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Rapidly mixing chain and perfect sampler for
logarithmic separable concave distributions
on simplex’

Shuiji Kijima! and Tomomi Matsui
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Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.

In this paper, we are concerned with random sampling of dimensional integral point on gm — 1) dimensional

simplex according to a multivariate discrete distribution. We employ sampling via Markov chain and propose two
“hit-and-run” chains, one is for approximate sampling and the other is for perfect sampling. We introduce an idea
of alternating inequalitiesand show that éogarithmic separable concavianction satisfies the alternating inequal-

ities. If a probability function satisfies alternating inequalities, then our chain for approximate sampling mixes in
O(n?In(Ke™1)), namely(1/2)n(n — 1) In(Ke™'), whereK is the side length of the simplex aad0 < ¢ < 1)

is an error rate. On the same condition, we design another chain and a perfect sampler based on monotone CFTP
(Coupling from the Past). We discuss a condition that the expected number of total transitions of the chain in the
perfect sampler is bounded iY(n® In(Kn)).
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1 Introduction

A sampling from dog-concavelistribution has many interesting applications [2, 1, 12], and approximate
samplers via Markov chain from log-concave distributions on a convex body have been studied [9, 10, 14].
Frieze and Kannan proved that a “ball walk” (chain) rapidly mixes, by using log-Sobolev inequalities [10].
Lovasz and Vempala proved with considering the conductance that both of “ball walk” and “hit-and-run
walk” (chain) mix inO(n*poly(Inn,Ine~1)) and that the amortized mixing times of them are bounded

by O(n®poly(Inn,Ine~1)) [14].

Randall and Winkler discussed approximate uniform sampling via Markov chain on a simplex [19].
They treated both continuous and discrete state spaces, and showed that mixing time of a type of “hit-and-
run” chain is©(n3 In(ne~1)). They proved the upper bound by using a technique of warm start and two
phase coupling, and the lower bound by using a probabilistic second-moment argument.

We are concerned with random samplingamimensional integral point on a simplex fromlay-
arithmic separable concaverobability function. We show that a type of “hit-and-run” chain mixes in
O(n?In(Ke~')) whereK is the side length of a simplex, with using path coupling technique [3]. There
are several straightforward applications, just as restricted to a logarithmic separable concave probability
function on a simplex. One is a computation of the normalizing constant of the product form solution
for a closed queueing network [4, 11]. Another is MCMC based exact test for independence in medical
statistics, in bioinformatics, and so on [16, 15].

We also show that another “hit-and-run” chain provides a perfect sampler based on monotone CFTP
(Coupling from the Past). An ordinary sampler via Markov chain is an approximate sampler, whereas
Propp and Wilson proposed monotone CFTP algorithm which realizes a perfect (exact) sampling from
stationary distribution. One of the great advantages of perfect sampling is that we never need to determine
the error rates when to use. Another is that a perfect sampler becomes faster than any approximate
sampler based on a Markov chain when we need a sample according to highly accurate distribution. There
are some other algorithms for perfect sampling via Markov chain, e.g., Wilson’s read once algorithm [20]
and Fill's interruptible algorithm [7, 8]. In this paper, we just review monotone CFTP algorithm, while we
can employ others in a similar way.
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2 Preliminaries and Results

2.1 Logarithmic Separable Concave Function

We denote the set of real numbers (non-negative, positive real numbeRsYRy, R, ), and the set
of integers (non-negative, positive integers) BYZ., Z. ), respectively. Let us consider the set of
non-negative integral points in an— 1 dimensional simplex

— def.
= = (x1,22,...,3,) ELT | Y0 xi =K} .

Given a vector of single-variable positive functiofis= (f1, fa2,. .., fn) Wheref; : Z, — R, for each
1, we concern with sampling d& according to distributiomr defined by

m(x) = !

Ql

Hfz(xz) forz = (x1,22,...,2,) €Z, Q)
i=1

whereC' %" > ez 11y fi(xi). Afunction f; is calledlog-concavef and only if Vo € Z., In f;(z +

1) > (1/2) (In fi(z) + In f;(z + 2)). The functionr of (1) is said adogarithmic separable concavié
eachf; is a log-concave function. In the following, we give two examples of practical applications in our
setting that is logarithmic separable concave function on a simplex.

Example 1 ([11]) In queueing network theory, closed Jackson network is a basic and significant model.
It is well known that a closed Jackson network has a product form solution. Given a vector of parameters
(a1,00,...,0,,) € R, and avectolsy, sz, ...,s,) € Z'} of number of servers on nodes, the product
form solutionrty on = is defined by

n x;

def. 1 & =
def. 1 _ forz e =
(@) C; 1—[1 min{z;, s; }! min{x;, s; @ —min{zisi} v ’

1=

where(Cj is normalizing constant. No weakly (thus genuinly) polynomial-time algorithm is known for
computingCy and we can design a polynomial-time randomized approximation scheme by using a poly-
nomial time sampler of;.

Example 2 ([16, 15]) Discretized Dirichlet Distribution often appears in statistical methods in the bio-
informatics. Given a vector of parameters (Dirichlet paramet@rs)us, ..., u,) € R, Discretized
Dirichlet Distributionrp, o= = & = (21,...,20) € Zyy | 37, 2; = K} (K > n) is defined by

) 4t [ (/K"
Yvez,, [z (@wi/K)v—
When every parameter satisfies> 1, mp(z) is a logarithmic separable concave function. There is re-

jection sampling for (continuous) Dirichlet distribution and it is know that rejection sampling is inefficient
when Dirichlet parameters are very small.

D (z cforze= .

2.2 Main results

In this subsection, we describe two theorems, which are our main results.
Given a pair of probability distributions, andv» on a finite state spade, thetotal variation distance
between/; andws is defined byd vy (v1, v2) def % seq [V1(z) — v2(z)[. Themixing timeof an ergodic

Markov chain is defined by(¢) . maxgeo{min{t | Vs > ¢, dry(P:,m) < e}} (0 < e < 1) wherer

is the stationary distribution angt; is the probability distribution of the chain at time period> 0 with
initial statex (at time period 0).

Theorem 2.1 For any logarithmic separable distributionon =, there is an ergodic Markov chain whose
stationary distribution ist and which has the mixing timge) (0 < £ < 1) satisfying

7(e) <
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We will give an actual Markov chain and show Theorem 2.1 in Section 3.

Suppose that we have an ergodic Markov chain with a finite state $padeere the transition rule
X — X' can be described by a deterministic function:  x [0,1) — €, calledupdate function
and a random numbet uniformly distributed over0, 1) satisfying X’ = ¢(X,A). We introduce a
partial order =" on the state spacf. A transition rule expressed by a deterministic update function
is calledmonotongwith respect to(€2, >)) if VA € [0,1), Vz,Vy € Q,z = y = ¢(z,\) = o(y, ).
We also say that a chain imonotoneif the chain is defined by aonotoneupdate function. We say
that a monotone chain has a unique pair of maximum and minimum when there exists a unique pair
(xy,r1,) € Q2 satisfyingvz € Q, zy = x = 2r.

Theorem 2.2 For any logarithmic separable distribution on =, there is an ergodic monotone Markov
chain whose stationary distribution tsand which has a unique pair of maximum and minimum. Thus it
directly gives a perfect sampler.

In Section 4, we will propose another chain, briefly review the monotone CFTP algorithm, and prove
Theorem 2.2.

3 Approximate Sampler

Now we propose a new Markov chaivif 5 with state spac&. A transition of M from a current state
X € Eto anext statX’ is defined as follows. First, we chose a pair of distinct indiggs 2} uniformly
atrandom. Next, put = X;, + X;,, and chosé € {0, 1,..., k} with probability

fjl(l)fj2(k_l) <_ fjl(l)fj?(k_l) Hje{jldz} f](X]) )

S fn @k =)\ Sy £ ()i k= ) Tggm £5(X0)
! (fori = jp),
X{:{ k—1 (fori=j),

X (otherwisg.

then set

Since f;(z) is a positive function, the Markov chait » is irreducible and aperiodic, so ergodic, hence
has a unique stationary distribution. Als®{, satisfies detailed balance equation, thus the stationary
distribution ism defined by (1).

Let gfj : Z — R, be the cumulative distribution function defined by

det. Yoo fi(5)f5 (k = 5)
Sh o fils)fi(k — s)
def.

We also definegfj(—l) =" 0, for convenience. Then we can simulate the Markov chiedp with the
functiong; as follows. First, choose a pdt, j} of indices with the probabilit/(n(n — 1)). Next, put
k = X; + X;, generate an uniformly random real numbBee [0, 1), choose satisfyinggfj(l -1 <
A < gk (1), and setX] = land X = k — L.

In the rest of this section, we estimate the mixing time of our cheip. We introducealternating
inequalitiesdefined by

Yo file) ik +1—5) _ S o fils)filk—s) _ YL fuls)fi(k +1—s)
S fils) ik +1—s) — b fils)filk—s) T SN fi(s) fi(k+1—s)

g5 (1)

forl € {0,1,...,k}.

(le{0,1,...,k}), (2

where(i, ) is a pair of indices andl is an arbitrarily positive integer if0, 1, . .., K'} (See Figure 1). The
inequalities (2) are equivalent to that
g5 (1) < i) < g+ (e 0, k). €)

We show that a logarithmic separable concave function satisfies alternating inequalities.
Lemma 3.1 If f; is a log-concave function for eache {1,2,...,n}, then alternating inequalities (2)
hold for anyl € {0,1,...,k}, for any pair of distinct indicegs, 5} (i,5 € {1,2,...,n}) and for any
keZs.
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0 fi(0)f;(k)/A i (k—1)/A fi(k)£;(0)/A 1
0 fiO)f;(k+D/A" | fi() 3 (R)/A" | fi(2)fi(k — 1)/A filk + 1) f;(0)/A" |1

Fig. 1: A figure of alternating inequalities for a pair of indicés j) and a non-negative integét In the figure,

A %t SF o fi(s) fi(k — s) and A’ def S fi(s) fi(k + 1 — s) are normalizing constants.

Proof: Whenk = 0, it is obvious. First, we show that for any fixéde Z. ., alternating inequalities
(2) hold for anyi € {0,1,...,k}, ifand only if

(Shos fie i+ 1= 9)) (Xhpy £ ik = o)
< (Zloy fils) fitk =) (Z’j*bﬂfz() jk+1-4)), (4)

and  (Xho filk+1-9)f5(5)) (Shorn filk =) 15()
< (Xhoo filk = 9)55(s)) (Zf*ﬂﬂfz(kﬂ—s)fj(s ). (5)

hold for anyl € {0,1,...,k — 1}. We obtain (4) by transforming the former inequality of (2) for each
1e€{0,1,...,k—1} as follows,

Yo fils) ik +1 =) _ o fils)filk =)
Soto i) filk +1—8) T X0 fils)fi(k — s)
o (Sl i@ ftk+1-9)) (Sho fils) itk —9))

< (Xhoo i) S5k = 9)) (423 fits )fg(k+1—8))

<~ ZS ofL f]k+1_3 sofz _S)+Zs l+1fL( )fj(k_s)
( ) (2 )

< (Xheo i) fi (k= 9)) (Shoo ) fsk+1 =)+ L fils) ik +1-9))
o (Zgoﬁ j;k+1—s)( b () —@)

< (Cioo )ik =) (S @) ik +1-9)).

In a similar way, we obtain (5) by transforming the latter inequality of (2) for daeho0, 1, ..
as follows,

Yo i)k —s) _ S5 fuls)fik+1—s)

Yo fils)filk—s) T XN fuls) fi(k 41— s)
o (Sl i) itk =) (TE fil) ik +1-5))
< (S A fitk+1=9)) (Shoo fils)fik = 9))
o (Sloofile) itk —9)) (T Ak +1=8) + ZE L, () ik +1- )
< (S A Sk + 1= 9)) (S Sl ik — )+ Sl fil)fi(k = 5))
& (Sl il fith—9) (SHLa L) ik +1-9))
< (S A itk +1-9)) (Shoe Fi) 0= 9))
& (Shon filk=0) (S8 Ak + 1= 8 5(57)
< (S filk+ 1= £5M) (S5 filk = $)5()
o (Shovm filk =050 (Sl filk+1 = 5" f5(57)

k1)
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< (S8 fitk 1= 5(57) (Sl Stk = ) f5()

wherel’ =k —-1-1€{0,1,...,k—1}.
Next, we show the inequality (4) hold for akye Z, . With considering the expansion, it is enough
to show that

fi($)fi(k+1—=38)fi(s") fj(k —s") < fi(s)f;(k—s)fi(s") f;(k+1—5") (6)

Vs, Vs € {0,1,..., k} satisfying0 < s < s’ < k. From the hypothesis of Lemmg, is a log-concave
function for any indexj € {1,2,...,n}, thus with consideringk — s') < (k —s' +1) < (k—s) <
(k — s + 1), the inequality

Infj(k—s)+nfi(k—s+1)<Infj(k—s+1)+Infj(k—s)

holds. Sincef;(x) > 0 for anyxz € Z., the inequality (6) holdvs,Vs' € {0,1,...,k} satisfying
0 < s < &' < k. For the inequality (5), we obtain the claim in the same way as (4) by interchahgimd
j. o

Theorem 3.2 1If f = (f1, fo,..., fn) Satisfies alternating inequalities for any pair of distinct indices
{i,j} (i,5 € {1,2,...,n}) and for anyk € {0,1,..., K}, then Markov chainM s mixes rapidly and
the mixing timer(¢) for 0 < e < 1 satisfies

(e) < w

In(Ke™t).

Proof: LetG = (E, &) be an undirected simple graph with vertexSeind edge sef defined as follows.
A pair of vertices{z, y} is an edge of7 if and only if (1/2) >, |z; — y;| = 1. Clearly, the grapl&z
is connected. We define the lendth(e) of an edge: € £ by I (e) %" 1. For each paifx,y) € =2, we
define the distancéa (x, y) be the length of the shortest path betweeandy on G with [,. Clearly, the
diameter ofG, defined bymax, ,c={da (x,y)}, is bounded byx.

We define a joint processX,Y) — (X', Y’) for any pair{ X, Y} € £. Pick a pair of distinct indices
{i1,i2} uniformly at random. Then puty = X;, + X;, andky = Y;, +Y;,, generate a uniform random
numberA € [0,1), choselx € {0,1,...,kx} andly € {0,1,...,ky} which satisfygfl’Z?Z(lX -1 <
A < gi7%, () andgiy, (Iy —1) < A < g%, (Iy), and setX], = Ix, X}, = kx —Ix, Y}, = Iy and
Y =ky —ly.

Now we show that

Elda(X',Y")] < Bda(X,Y), and3 =1 — , forany pair{ X, Y} € €.

2
n(n —1)

Suppose thak', Y € € satisfied X; — Y;| = 1 for j € {j1,j2}, and|X; — X;| = 0for j & {j1,j2}.
Case 1:When the neither of indiceg nor j, are chosen, i.e{i1,i2} N {j1,j2} = 0. Putk = X;, + X,,.
It is easy to see thdr[X; =[] = Pr[Y] =[] foranyl € {0,...,k} sinceY;, + Vi, = k. We set
X, =Y/ andX;, =Y/ . Thend (X', Y') = da(X,Y) holds.
Case 2: When the both of indiceg, andj, are chosen, i.e{iy,i2} = {j1,j2}. In the same way as
Case 1, we can séf; =Y/ andX;, =Y . Thend,(X',Y") = 0 holds.
Case 3:When exactly one of; andjs is chosen, i.e|{i1,i2} N {41, j2}| = 1. Without loss of generality,
we can assume that = j; and thatX;, +1 =Y;,. Putk = X, + X,,, thenY;, +Y;, = k+ 1 obviously.
Now, we consider the joint process as a random number0, 1) is given. Assume thdte {0,1,...,k}
isfiaggk k ing i iti i +1
satisfiesg; ;. (I — 1) < A < g;,,(1), then alternating inequalities (3) imply thg{fﬂ.2 (l-1) <A<
gfj;(l + 1). Therefore, ifX; = [thenY; should be in{/,/ + 1} by the joint process. Thus we always
obtain that X; = Y andX] +1 =Y/]or[X; +1 =Y/ andX] = Y/]. Henceda(X",Y’) =
da(X,Y) holds.
With considering that Case 2 occurs with probabifif\(n(n — 1)), we obtain that

2

e O (=

)dA(X,Y).
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Since the diameter aff is bounded byK, Theorem 3.3 (Path Coupling Theorem), which we describe
following this proof, implies that the mixing time(e) satisfies

(n—1)

re) < 2 o In(k="").

O

The following Path Coupling Theorem proposed by Bubbly and Dyer is a useful technique for bounding
the mixing time.

Theorem 3.3 (Path Coupling [3]Let. M be a finite ergodic Markov chain with a finite state sp&rd et
. . Q
H = (9, &) be a connected undirected graph with vertex(®eind edge sef C 5 ) Leti: & - Ry

be a positive length defined on the edge set. For any pair of verficeg} of H, the distance between

x andy, denoted byi(z,y) and/or d(y,x), is the length of a shortest path betweeand y, where the

length of a path is the sum of the lengths of edges in the path. Suppose that there exists a joint process
(X,Y) — (X', Y") with respect toM whose marginals are faithful copies 6 and

9B, 0< <1, V{X,Y} € £, BIAX,Y") < B-d(X,Y).

Then the mixing time () of Markov chainM satisfiesr(c) < (1 — 8)~!In(c~'D/d), whered %"
min{d(z,y) | Vz,y € Q} andD det. max{d(z,y) | Vz,Vy € Q}.

The above theorem differs from the original theorem in [3] since the integrality of the edge length is
not assumed. We drop the integrality and introduced the minimum distan€his modification is not

essential and we can show Theorem 3.3 similarly. We do not require this modification in the proof of
Theorem 3.2, but we will use the modified version in the proof of Theorem 4.3 described later.

Outline of proof: Let 7 be the stationary distribution 0¥1, and letP! for x € Q andt € Z, | be the
distribution of X* which is a random variable of1 at timet with initial statex. Let (Y°, Y!,...,) be
a random process 01 whereY" is a random variable according to Clearly,Y is according tar for
anyt. Let A* be a subset df? satisfying

3 (P16 - ot0) =y {3 020 o) .
sEA* - s€EA
Then we can show that

v (#) = o { S (Pl o)} = 3 (e i) ey

s€A SEA*
< D PrX'=sY'#s] <) PriX'=sY'%s] = Pr(X'#Y"] =) PriX'=2Y'=y]

SEA* sEN THy
t t
< ZLZ"U)Pr [(X'=2,Y'=y] = BldX Y1) [d()il’y ) 7)
T,y

hold. For any distinct paiX*, Y ¢ Q at any timet, there exists a sequence of elemetitsZ,, ..., Z,

(Z; € Q), corresponding to a shortest path betwéeandY’, suchasZ; = X, Z, = Y andd(X,Y) =

Z;’:—ll d(Zi, Ziv1). Let Z! (i € {1,2,...,r}) denote the next state &f; after a transition, then
d(XT YY) < ST (2, Z)

holds for any transition, since the distance between states is defined by the length of a shortest path. From
the hypothesis of Theorem,

E [d(XH_l, Yt-i-l)]

IA

B[S dz 70| = S B 7] 20)]
ﬁ . d(Zia Zi+1) = ﬁ . d(Xt7Yt) (8)

IN
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hold. If we sett = —(1/1nf3) - In(D/de), thent satisfies that < (1 — 3)~*In(D/de) = 7(¢). Thus
recursively applying the result of (7) and (8), we can show that

E[d(X?t, Y? xXt-1 yt-t X0, y° D
dpy(Py,m) < EldX, V)l < 5'—d( 7 ) < ﬁt-id( Y7 <ehELZ = ¢
d d d d
hold without respect to the initial state O

With the above discussions, we obtain Theorem 2.1.

4 Perfect Sampler

4.1 Monotone CFTP

Suppose that we have an ergodic monotone Markov chdimvith partially ordered finite state space
(©,>). The transitionX — X’ of M is defined by a monotone update function: © x [0,1) — Q,
i.e., ¢ satisfies thatA € [0,1), Va,Vy € Q, z = y = &(x, ) = ¢(y, A). Also suppose that there exists
a unique pair of state@ey, x1,) in partially ordered sef(), =), satisfyingzy = = > z1, Vo € Q. The
result of transitions of the chain from the timeto ¢t (t; < t3) with a sequence of random numbers
A= (Alta], Alts +1],..., Alta — 1]) € [0,1)27" is denoted byd}*(z, ) : Q x [0,1)27"* — Q where

®y2(z, A) %er. Ao+ (d(x, Alt1]), - - -, A[t2 — 2]), A[t2 — 1]). Then, a standard monotone Coupling From

The Past algorithm is expressed as follows.
Algorithm 1 (Monotone CFTP Algorithm [18])

Step 1 Set the starting time peridl := —1 to go back, and seXx be the empty sequence.

Step 2 Generate random real numbev§], \[T + 1],..., A[[T/2] — 1] € [0,1), and insert them to the
head ofX in order, i.e., put\ := (A[T], A\[T + 1], ..., A[-1]).

Step 3 Start two chains from:y andzy, at time periodl’, and run each chain to time period 0 according
to the update function with the sequence of numbersin (Here we note that both chains use the
common sequenck)

Step 4 [Coalescence chetk

@) If % (zy, A) = ®% (21, ), then return the common stadé. (zy, A) = &% (x5, A) and stop.
(b) Else, update the starting time periéd= 27, and go to Step 2.

Theorem 4.1 (Monotone CFTP [18]B5uppose that a Markov chain defined by an update funetien
monotone with respect to a partially ordered set of stgfes-), andI(xy,21,) € Q2, Vo € Q, 2y =

x > x1,. Then the monotone CFTP algorithm (Algorithm 1) terminates with probability 1, and obtained
value is a realization of a random variable exactly distributed according to the stationary distribugion.

4.2 Monotone Markov Chain

We propose another new Markov chawtp. The transition rule ofMp is defined by the following update
function¢ : = x [1,n) — E. For a current stat& € =, the next stat&{’ = ¢(X, \) € E with respect to
a random numbeX € [1,n) is defined by

{ I (fori = [\]),
X! = k—1 (fori= |\ +1),

X (otherwisg,
wherek = X |5 + X|z)41 andl € {0,1,..., k} satisfies

I e =1 < A=A < gl -

Our chain Mp is a modification ofM ,, obtained by restricting to choose only a consecutive pair of
indices. ClearlyMp is ergodic. The chain has a unique stationary distributiaiefined by (1).
In the following, we show the monotonicity 0¥1p. Here we introduce a partial ordex" on =. For

any stater € =, we introducecumulative sum vectat, = (c,(0), cz(1),...,c.(n)) € Z'" defined by
~def. [ O (fori =0),
¢z (i) = i :
ijlxj (forie {1,2,...,n}).
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For any pair of states,y € =, we sayx > y if and only if ¢, > ¢,. Next, we define two special states

zu,a1 € Ebyzy & (K,0,---,0) andzr, & (0,...,0,K). Then we can see easily thét € =,

Ty Z T Z L.

Theorem 4.2 If f satisfies alternating inequalities (2) for any consecutive pair of indiges+ 1) (j €
{1,...,n — 1}) and for anyk € {0,1,..., K}, then Markov chainMp is monotone on the partially
ordered se(=, -),i.e,VA € [1,n),VX,VY € Q, X =Y = ¢(X, ) = ¢(Y, N).

Proof: We say that a stat& < (2 coversY € Q) (atj), denoted byX -~ Y (or X ->~; Y), when

+1 (fori=y),
X;-Y,=¢ -1 (fori=j+1),
0  (otherwise.

For any pair of state(, Y satisfyingX > Y, it is easy to see that there exists a sequence of states
Z1,Zs, ..., Z, with appropriate length satisfying = Z; ->= Zy -~ --- - Z, = Y. Then it is enough to
show that if a pair of state&’, Y € Q satisfiesX -> Y, thenvVA € [1,n), (X, ) = ¢#(Y, A), to obtain

In the following, we show that if a pair of states,Y” € Q satisfiesX - -, Y, thenVA € [1,n),
d(X,\) = &(Y, \). We denotes(X, \) by X’ and¢(Y, \) by Y’ for simplicity. For any index # | A], it
is easy to see thaly (i) = cx/ (i) andey (i) = cy (i), and sax/ (i) — ey (i) = cx (i) — cy (i) > 0since
X > Y. In the following, we show thatx: (| A]) > ¢y ([ A]).
Case Lilf |\| #j—1and|A| # j+1. Putk = X |y +X | 41, thenitis easy to see thafy | + Y|y 41 =
k. AccordinglyX(M = YL/AJ = [ wherel satisfies

I =1 < A=A < gl @,
hencecx: (|\]) = ey (| A]) holds.

Case 2:Consider the case thgk| = j —1. Putk+1 = X;_; + X, thenY;_,; +Y; = k, sinceX ->; Y.
From the definition of cumulative sum vector,

ex ([A]) —ev (M) =ex (G —1) —ey(j — 1)
= ex(j-2D+X;  —ev(j-2)=Y, 1 =cx((-2)+X; 1 —cev(j—2) Y],
= Xg/‘—l _Yj/—l'

Thus, it is enough to show th&; , > Y/ ;. Now suppose thate {0,1,...,k} satisfieSgé“j_l)j(l —
1) S A= [A] < gy, (D) for A. Theng@tll)j(l —1)<A—|N\ < gfjjl)j(lJr 1) holds, since alternating
inequalities (3) imply thay ) (1= 1) < gf; ;1= 1) < g4, (1) < gft,,; (1 +1). Thus we have
thatif Y/ , = lthenX’ , =l orl+ 1. In other words,

() =tlo)-Co) () () ()G )}

andX]"_1 > Yj’_1 hold. Accordingly, we have thaty (| A]) > cy/ ([ A]).
Case 3: Consider the case thaA| = j + 1. We can showx(|\]) > ¢y/(|A]) in a similar way to
Case 2. O
SinceMp is a monotone chain, we can design a perfect sampler based on monotone CFTP [18], which
we briefly introduced in the previous subsection.
With the above discussions, we obtain Theorem 2.2.

4.3 Expected Running Time

Here, we discuss on an expected running time of our perfect sampler. First, we introduce the following
condition.

Condition 1 Indices off = (f1, f2,. .., fn) is arranged to satisfy that

k l l k
s fils)fira(k—s) > o fils)fira(k+1—s)) _ k. k1
; (Z’;_O F($) ik —s) S f(s) fipa(k+1 - S)) - ; <gz(z+1)(l) 9¢(i+1)(l)> >

foranyk € {0,1,...,K}.

1
2
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Our goal in this subsection is to show the following theorem.

Theorem 4.3 If f satisfies alternating inequalities (2) and Condition 1, then the expected number of
whole transitions required in the monotone CFTP algorithm is upper bound€X{b¥1n(Kn)).

First, we show the following lemma.

Lemma 4.4 If f satisfies alternating inequalities (2) and Condition 1, Markov ch&iip mixes rapidly
and the mixing time (¢) of Mp satisfies that fob < ¢ < 1,

7(e) < n(n—1)%In(Kn/(2)).

Proof: LetG = (5, &) be the graph defined in the proof of Theorem 3.2 in Section 3. For each edge
e ={X,Y} € &, there exists a unique pair of indicgs j» € {1,2,...,n} called thesupporting pairof
e, satisfying

v (i=01.02),
| Xi Y"l{ 0 (otherwisg.

We define the lengthe) of an edgee = {X,Y} € Ebyl(e) = . (1/(n—1)) Z] _1(n — 1) wherej* =
max{j1,j2} > 2 and{j1,jo} is the supporting pair of. Note thatl < min.c¢l(e) < max.cgl(e)
n/2. For each paitX,Y € =, we define the distana& X, Y") be the length of a shortest path between
X andY on G. Clearly, the diameter of7, i.e., max(x y)e=2 d(X,Y), is bounded byKn/2, since
d(X,Y) < (n/2) >, (1/2)|X; — Y;| < (n/2)K for any (X,Y) € =2. The definition of edge length
implies that for any edgéX, Y} € £,d(X,Y) =I({X,Y}).

We define a joint procesgX,Y) — (X',Y’) as(X,Y) — (¢(X,A), (Y, A)) with uniform real
random numbeA € [1,n) and the update functiop defined in the previous subsection. Now we show
that

IN

1

Ed(X",Y")] < B-d(X,Y)wheref =1— nn—1)2’

9)

for any pair{ X, Y} € £. In the following, we denote the supporting pair{cf, Y} by {j1, j2}. Without
loss of generality, we can assume thak j», andX;, +1 =1Yj,.
Case 1:When|A| = j» — 1, we will show that
1 —J 1
Bl(XY') [ [A] = jo 1] < d(X,¥) — +- " EL

In case ofj; = jo — 1, X’ = Y’ holds with conditional probability 1. Henc& X', Y’) = 0. In the

following, we consider the cage < j, — 1. Putk = X,,_1 + X},, thenY;, + i» = k+1holds since
X,, +1=Yj,. Now suppose thdte {0,1,...,k} SatISerSg(J =1 A=Al < 962 152 (-
Theng’“+1 i (l —1)<A-|A] < gfgl 1y;, (L + 1) holds, since alternating mequalmes (3) imply that
k k k

g(;llm(l 1) < g, 10— 1) < g(;ll)h(l) < g(tl);,(+1). Thus we have that iF/,_, =

thenX’, _, =lorl+ 1. Inother words,

X\ (0 0 1 1 k k
¥7/2 1 0 ) 1 ) 1 ? 2 PARE ) k ) k + 1 :
holds. fX’ _y =Y}, 4, the supporting pair of X', Y’} is {1, j2} and sod(X',Y") = d(X,Y). If

X, 1 # Y}, 4, the supporting pair of X', Y'} is {j1, j2 — 1} and sad(X', Y') = d(X,Y) — (n — jo +
1)/(n — 1). With considering that

Pr[X), 2 Vi | LA = G2 = 1] = S0 (08,15, (0 — 957 ,,0)

Condition 1 implies that

PrXj, #Y, 1| A =501 > 1/2
PrXj, . = Y/ LA =G-1] < 1)2
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Thus we obtain

(X, V") | |A] = ja — 1] XY ”‘”1)

AN
| =
&
>
=
+
|

S

n—1
= dX,Y)- I n-jp+l
2 n—1
Case 2:When|A| = j2, we can show that
B Y)|[A] = ja] < d(X,Y) 4L - P2

in a similar way to Case 1.
Case 3:When|A| # j» — 1 and|A| # js, itis easy to see that the supporting pgif, j5} of {X’, Y’}
satisfiesj, = max{ji, j5}. Thusd(X,Y) = d(X',Y").

The probability of appearance of Case 1 is equdl/er — 1), and that of Case 2 is less than or equal
to1/(n — 1). From the above, we have that

1 1 —J 1 1 1 n—j 1
Rl - S jz:d(X,Y)_i
n—1 2 n—1 n—1 2 n-1 2(n —1)2

E[d(X',Y")] <d(X,Y) —

< (s et ) 40 = (1 )

Since the diameter @ is bounded by<n/2, Theorem 3.3 implies that the mixing timéz) for0 < e < 1
satisfies

7(e) < n(n —1)%In(Kn/(2)).

O
Next we estimate the expectationadalescence timé, € Z of Mp defined byT o min{¢t > 0 |
Jy € Q, Vo € Q, y=®°,(z,A)}. Note thatT, is a random variable.

Lemma 4.5 If f satisfies alternating inequalities (2) and Condition 1, the coalescenceTinué Mp
satisfiesE[T}] = O(n®In Kn).
Proof: LetG = (£, &) be the undirected graph addX,Y), VX,VY € E, be the metric ort7, both of

which are used in the proof of Lemma 4.4. We defind’ d(xy,z1,) andry et n(n —1)*(1 +In D).
By using the inequality (9) obtained in the proof of Lemma 4.4, we have

Pr[T. >7] = Pr [<I>970 (zu,A) # CIDQTO (21, A)] = Pr[®(xy, A) # D5 (21, A)]

< Dxyyem AX Y)Pr[X = o (zu, A), Y = ¢ (21, A)]

! B ) h d(zy,r1,)

nin—1

1 n(n—1)%(14+1n D) 1
- () D e =
n{n —

Bl (8 (ou. A), 87 (. 8)] < (1-

"
By thesubmultiplicativityof coalescence time (see [18] e.g.), for éng Z .., Pr[T, > k7o) < (Pr[Ty > TQ])k
(1/e)*. Thus

<

E[T.] = Y 2,tPr[T. =t] < 79+ 1Py > 7] + 10Pr[Ty > 270] + - - -
< To+TfetTmo/et o = /(1 —1/e) < 27.
Clearly D < Kn, then we obtain the result thB{7..] = O(n?In Kn). O

Proof of Theorem 4.3 Let T, be the coalescence time of our chain. Note fRais a random variable.
Putm = [log, T\ ]. Algorithm 1 terminates when we set the starting time pefiog —2™ at (m + 1)st
iteration. Then the total number of simulated transitions is boundet{ By+ 2! + 22 + ... 4+ 2K) <
2-2-2™ < 8T, since we need to execute two chains from bathandxr,. Thus the expectation of the
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total number of transitions oM p required in the monotone CFTP algorithm is bounde®¥ (87 ]) =

O(n3In Kn). O
Note that we can obtain Condition 1 for closed Jackson networks with single servers model, that is a
special case of Example 1 such that=1 (i € {1,2,...,n}), by arranging parametefa, as, ..., ay,)

in non-increasing order suchas > «ay > --- > «,. For Discretized Dirichlet Distribution (Example 2),
we can obtain Condition 1 by arranging parameters in non-increasing order sugh>asi, > --- >
Uy, [15].

5 Concluding Remarks

In this paper, we concern with random sampling of an integral point enl dimensional simplex of

side lengthK, according to a multivariate discrete distribution. We introduce an idealtefnating
inequalities and we propose two hit-and-run chains, one is rapidly mixing chain, the other is monotone
chain. We show that a logarithmic separable concave function satisfies the alternating inequalities. Here
we note that there exist functions which satisfy alternating inequalities, though they are not log-concave,
for example, Discretized Dirichlet Distribution with parameters less than 1 [16, 15].

One of future works is an extension of our results to general log-concave functions on a simplex. It
should gives an efficient algorithm for universal portfolios [12]. Another is an extension to general convex
bodies, especially to base polytope of a polymatroid. A set of two-rowed contingency tables for given
marginal sums is a simple example of base polytope of a polymatroid. For two-rowed contingency tables,
there is an approximately uniform sampler by Dyer and Greenhill [6] and a perfect uniform sampler by our
another work [13]. Matsui, et al. [17], including common author of this paper, gave rapidly mixing chain
for sampling two-rowed tables from hyper geometric distribution, which is also a logarithmic-separable
concave probability function. For tables with any constant number of rows, Cryan, et al. [5] showed that
a heat-bath chain mixes rapidly.
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