢1, that equal§™ = 2log 2 + «. Then Theorem Cii), and (26) imply that

Q%E[J} = 9T, E[(log || M - My - ... - M,|| — nT)?] < K,

for some constank’. This contradicts Lemma 5.3 p.123 in [4] and ends the proof of Asseftioron
C°(J). With Lemma 1(a), the same is true o@i' (/).

(2) The quantityi(s) = A(1—s, —s) is the dominant eigenvalue of the operafor_, _, which is exactly
the Bougerol transfer operator related to sdt Applying [4], Lemmas 5.2 and 5.3 p. 122 proves that
I"(0) >T%m

6 Open problems and Conclusion.

The non-centered LSB Algorithm. This analysis can also be applied to the non-centered LSB algorithm.
In its actual version, this algorithm does not always terminate, notably on ifput$ of the formv =

—2Fy. It is quite easy to add a supplementary stopping condition in order to avoid this problem. Then,
the analysis of this version of the non—centered LSB algorithm deals with a né\W skmatrices, of the

form

N:z{Nm:(? clz);qZ;@;k21,aodd0<a<2’f“}- (44)

The numerical value of the binary Lyapounov exporigntelative to sef\ is¥, ~ 0.651 [11] and is more
than 13 times bigger thay,. Then, even if it is modified in order to always terminate, the non-centered
LSB algorithm is certainly slower than the centered version which is studied in this paper.

Continuants behaviour. It would be interesting to study the length of theh convergent of a rational
number, wherk is a given fraction of the total numbét of iterations of the LSB algorithm, of the form

k = |6P], for afixeds € [0, 1]. This study should explain the apparent contradiction between our two
main results.

Towards distribution results. Finally, our “dream” is to adapt methods of Baladi and ®al[3] in order

to prove Gaussian laws for the main parameters of the LSB algorithm. This is indeed why we chose to
study the operators in the spacg.J), where the arguments developped in [3], based on previous works
of Dolgopyat [9] may [perhaps] apply.

Acknowledgements. We wish to thank Damien Stehlfor introducing us to the LSB algorithm, and
Philippe Flajolet for performing computations of the Lyapounov exponents.
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