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Rapidly mixing chain and perfect sampler for
logarithmic separable concave distributions
on simplex†
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In this paper, we are concerned with random sampling of ann dimensional integral point on an(n− 1) dimensional
simplex according to a multivariate discrete distribution. We employ sampling via Markov chain and propose two
“hit-and-run” chains, one is for approximate sampling and the other is for perfect sampling. We introduce an idea
of alternating inequalitiesand show that alogarithmic separable concavefunction satisfies the alternating inequal-
ities. If a probability function satisfies alternating inequalities, then our chain for approximate sampling mixes in
O(n2 ln(Kε−1)), namely(1/2)n(n − 1) ln(Kε−1), whereK is the side length of the simplex andε (0 < ε < 1)
is an error rate. On the same condition, we design another chain and a perfect sampler based on monotone CFTP
(Coupling from the Past). We discuss a condition that the expected number of total transitions of the chain in the
perfect sampler is bounded byO(n3 ln(Kn)).
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1 Introduction
A sampling from alog-concavedistribution has many interesting applications [2, 1, 12], and approximate
samplers via Markov chain from log-concave distributions on a convex body have been studied [9, 10, 14].
Frieze and Kannan proved that a “ball walk” (chain) rapidly mixes, by using log-Sobolev inequalities [10].
Lovász and Vempala proved with considering the conductance that both of “ball walk” and “hit-and-run
walk” (chain) mix inO(n4poly(lnn, ln ε−1)) and that the amortized mixing times of them are bounded
by O(n3poly(lnn, ln ε−1)) [14].

Randall and Winkler discussed approximate uniform sampling via Markov chain on a simplex [19].
They treated both continuous and discrete state spaces, and showed that mixing time of a type of “hit-and-
run” chain isΘ(n3 ln(nε−1)). They proved the upper bound by using a technique of warm start and two
phase coupling, and the lower bound by using a probabilistic second-moment argument.

We are concerned with random sampling ann dimensional integral point on a simplex from alog-
arithmic separable concaveprobability function. We show that a type of “hit-and-run” chain mixes in
O(n2 ln(Kε−1)) whereK is the side length of a simplex, with using path coupling technique [3]. There
are several straightforward applications, just as restricted to a logarithmic separable concave probability
function on a simplex. One is a computation of the normalizing constant of the product form solution
for a closed queueing network [4, 11]. Another is MCMC based exact test for independence in medical
statistics, in bioinformatics, and so on [16, 15].

We also show that another “hit-and-run” chain provides a perfect sampler based on monotone CFTP
(Coupling from the Past). An ordinary sampler via Markov chain is an approximate sampler, whereas
Propp and Wilson proposed monotone CFTP algorithm which realizes a perfect (exact) sampling from
stationary distribution. One of the great advantages of perfect sampling is that we never need to determine
the error rateε when to use. Another is that a perfect sampler becomes faster than any approximate
sampler based on a Markov chain when we need a sample according to highly accurate distribution. There
are some other algorithms for perfect sampling via Markov chain, e.g., Wilson’s read once algorithm [20]
and Fill’s interruptible algorithm [7, 8]. In this paper, we just review monotone CFTP algorithm, while we
can employ others in a similar way.
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2 Preliminaries and Results
2.1 Logarithmic Separable Concave Function

We denote the set of real numbers (non-negative, positive real numbers) byR (R+, R++), and the set
of integers (non-negative, positive integers) byZ (Z+, Z++), respectively. Let us consider the set of
non-negative integral points in ann− 1 dimensional simplex

Ξ def.=
{
x = (x1, x2, . . . , xn) ∈ Zn

+ |
∑n

i=1 xi = K
}

.

Given a vector of single-variable positive functionsf = (f1, f2, . . . , fn) wherefi : Z+ → R++ for each
i, we concern with sampling onΞ according to distributionπ defined by

π(x) =
1
C

n∏
i=1

fi(xi) for x = (x1, x2, . . . , xn) ∈ Ξ, (1)

whereC
def.=
∑

x∈Ξ

∏n
i=1 fi(xi). A function fi is calledlog-concaveif and only if ∀x ∈ Z+, ln fi(x +

1) ≥ (1/2) (ln fi(x) + ln fi(x + 2)). The functionπ of (1) is said aslogarithmic separable concaveif
eachfi is a log-concave function. In the following, we give two examples of practical applications in our
setting that is logarithmic separable concave function on a simplex.

Example 1 ([11]) In queueing network theory, closed Jackson network is a basic and significant model.
It is well known that a closed Jackson network has a product form solution. Given a vector of parameters
(α1, α2, . . . , αn) ∈ Rn

++ and a vector(s1, s2, . . . , sn) ∈ Zn
+ of number of servers on nodes, the product

form solutionπJ onΞ is defined by

πJ(x) def.=
1

CJ

n∏
i=1

αxi
i

min{xi, si}!min{xi, si}xi−min{xi,si}
for x ∈ Ξ,

whereCJ is normalizing constant. No weakly (thus genuinly) polynomial-time algorithm is known for
computingCJ and we can design a polynomial-time randomized approximation scheme by using a poly-
nomial time sampler ofπJ.

Example 2 ([16, 15]) Discretized Dirichlet Distribution often appears in statistical methods in the bio-
informatics. Given a vector of parameters (Dirichlet parameters)(u1, u2, . . . , un) ∈ Rn

+, Discretized

Dirichlet DistributionπD onΞ++
def.= {x = (x1, . . . , xn) ∈ Z++ |

∑n
i=1 xi = K} (K ≥ n) is defined by

πD(x) def.=
∏n

i=1(xi/K)ui−1∑
x∈Ξ++

∏n
i=1(xi/K)ui−1

for x ∈ Ξ++.

When every parameter satisfiesui ≥ 1, πD(x) is a logarithmic separable concave function. There is re-
jection sampling for (continuous) Dirichlet distribution and it is know that rejection sampling is inefficient
when Dirichlet parameters are very small.

2.2 Main results

In this subsection, we describe two theorems, which are our main results.
Given a pair of probability distributionsν1 andν2 on a finite state spaceΩ, thetotal variation distance

betweenν1 andν2 is defined bydTV(ν1, ν2)
def.= 1

2

∑
x∈Ω |ν1(x)− ν2(x)|. Themixing timeof an ergodic

Markov chain is defined byτ(ε) def.= maxx∈Ω{min{t | ∀s ≥ t, dTV(P s
x , π) ≤ ε}} (0 < ε < 1) whereπ

is the stationary distribution andP s
x is the probability distribution of the chain at time periods ≥ 0 with

initial statex (at time period 0).

Theorem 2.1 For any logarithmic separable distributionπ onΞ, there is an ergodic Markov chain whose
stationary distribution isπ and which has the mixing timeτ(ε) (0 < ε < 1) satisfying

τ(ε) ≤ n(n− 1)
2

ln(Kε−1).
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We will give an actual Markov chain and show Theorem 2.1 in Section 3.

Suppose that we have an ergodic Markov chain with a finite state spaceΩ where the transition rule
X 7→ X ′ can be described by a deterministic functionφ : Ω × [0, 1) → Ω, calledupdate function,
and a random numberΛ uniformly distributed over[0, 1) satisfyingX ′ = φ(X, Λ). We introduce a
partial order “�” on the state spaceΩ. A transition rule expressed by a deterministic update functionφ
is calledmonotone(with respect to(Ω,�)) if ∀λ ∈ [0, 1), ∀x, ∀y ∈ Ω, x � y ⇒ φ(x, λ) � φ(y, λ).
We also say that a chain ismonotoneif the chain is defined by amonotoneupdate function. We say
that a monotone chain has a unique pair of maximum and minimum when there exists a unique pair
(xU, xL) ∈ Ω2 satisfying∀x ∈ Ω, xU � x � xL.

Theorem 2.2 For any logarithmic separable distributionπ on Ξ, there is an ergodic monotone Markov
chain whose stationary distribution isπ and which has a unique pair of maximum and minimum. Thus it
directly gives a perfect sampler.

In Section 4, we will propose another chain, briefly review the monotone CFTP algorithm, and prove
Theorem 2.2.

3 Approximate Sampler
Now we propose a new Markov chainMA with state spaceΞ. A transition ofMA from a current state
X ∈ Ξ to a next stateX ′ is defined as follows. First, we chose a pair of distinct indices{j1, j2} uniformly
at random. Next, putk = Xj1 + Xj2 , and chosel ∈ {0, 1, . . . , k} with probability

fj1(l)fj2(k − l)∑k
s=0 fj1(s)fj2(k − s)

(
≡

fj1(l)fj2(k − l)
∏

j 6∈{j1,j2} fj(Xj)∑k
s=0 fj1(s)fj2(k − s)

∏
j 6∈{j1,j2} fj(Xj)

)
then set

X ′
i =

 l (for i = j1),
k − l (for i = j2),
Xi (otherwise).

Sincefi(x) is a positive function, the Markov chainMA is irreducible and aperiodic, so ergodic, hence
has a unique stationary distribution. Also,MA satisfies detailed balance equation, thus the stationary
distribution isπ defined by (1).

Let gk
ij : Z → R+ be the cumulative distribution function defined by

gk
ij(l)

def.=
∑l

s=0 fi(s)fj(k − s)∑k
s=0 fi(s)fj(k − s)

for l ∈ {0, 1, . . . , k}.

We also definegk
ij(−1) def.= 0, for convenience. Then we can simulate the Markov chainMA with the

functiongk
ij as follows. First, choose a pair{i, j} of indices with the probability2/(n(n− 1)). Next, put

k = Xi + Xj , generate an uniformly random real numberΛ ∈ [0, 1), choosel satisfyinggk
ij(l − 1) ≤

Λ ≤ gk
ij(l), and setX ′

i = l andX ′
j = k − l.

In the rest of this section, we estimate the mixing time of our chainMA. We introducealternating
inequalitiesdefined by∑l

s=0 fi(s)fj(k + 1− s)∑k+1
s=0 fi(s)fj(k + 1− s)

≤
∑l

s=0 fi(s)fj(k − s)∑k
s=0 fi(s)fj(k − s)

≤
∑l+1

s=0 fi(s)fj(k + 1− s)∑k+1
s=0 fi(s)fj(k + 1− s)

(l ∈ {0, 1, . . . , k}), (2)

where(i, j) is a pair of indices andk is an arbitrarily positive integer in{0, 1, . . . ,K} (See Figure 1). The
inequalities (2) are equivalent to that

gk+1
ij (l) ≤ gk

ij(l) ≤ gk+1
ij (l + 1) (l ∈ {0, . . . , k}). (3)

We show that a logarithmic separable concave function satisfies alternating inequalities.

Lemma 3.1 If fi is a log-concave function for eachi ∈ {1, 2, . . . , n}, then alternating inequalities (2)
hold for anyl ∈ {0, 1, . . . , k}, for any pair of distinct indices{i, j} (i, j ∈ {1, 2, . . . , n}) and for any
k ∈ Z+.
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0 fi(0)fj(k)/A fi(1)fj(k − 1)/A · · · fi(k)fj(0)/A 1

0 fi(0)fj(k + 1)/A′ fi(1)fj(k)/A′ fi(2)fj(k − 1)/A′ · · · fi(k + 1)fj(0)/A′ 1

Fig. 1: A figure of alternating inequalities for a pair of indices(i, j) and a non-negative integerk. In the figure,

A
def.
=

Pk
s=0 fi(s)fj(k − s) andA′ def.

=
Pk+1

s=0 fi(s)fj(k + 1− s) are normalizing constants.

Proof: Whenk = 0, it is obvious. First, we show that for any fixedk ∈ Z++, alternating inequalities
(2) hold for anyl ∈ {0, 1, . . . , k}, if and only if(∑l

s=0 fi(s)fj(k + 1− s)
)(∑k

s′=l+1 fi(s′)fj(k − s′)
)

≤
(∑l

s=0 fi(s)fj(k − s)
)(∑k+1

s′=l+1 fi(s′)fj(k + 1− s′)
)

, (4)

and
(∑l

s=0 fi(k + 1− s)fj(s)
)(∑k

s′=l+1 fi(k − s′)fj(s′)
)

≤
(∑l

s=0 fi(k − s)fj(s)
)(∑k+1

s′=l+1 fi(k + 1− s′)fj(s′)
)

, (5)

hold for anyl ∈ {0, 1, . . . , k − 1}. We obtain (4) by transforming the former inequality of (2) for each
l ∈ {0, 1, . . . , k − 1} as follows,∑l

s=0 fi(s)fj(k + 1− s)∑k+1
s=0 fi(s)fj(k + 1− s)

≤
∑l

s=0 fi(s)fj(k − s)∑k
s=0 fi(s)fj(k − s)

⇔
(∑l

s=0 fi(s)fj(k + 1− s)
)(∑k

s=0 fi(s)fj(k − s)
)

≤
(∑l

s=0 fi(s)fj(k − s)
)(∑k+1

s=0 fi(s)fj(k + 1− s)
)

⇔
(∑l

s=0 fi(s)fj(k + 1− s)
)(∑l

s=0 fi(s)fj(k − s) +
∑k

s=l+1 fi(s)fj(k − s)
)

≤
(∑l

s=0 fi(s)fj(k − s)
)(∑l

s=0 fi(s)fj(k + 1− s) +
∑k+1

s=l+1 fi(s)fj(k + 1− s)
)

⇔
(∑l

s=0 fi(s)fj(k + 1− s)
)(∑k

s=l+1 fi(s)fj(k − s)
)

≤
(∑l

s=0 fi(s)fj(k − s)
)(∑k+1

s=l+1 fi(s)fj(k + 1− s)
)

.

In a similar way, we obtain (5) by transforming the latter inequality of (2) for eachl ∈ {0, 1, . . . , k − 1}
as follows,∑l

s=0 fi(s)fj(k − s)∑k
s=0 fi(s)fj(k − s)

≤
∑l+1

s=0 fi(s)fj(k + 1− s)∑k+1
s=0 fi(s)fj(k + 1− s)

⇔
(∑l

s=0 fi(s)fj(k − s)
)(∑k+1

s=0 fi(s)fj(k + 1− s)
)

≤
(∑l+1

s=0 fi(s)fj(k + 1− s)
)(∑k

s=0 fi(s)fj(k − s)
)

⇔
(∑l

s=0 fi(s)fj(k − s)
)(∑l+1

s=0 fi(s)fj(k + 1− s) +
∑k+1

s=l+2 fi(s)fj(k + 1− s)
)

≤
(∑l+1

s=0 fi(s)fj(k + 1− s)
)(∑l

s=0 fi(s)fj(k − s) +
∑k

s=l+1 fi(s)fj(k − s)
)

⇔
(∑l

s=0 fi(s)fj(k − s)
)(∑k+1

s=l+2 fi(s)fj(k + 1− s)
)

≤
(∑l+1

s=0 fi(s)fj(k + 1− s)
)(∑k

s=l+1 fi(s)fj(k − s)
)

⇔
(∑k

s′=k−l fi(k − s′)fj(s′)
)(∑k−l−1

s′′=0 fi(k + 1− s′′)fj(s′′)
)

≤
(∑k+1

s′′=k−l fi(k + 1− s′′)fj(s′′)
)(∑k−l−1

s′=0 fi(k − s′)fj(s′)
)

⇔
(∑k

s′=l′+1 fi(k − s′)fj(s′)
)(∑l′

s′′=0 fi(k + 1− s′′)fj(s′′)
)
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≤
(∑k+1

s′′=l′+1 fi(k + 1− s′′)fj(s′′)
)(∑l′

s′=0 fi(k − s′)fj(s′)
)

,

wherel′ = k − l − 1 ∈ {0, 1, . . . , k − 1}.
Next, we show the inequality (4) hold for anyk ∈ Z++. With considering the expansion, it is enough

to show that

fi(s)fj(k + 1− s)fi(s′)fj(k − s′) ≤ fi(s)fj(k − s)fi(s′)fj(k + 1− s′) (6)

∀s,∀s′ ∈ {0, 1, . . . , k} satisfying0 ≤ s < s′ ≤ k. From the hypothesis of Lemma,fj is a log-concave
function for any indexj ∈ {1, 2, . . . , n}, thus with considering(k − s′) < (k − s′ + 1) ≤ (k − s) <
(k − s + 1), the inequality

ln fj(k − s′) + ln fj(k − s + 1) ≤ ln fj(k − s′ + 1) + ln fj(k − s)

holds. Sincefi(x) > 0 for any x ∈ Z+, the inequality (6) hold∀s,∀s′ ∈ {0, 1, . . . , k} satisfying
0 ≤ s < s′ ≤ k. For the inequality (5), we obtain the claim in the same way as (4) by interchangingi and
j. 2

Theorem 3.2 If f = (f1, f2, . . . , fn) satisfies alternating inequalities for any pair of distinct indices
{i, j} (i, j ∈ {1, 2, . . . , n}) and for anyk ∈ {0, 1, . . . ,K}, then Markov chainMA mixes rapidly and
the mixing timeτ(ε) for 0 < ε < 1 satisfies

τ(ε) ≤ n(n− 1)
2

ln(Kε−1).

Proof: LetG = (Ξ, E) be an undirected simple graph with vertex setΞ and edge setE defined as follows.
A pair of vertices{x, y} is an edge ofG if and only if (1/2)

∑n
i=1 |xi − yi| = 1. Clearly, the graphG

is connected. We define the lengthlA(e) of an edgee ∈ E by lA(e) def.= 1. For each pair(x, y) ∈ Ξ2, we
define the distancedA(x, y) be the length of the shortest path betweenx andy onG with lA. Clearly, the
diameter ofG, defined bymaxx,y∈Ξ{dA(x, y)}, is bounded byK.

We define a joint process(X, Y ) 7→ (X ′, Y ′) for any pair{X, Y } ∈ E . Pick a pair of distinct indices
{i1, i2} uniformly at random. Then putkX = Xi1 +Xi2 andkY = Yi1 +Yi2 , generate a uniform random
numberΛ ∈ [0, 1), choselX ∈ {0, 1, . . . , kX} andlY ∈ {0, 1, . . . , kY } which satisfygkX

i1i2
(lX − 1) ≤

Λ < gkX
i1i2

(lX) andgkY
i1i2

(lY − 1) ≤ Λ < gkY
i1i2

(lY ), and setX ′
i1

= lX , X ′
i2

= kX − lX , Y ′
i1

= lY and
Y ′

i2
= kY − lY .

Now we show that

E[dA(X ′, Y ′)] ≤ βdA(X, Y ), andβ = 1− 2
n(n− 1)

, for any pair{X, Y } ∈ E .

Suppose thatX, Y ∈ E satisfies|Xj − Yj | = 1 for j ∈ {j1, j2}, and|Xj −Xj | = 0 for j 6∈ {j1, j2}.
Case 1:When the neither of indicesj1 norj2 are chosen, i.e.,{i1, i2}∩{j1, j2} = ∅. Putk = Xi1 +Xi2 .
It is easy to see thatPr[X ′

i1
= l] = Pr[Y ′

i1
= l] for any l ∈ {0, . . . , k} sinceYi1 + Yi2 = k. We set

X ′
i1

= Y ′
i1

andX ′
i2

= Y ′
i2

. ThendA(X ′, Y ′) = dA(X, Y ) holds.

Case 2: When the both of indicesj1 andj2 are chosen, i.e.,{i1, i2} = {j1, j2}. In the same way as
Case 1, we can setX ′

i1
= Y ′

i1
andX ′

i2
= Y ′

i2
. ThendA(X ′, Y ′) = 0 holds.

Case 3:When exactly one ofj1 andj2 is chosen, i.e.,|{i1, i2}∩{j1, j2}| = 1. Without loss of generality,
we can assume thati1 = j1 and thatXi1 +1 = Yi1 . Putk = Xi1 +Xi2 , thenYi1 +Yi2 = k+1 obviously.
Now, we consider the joint process as a random numberΛ ∈ [0, 1) is given. Assume thatl ∈ {0, 1, . . . , k}
satisfiesgk

i1i2
(l − 1) ≤ Λ < gk

i1i2
(l), then alternating inequalities (3) imply thatgk+1

i1i2
(l − 1) ≤ Λ <

gk+1
i1i2

(l + 1). Therefore, ifX ′
i1

= l thenY ′
i1

should be in{l, l + 1} by the joint process. Thus we always
obtain that [X ′

i1
= Y ′

i1
andX ′

i2
+ 1 = Y ′

i2
] or [X ′

i1
+ 1 = Y ′

i1
andX ′

i2
= Y ′

i2
]. HencedA(X ′, Y ′) =

dA(X, Y ) holds.

With considering that Case 2 occurs with probability2/(n(n− 1)), we obtain that

E[dA(X ′, Y ′)] ≤
(

1− 2
n(n− 1)

)
dA(X, Y ).
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Since the diameter ofG is bounded byK, Theorem 3.3 (Path Coupling Theorem), which we describe
following this proof, implies that the mixing timeτ(ε) satisfies

τ(ε) ≤ n(n− 1)
2

ln(Kε−1).

2

The following Path Coupling Theorem proposed by Bubbly and Dyer is a useful technique for bounding
the mixing time.

Theorem 3.3 (Path Coupling [3])LetM be a finite ergodic Markov chain with a finite state spaceΩ. Let

H = (Ω, E) be a connected undirected graph with vertex setΩ and edge setE ⊆
(

Ω
2

)
. Let l : E → R++

be a positive length defined on the edge set. For any pair of vertices{x, y} of H, the distance between
x and y, denoted byd(x, y) and/or d(y,x), is the length of a shortest path betweenx and y, where the
length of a path is the sum of the lengths of edges in the path. Suppose that there exists a joint process
(X, Y ) 7→ (X ′, Y ′) with respect toM whose marginals are faithful copies ofM and

∃β, 0 < β < 1, ∀{X, Y } ∈ E , E [d(X ′, Y ′)] ≤ β · d(X, Y ).

Then the mixing timeτ(ε) of Markov chainM satisfiesτ(ε) ≤ (1 − β)−1 ln(ε−1D/d), whered
def.=

min{d(x, y) | ∀x, y ∈ Ω} andD
def.= max{d(x, y) | ∀x, ∀y ∈ Ω}.

The above theorem differs from the original theorem in [3] since the integrality of the edge length is
not assumed. We drop the integrality and introduced the minimum distanced. This modification is not
essential and we can show Theorem 3.3 similarly. We do not require this modification in the proof of
Theorem 3.2, but we will use the modified version in the proof of Theorem 4.3 described later.

Outline of proof: Let π be the stationary distribution ofM, and letP t
x for x ∈ Ω andt ∈ Z++ be the

distribution ofXt which is a random variable ofM at timet with initial statex. Let (Y 0, Y 1, . . . , ) be
a random process ofM whereY 0 is a random variable according toπ. Clearly,Y t is according toπ for
anyt. Let A∗ be a subset ofΩ satisfying

∑
s∈A∗

(
P t

x(s)− π(s)
)

= max
A⊆Ω

{∑
s∈A

(
P t

x(s)− π(s)
)}

.

Then we can show that

dTV

(
P t

x, π
)

= max
A⊆Ω

{∑
s∈A

(
P t

x(s)− π(s)
)}

=
∑

s∈A∗

(
Pr
[
Xt= s

]
− Pr

[
Y t= s

])
≤

∑
s∈A∗

Pr
[
Xt= s, Y t6= s

]
≤
∑
s∈Ω

Pr
[
Xt= s, Y t6= s

]
= Pr

[
Xt6= Y t

]
=
∑
x6=y

Pr
[
Xt= x, Y t= y

]
≤

∑
x,y

d(x, y)
d

Pr
[
Xt= x, Y t= y

]
=

E [d(Xt, Y t)]
d

(7)

hold. For any distinct pairXt, Y t ∈ Ω at any timet, there exists a sequence of elementsZ1, Z2, . . . , Zr

(Zi ∈ Ω), corresponding to a shortest path betweenX andY , such asZ1 = X, Zr = Y andd(X, Y ) =∑r−1
i=1 d(Zi, Zi+1). Let Z ′

i (i ∈ {1, 2, . . . , r}) denote the next state ofZi after a transition, then

d(Xt+1, Y t+1) ≤
∑r−1

i=1 d(Z ′
i, Z

′
i+1)

holds for any transition, since the distance between states is defined by the length of a shortest path. From
the hypothesis of Theorem,

E
[
d(Xt+1, Y t+1)

]
≤ E

[∑r−1
i=1 d(Z ′

i, Z
′
i+1)

]
=
∑r−1

i=1 E
[
d(Z ′

i, Z
′
i+1)

]
≤ β · d(Zi, Zi+1) = β · d(Xt, Y t) (8)
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hold. If we sett = −(1/ lnβ) · ln(D/dε), thent satisfies thatt ≤ (1 − β)−1 ln(D/dε) = τ(ε). Thus
recursively applying the result of (7) and (8), we can show that

dTV(P t
x, π) ≤ E[d(Xt, Y t)]

d
≤ β · d(Xt−1, Y t−1)

d
≤ βt · d(X0, Y 0)

d
≤ eln D

dε · D

d
= ε

hold without respect to the initial statex. 2

With the above discussions, we obtain Theorem 2.1.

4 Perfect Sampler
4.1 Monotone CFTP
Suppose that we have an ergodic monotone Markov chainM with partially ordered finite state space
(Ω,�). The transitionX 7→ X ′ of M is defined by a monotone update functionφ : Ω × [0, 1) → Ω,
i.e.,φ satisfies that∀λ ∈ [0, 1), ∀x,∀y ∈ Ω, x � y ⇒ φ(x, λ) � φ(y, λ). Also suppose that there exists
a unique pair of states(xU, xL) in partially ordered set(Ω,�), satisfyingxU � x � xL, ∀x ∈ Ω. The
result of transitions of the chain from the timet1 to t2 (t1 < t2) with a sequence of random numbers
λ = (λ[t1], λ[t1 + 1], . . . , λ[t2 − 1]) ∈ [0, 1)t2−t1 is denoted byΦt2

t1(x,λ) : Ω× [0, 1)t2−t1 → Ω where

Φt2
t1(x, λ) def.= φ(φ(· · · (φ(x, λ[t1]), . . . , λ[t2 − 2]), λ[t2 − 1]). Then, a standard monotone Coupling From

The Past algorithm is expressed as follows.

Algorithm 1 (Monotone CFTP Algorithm [18])

Step 1 Set the starting time periodT := −1 to go back, and setλ be the empty sequence.

Step 2 Generate random real numbersλ[T ], λ[T + 1], . . . , λ[dT/2e − 1] ∈ [0, 1), and insert them to the
head ofλ in order, i.e., putλ := (λ[T ], λ[T + 1], . . . , λ[−1]).

Step 3 Start two chains fromxU andxL at time periodT , and run each chain to time period 0 according
to the update functionφ with the sequence of numbers inλ. (Here we note that both chains use the
common sequenceλ.)

Step 4 [ Coalescence check]

(a) If Φ0
T (xU,λ) = Φ0

T (xL,λ), then return the common stateΦ0
T (xU,λ) = Φ0

T (xL,λ) and stop.

(b) Else, update the starting time periodT := 2T , and go to Step 2.

Theorem 4.1 (Monotone CFTP [18])Suppose that a Markov chain defined by an update functionφ is
monotone with respect to a partially ordered set of states(Ω,�), and∃(xU, xL) ∈ Ω2, ∀x ∈ Ω, xU �
x � xL. Then the monotone CFTP algorithm (Algorithm 1) terminates with probability 1, and obtained
value is a realization of a random variable exactly distributed according to the stationary distribution.2

4.2 Monotone Markov Chain
We propose another new Markov chainMP. The transition rule ofMP is defined by the following update
functionφ : Ξ× [1, n) → Ξ. For a current stateX ∈ Ξ, the next stateX ′ = φ(X, λ) ∈ Ξ with respect to
a random numberλ ∈ [1, n) is defined by

X ′
i =

 l (for i = bλc),
k − l (for i = bλc+ 1),
Xi (otherwise),

wherek = Xbλc + Xbλc+1 andl ∈ {0, 1, . . . , k} satisfies

gk
bλc(bλc+1)(l − 1) < λ− bλc ≤ gk

bλc(bλc+1)(l).

Our chainMP is a modification ofMA, obtained by restricting to choose only a consecutive pair of
indices. Clearly,MP is ergodic. The chain has a unique stationary distributionπ defined by (1).

In the following, we show the monotonicity ofMP. Here we introduce a partial order “�” on Ξ. For
any statex ∈ Ξ, we introducecumulative sum vectorcx = (cx(0), cx(1), . . . , cx(n)) ∈ Zn+1

+ defined by

cx(i) def.=
{

0 (for i = 0),∑i
j=1 xj (for i ∈ {1, 2, . . . , n}).
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For any pair of statesx, y ∈ Ξ, we sayx � y if and only if cx ≥ cy. Next, we define two special states

xU, xL ∈ Ξ by xU
def.= (K, 0, · · · , 0) andxL

def.= (0, . . . , 0,K). Then we can see easily that∀x ∈ Ξ,
xU � x � xL.

Theorem 4.2 If f satisfies alternating inequalities (2) for any consecutive pair of indices(j, j + 1) (j ∈
{1, . . . , n − 1}) and for anyk ∈ {0, 1, . . . ,K}, then Markov chainMP is monotone on the partially
ordered set(Ξ,�), i.e.,∀λ ∈ [1, n), ∀X,∀Y ∈ Ω, X � Y ⇒ φ(X, λ) � φ(Y, λ).

Proof: We say that a stateX ∈ Ω coversY ∈ Ω (at j), denoted byX ·� Y (or X ·�j Y ), when

Xi − Yi =

 +1 (for i = j),
−1 (for i = j + 1),
0 (otherwise).

For any pair of statesX, Y satisfyingX � Y , it is easy to see that there exists a sequence of states
Z1, Z2, . . . , Zr with appropriate length satisfyingX = Z1 ·� Z2 ·� · · · ·� Zr = Y . Then it is enough to
show that if a pair of statesX, Y ∈ Ω satisfiesX ·� Y , then∀λ ∈ [1, n), φ(X, λ) � φ(Y, λ), to obtain
thatφ(X, λ) = φ(Z1, λ) � φ(Z2, λ) � · · · � φ(Zr, λ) = φ(Y, λ).

In the following, we show that if a pair of statesX, Y ∈ Ω satisfiesX · �j Y , then∀λ ∈ [1, n),
φ(X, λ) � φ(Y, λ). We denoteφ(X, λ) by X ′ andφ(Y, λ) by Y ′ for simplicity. For any indexi 6= bλc, it
is easy to see thatcX(i) = cX′(i) andcY (i) = cY ′(i), and socX′(i)− cY ′(i) = cX(i)− cY (i) ≥ 0 since
X � Y . In the following, we show thatcX′(bλc) ≥ cY ′(bλc).
Case 1:If bλc 6= j−1 andbλc 6= j+1. Putk = Xbλc+Xbλc+1, then it is easy to see thatYbλc+Ybλc+1 =
k. AccordinglyX ′

bλc = Y ′
bλc = l wherel satisfies

gk
bλc(bλc+1)(l − 1) ≤ λ− bλc < gk

bλc(bλc+1)(l),

hencecX′(bλc) = cY ′(bλc) holds.

Case 2:Consider the case thatbλc = j−1. Putk+1 = Xj−1 +Xj , thenYj−1 +Yj = k, sinceX ·�j Y .
From the definition of cumulative sum vector,

cX′(bλc)− cY ′(bλc) = cX′(j − 1)− cY ′(j − 1)
= cX′(j − 2) + X ′

j−1 − cY ′(j − 2)− Y ′
j−1 = cX(j − 2) + X ′

j−1 − cY (j − 2)− Y ′
j−1

= X ′
j−1 − Y ′

j−1.

Thus, it is enough to show thatX ′
j−1 ≥ Y ′

j−1. Now suppose thatl ∈ {0, 1, . . . , k} satisfiesgk
(j−1)j(l −

1) ≤ λ−bλc < gk
(j−1)j(l) for λ. Thengk+1

(j−1)j(l−1) ≤ λ−bλc < gk+1
(j−1)j(l+1) holds, since alternating

inequalities (3) imply thatgk+1
(j−1)j(l − 1) ≤ gk

(j−1)j(l − 1) < gk+1
(j−1)j(l) ≤ gk+1

(j−1)j(l + 1). Thus we have
that if Y ′

j−1 = l thenX ′
j−1 = l or l + 1. In other words,(

X ′
j−1

Y ′
j−1

)
∈
{(

0
0

)
,

(
1
0

)
,

(
1
1

)
,

(
2
1

)
, . . . ,

(
k
k

)
,

(
k + 1
k

)}
andX ′

j−1 ≥ Y ′
j−1 hold. Accordingly, we have thatcX′(bλc) ≥ cY ′(bλc).

Case 3: Consider the case thatbλc = j + 1. We can showcX′(bλc) ≥ cY ′(bλc) in a similar way to
Case 2. 2

SinceMP is a monotone chain, we can design a perfect sampler based on monotone CFTP [18], which
we briefly introduced in the previous subsection.

With the above discussions, we obtain Theorem 2.2.

4.3 Expected Running Time
Here, we discuss on an expected running time of our perfect sampler. First, we introduce the following
condition.

Condition 1 Indices off = (f1, f2, . . . , fn) is arranged to satisfy that

k∑
l=0

(∑l
s=0 fi(s)fi+1(k − s)∑k
s=0 fi(s)fi+1(k − s)

−
∑l

s=0 fi(s)fi+1(k + 1− s)∑k+1
s=0 fi(s)fi+1(k + 1− s)

)
≡

k∑
l=0

(
gk

i(i+1)(l)− gk+1
i(i+1)(l)

)
≥ 1

2

for anyk ∈ {0, 1, . . . ,K}.
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Our goal in this subsection is to show the following theorem.

Theorem 4.3 If f satisfies alternating inequalities (2) and Condition 1, then the expected number of
whole transitions required in the monotone CFTP algorithm is upper bounded byO(n3 ln(Kn)).

First, we show the following lemma.

Lemma 4.4 If f satisfies alternating inequalities (2) and Condition 1, Markov chainMP mixes rapidly
and the mixing timeτ(ε) ofMP satisfies that for0 < ε < 1,

τ(ε) ≤ n(n− 1)2 ln (Kn/(2ε)) .

Proof: Let G = (Ξ, E) be the graph defined in the proof of Theorem 3.2 in Section 3. For each edge
e = {X, Y } ∈ E , there exists a unique pair of indicesj1, j2 ∈ {1, 2, . . . , n} called thesupporting pairof
e, satisfying

|Xi − Yi| =
{

1 (i = j1, j2),
0 (otherwise).

We define the lengthl(e) of an edgee = {X, Y } ∈ E by l(e) def.= (1/(n− 1))
∑j∗−1

i=1 (n− i) wherej∗ =
max{j1, j2} ≥ 2 and{j1, j2} is the supporting pair ofe. Note that1 ≤ mine∈E l(e) ≤ maxe∈E l(e) ≤
n/2. For each pairX, Y ∈ Ξ, we define the distanced(X, Y ) be the length of a shortest path between
X andY on G. Clearly, the diameter ofG, i.e., max(X,Y )∈Ξ2 d(X, Y ), is bounded byKn/2, since
d(X, Y ) ≤ (n/2)

∑n
i=1(1/2)|Xi − Yi| ≤ (n/2)K for any (X, Y ) ∈ Ξ2. The definition of edge length

implies that for any edge{X, Y } ∈ E , d(X, Y ) = l({X, Y }).
We define a joint process(X, Y ) 7→ (X ′, Y ′) as (X, Y ) 7→ (φ(X, Λ), φ(Y, Λ)) with uniform real

random numberΛ ∈ [1, n) and the update functionφ defined in the previous subsection. Now we show
that

E[d(X ′, Y ′)] ≤ β · d(X, Y ) whereβ = 1− 1
n(n− 1)2

, (9)

for any pair{X, Y } ∈ E . In the following, we denote the supporting pair of{X, Y } by {j1, j2}. Without
loss of generality, we can assume thatj1 < j2, andXj2 + 1 = Yj2 .

Case 1:WhenbΛc = j2 − 1, we will show that

E[d(X ′, Y ′) | bΛc = j2 − 1] ≤ d(X, Y )− 1
2
· n− j2 + 1

n− 1
.

In case ofj1 = j2 − 1, X ′ = Y ′ holds with conditional probability 1. Henced(X ′, Y ′) = 0. In the
following, we consider the casej1 < j2− 1. Putk = Xj2−1 +Xj2 , thenYj2−1 +Yj2 = k +1 holds since
Xj2 + 1 = Yj2 . Now suppose thatl ∈ {0, 1, . . . , k} satisfiesgk

(j2−1)j2
(l − 1) ≤ Λ− bΛc < gk

(j2−1)j2
(l).

Thengk+1
(j2−1)j2

(l − 1) ≤ Λ − bΛc < gk+1
(j2−1)j2

(l + 1) holds, since alternating inequalities (3) imply that

gk+1
(j2−1)j2

(l − 1) ≤ gk
(j2−1)j2

(l − 1) < gk+1
(j2−1)j2

(l) ≤ gk+1
(j2−1)j2

(l + 1). Thus we have that ifY ′
j2−1 = l

thenX ′
j2−1 = l or l + 1. In other words,(

X ′
j2−1

Y ′
j2−1

)
∈
{(

0
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1
2

)
, . . . ,

(
k
k

)
,

(
k
k + 1

)}
.

holds. If X ′
j2−1 = Y ′

j2−1, the supporting pair of{X ′, Y ′} is {j1, j2} and sod(X ′, Y ′) = d(X, Y ). If
X ′

j2−1 6= Y ′
j2−1, the supporting pair of{X ′, Y ′} is {j1, j2− 1} and sod(X ′, Y ′) = d(X, Y )− (n− j2 +

1)/(n− 1). With considering that

Pr[X ′
j2−1 6= Y ′

j2−1 | bΛc = j2 − 1] =
∑k′

l=0

(
gk′

(j2−1),j2
(l)− gk′+1

(j2−1),j2
(l)
)

,

Condition 1 implies that

Pr
[
X ′

j2−1 6= Y ′
j2−1 | bΛc = j2 − 1

]
≥ 1/2,

Pr
[
X ′

j2−1 = Y ′
j2−1 | bΛc = j2 − 1

]
≤ 1/2.
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Thus we obtain

E [d(X ′, Y ′) | bΛc = j2 − 1] ≤ 1
2
d(X, Y ) +

1
2

(
d(X, Y )− n− j2 + 1

n− 1

)
= d(X, Y )− 1

2
· n− j2 + 1

n− 1
.

Case 2:WhenbΛc = j2, we can show that

E[d(X ′, Y ′)|bΛc = j2] ≤ d(X, Y ) +
1
2
· n− j2

n− 1

in a similar way to Case 1.

Case 3:WhenbΛc 6= j2 − 1 andbΛc 6= j2, it is easy to see that the supporting pair{j′1, j′2} of {X ′, Y ′}
satisfiesj2 = max{j′1, j′2}. Thusd(X, Y ) = d(X ′, Y ′).

The probability of appearance of Case 1 is equal to1/(n − 1), and that of Case 2 is less than or equal
to 1/(n− 1). From the above, we have that

E[d(X ′, Y ′)] ≤ d(X, Y )− 1
n− 1

· 1
2
· n− j2 + 1

n− 1
+

1
n− 1

· 1
2
· n− j2

n− 1
= d(X, Y )− 1

2(n− 1)2

≤
(

1− 1
2(n− 1)2

· 1
max{X,Y }∈E{d(X, Y )}

)
d(X, Y ) =

(
1− 1

n(n− 1)2

)
d(X, Y ).

Since the diameter ofG is bounded byKn/2, Theorem 3.3 implies that the mixing timeτ(ε) for 0 < ε < 1
satisfies

τ(ε) ≤ n(n− 1)2 ln (Kn/(2ε)) .

2

Next we estimate the expectation ofcoalescence timeT∗ ∈ Z+ of MP defined byT∗
def.= min{t > 0 |

∃y ∈ Ω, ∀x ∈ Ω, y = Φ0
−t(x,Λ)}. Note thatT∗ is a random variable.

Lemma 4.5 If f satisfies alternating inequalities (2) and Condition 1, the coalescence timeT∗ of MP

satisfiesE[T∗] = O(n3 lnKn).

Proof: Let G = (Ξ, E) be the undirected graph andd(X, Y ), ∀X,∀Y ∈ Ξ, be the metric onG, both of

which are used in the proof of Lemma 4.4. We defineD
def.= d(xU, xL) andτ0

def.= n(n − 1)2(1 + lnD).
By using the inequality (9) obtained in the proof of Lemma 4.4, we have

Pr [T∗ > τ0] = Pr
[
Φ0
−τ0

(xU,Λ) 6= Φ0
−τ0

(xL,Λ)
]

= Pr [Φτ0
0 (xU,Λ) 6= Φτ0

0 (xL,Λ)]
≤

∑
(X,Y )∈Ξ2 d(X, Y )Pr [X = Φτ0

0 (xU,Λ), Y = Φτ0
0 (xL,Λ)]

= E [d (Φτ0
0 (xU,Λ),Φτ0

0 (xL,Λ))] ≤
(

1− 1
n(n− 1)2

)τ0

d(xU, xL)

=
(

1− 1
n(n− 1)2

)n(n−1)2(1+ln D)

D ≤ e−1e− ln DD =
1
e
.

By thesubmultiplicativityof coalescence time (see [18] e.g.), for anyk ∈ Z+, Pr[T∗ > kτ0] ≤ (Pr[T∗ > τ0])
k ≤

(1/e)k. Thus

E[T∗] =
∑∞

t=0 tPr[T∗ = t] ≤ τ0 + τ0Pr[T∗ > τ0] + τ0Pr[T∗ > 2τ0] + · · ·
≤ τ0 + τ0/e + τ0/e2 + · · · = τ0/(1− 1/e) ≤ 2τ0.

ClearlyD ≤ Kn, then we obtain the result thatE[T∗] = O(n3 lnKn). 2

Proof of Theorem 4.3 Let T∗ be the coalescence time of our chain. Note thatT∗ is a random variable.
Putm = dlog2 T∗e. Algorithm 1 terminates when we set the starting time periodT = −2m at (m + 1)st
iteration. Then the total number of simulated transitions is bounded by2(20 + 21 + 22 + · · · + 2K) <
2 · 2 · 2m ≤ 8T∗, since we need to execute two chains from bothxU andxL. Thus the expectation of the
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total number of transitions ofMP required in the monotone CFTP algorithm is bounded byO(E[8T∗]) =
O(n3 lnKn). 2

Note that we can obtain Condition 1 for closed Jackson networks with single servers model, that is a
special case of Example 1 such thatsi = 1 (i ∈ {1, 2, . . . , n}), by arranging parameters(α1, α2, . . . , αn)
in non-increasing order such asα1 ≥ α2 ≥ · · · ≥ αn. For Discretized Dirichlet Distribution (Example 2),
we can obtain Condition 1 by arranging parameters in non-increasing order such asu1 ≥ u2 ≥ · · · ≥
un [15].

5 Concluding Remarks
In this paper, we concern with random sampling of an integral point onn − 1 dimensional simplex of
side lengthK, according to a multivariate discrete distribution. We introduce an idea ofalternating
inequalities, and we propose two hit-and-run chains, one is rapidly mixing chain, the other is monotone
chain. We show that a logarithmic separable concave function satisfies the alternating inequalities. Here
we note that there exist functions which satisfy alternating inequalities, though they are not log-concave,
for example, Discretized Dirichlet Distribution with parameters less than 1 [16, 15].

One of future works is an extension of our results to general log-concave functions on a simplex. It
should gives an efficient algorithm for universal portfolios [12]. Another is an extension to general convex
bodies, especially to base polytope of a polymatroid. A set of two-rowed contingency tables for given
marginal sums is a simple example of base polytope of a polymatroid. For two-rowed contingency tables,
there is an approximately uniform sampler by Dyer and Greenhill [6] and a perfect uniform sampler by our
another work [13]. Matsui, et al. [17], including common author of this paper, gave rapidly mixing chain
for sampling two-rowed tables from hyper geometric distribution, which is also a logarithmic-separable
concave probability function. For tables with any constant number of rows, Cryan, et al. [5] showed that
a heat-bath chain mixes rapidly.
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