Color critical hypergraphs and forbidden configurations
Richard Anstee, Balin Fleming, Zoltán Füredi, Attila Sali

To cite this version:

HAL Id: hal-01184389
https://hal.inria.fr/hal-01184389
Submitted on 14 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Color critical hypergraphs and forbidden configurations

Richard Anstee\(^1\)†, Balin Fleming\(^1\)‡, Zoltán Füredi\(^2\)\(^3\)§ and Attila Sali\(^3\)¶

\(^1\)Mathematics Department The University of British Columbia Vancouver, B.C., Canada V6T 1Z2
\(^2\)Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, Illinois 61801-2975, USA
\(^3\)Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O.Box 127 H-1364 Hungary

The present paper connects sharpenings of Sauer’s bound on forbidden configurations with color critical hypergraphs. We define a matrix to be simple if it is a (0,1)-matrix with no repeated columns. Let \(F\) be a \(k \times l\) (0,1)-matrix (the forbidden configuration). Assume \(A\) is an \(m \times n\) simple matrix which has no submatrix which is a row and column permutation of \(F\). We define \(\text{forb}(m, F)\) as the best possible upper bound on \(n\), for such a matrix \(A\), which depends on \(m\) and \(F\). It is known that \(\text{forb}(m, F) = O(m^k)\) for any \(F\), and Sauer’s bound states that \(\text{forb}(m, F) = O(m^{k-1})\) for simple \(F\). We give sufficient condition for non-simple \(F\) to have the same bound using linear algebra methods to prove a generalization of a result of Lovász on color critical hypergraphs.

**Keywords:** forbidden configuration, color critical hypergraph, linear algebra method

1 Introduction

A \(k\)-uniform hypergraph \((V, E)\) is 3-color critical if it is not 2-colorable, but for all \(E \in E\) the hypergraph \((V, E \setminus \{E\})\) is 2-colorable. Lovász [12] proved in 1976, that

\[
|E| \leq \binom{n}{k-1}
\]

for a 3-color critical \(k\)-uniform hypergraph. Here we prove the following that can be considered as generalization of Lovász’ result.

**Theorem 1** Let \(E \subseteq \binom{[m]}{k}\) be a \(k\)-uniform set system on an underlying set \(X\) of \(m\) elements. Let us fix an ordering \(E_1, E_2, \ldots, E_t\) of \(E\) and a prescribed partition \(A_i \cup B_i = E_i\) \((A_i \cap B_i = \emptyset)\) for each member of \(E\). Assume that for all \(i = 1, 2, \ldots, t\) there exists a partition \(C_i \cup D_i = X\) \((C_i \cap D_i = \emptyset)\), such that

---

\(^\dagger\)Research is supported in part by NSERC
\(^\ddagger\)Research is supported in part by NSERC
\(^\S\)Research is supported in part by Hungarian National Research Fund (OTKA) numbers T034702 and T037846
\(^\¶\)Research is supported in part by Hungarian National Research Fund (OTKA) numbers T034702 and T037846 and by NSERC of the first author

1365–8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
$E_i \cap C_i = A_i$ and $E_i \cap D_i = B_i$, but $E_j \cap C_i \neq A_j$ and $E_j \cap C_i \neq B_j$ for all $j < i$. (That is, the $i$th partition cuts the $i$th set as it is prescribed, but does not cut any earlier set properly.) Then

$$t \leq \binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0}. \quad (1)$$

Theorem 1 was motivated by the following sharpening of Sauer’s bound for forbidden configurations. Let $F$ be a $k \times l$ 0-1 matrix, then $\text{forb}(m, F)$ denotes maximum $n$ such that there exists an $m \times n$ simple matrix $A$ such that no column and/or row permutation of $F$ is a submatrix of $A$. Furthermore, let $K_k$ denote the $k \times 2^k$ simple 0-1 matrix consisting of all possible columns.

**Theorem 2** Let $F$ be contained in $F_B = [K_k \mid t \cdot (K_k - B)]$ for an $k \times (k + 1)$ matrix $B$ consisting of one column of each possible column sum. Then $\text{forb}(m, F) = O(m^{k-1})$.

We explain the the connection between Theorem 1 and Theorem 2.

The study of forbidden configurations is a problem in extremal set theory. The language we use here is matrix theory which conveniently encodes the problems. We define a simple matrix as a (0,1)-matrix with no repeated columns. Such a matrix can be thought of a set of subsets of $\{1, 2, \ldots, m\}$ with the columns encoding the subsets and the rows indexing the elements. Assume we are given a $k \times l$ (0,1)-matrix $F$. We say that a matrix $A$ has no configuration $F$ if no submatrix of $A$ is a row and column permutation of $F$ and so $F$ is referred to as a forbidden configuration (sometimes called trace). A variety of combinatorial objects can be defined by forbidden configurations. For a simple $m \times n$ matrix $A$ which is assumed to have no configuration $F$, we seek an upper bound on $n$ which will depend on $m, F$. We denote the best possible upper bound as $\text{forb}(m, F)$. Many results have been obtained about $\text{forb}(m, F)$ including [2],[3],[5].

At this point all values known for $\text{forb}(m, F)$ are of the form $\Theta(m^e)$ for some integer $e$. We completed the classification for $2 \times l$ matrices $F$ in [2] and for $3 \times l$ matrices $F$ in [6]. We also put forward a conjecture on what properties of $F$ drive the exponent $e$. Roughly speaking, we proposed a set of constructions and guessed that these constructions are sufficient to deduce the exponent $e$ in the expression $\Theta(m^e)$.

We use the notation $K_k$ to denote the $k \times 2^k$ simple matrix of all possible columns on $k$ rows. The basic result for $\text{forb}(m, F)$ is as follows.

**Theorem 3** [Sauer [13], Perles and Shelah [14], Vapnik and Chervonenkis [15]] We have that $\text{forb}(m, K_k)$ is $\Theta(m^{k-1})$.

In fact Theorem 3 is usually stated with $\text{forb}(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0}$ but the asymptotic growth of $\Theta(m^{k-1})$ was what interested Vapnik and Chervonenkis.

One easy observation is that if we let $A^c$ denote the 0-1-complement of $A$ then $\text{forb}(m, F^c) = \text{forb}(m, F)$. Another observation is that if $F'$ is a submatrix of $F$, then $\text{forb}(m, F') \geq \text{forb}(m, F)$. We let $K'_k$ denote the $k \times \binom{n}{k}$ simple matrix of all possible columns of column sum $s$.

We use the notation $[A \mid B]$ to denote the matrix obtained from concatenating the two matrices $A$ and $B$. We use the notation $k \cdot A$ to denote the matrix $[A \mid A \cdots \mid A]$ consisting of $k$ copies of $A$ concatenated together. We give precedence to the operation $\cdot$ (multiplication) over concatenation so that for example $[2 \cdot A \mid B]$ is the matrix consisting of the concatenation of $B$ with the concatenation of two copies of $A$.

According to an earlier unpublished result of Füredi [10] $\text{forb}(m, F) = O(m^k)$ for arbitrary $k \times l$ configuration $F$. The goal of this paper is to give sufficient conditions that ensure $\text{forb}(m, F) = O(m^{k-1})$. 

Richard Anstee, Balin Fleming, Zoltán Füredi and Attila Sali
2 The boundary between $m^{k-1}$ and $m^k$

Theorem 3 implies that simple configurations all have $\text{forb}(m, F) = O(m^{k-1})$, thus we investigate $f$’s with multiple columns. First, we show that which configurations $F$ have $\text{forb}(m, F) = \Omega(m^k)$ using the direct product construction. Let $A(k, 2)$ be defined as a minimal matrix with the property that any pair of rows has $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ has both with 1’s in some column and such that deleting a column of $A(k, 2)$ would violate this property.

Lemma 4 Let $F$ be a $k \times l$ configuration. $\text{forb}(m, F) = \Omega(m^k)$ if $F$ contains $2 \cdot K^l_k$ for $2 \leq l \leq k - 2$ and $l = 0, k$ or if $F$ contains $[2 \cdot K^l_k | A(k, 2)]$.

Proof: We find that $\text{forb}(m, F) = \Omega(m^k)$ if $F$ contains $2 \cdot K^l_k$ for $2 \leq l \leq k - 2$ and $l \neq 1, k - 1$. This follows since $2 \cdot K^l_k$ is not contained in the $k$-fold product of $l$ $K^1_{m/k}$’s and $l - 1$ $K^{(m/k)\cdot 1}$’s and so may deduce $\text{forb}(m, 2 \cdot K^l_k)$ is $\Omega(m^k)$. To verify this for $2 \leq l \leq k - 2$, we note that any pair of rows of $K^l_k$ has $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ and so if we have a submatrix that is a row and column permutation of $K^l_k$, we can only choose one row from either $K^1_{m/k}$ or from $K^{(m/k)\cdot 1}$. The verification for $K^0_k$ or $K^k_k$ is easier.

For $l = 1$ (the case $l = k - 1$ is the (0,1)-complement) we can no longer assert that any pair of rows of $K^1_k$ has $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ merely $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and so can choose two rows from the copy of $K^1_{m/k}$, one row from each of $k - 2$ of the $K^{(m/k)\cdot 1}$ terms and generate a copy of $2 \cdot K^1_k$. (Theorem 5.1 of [6] shows that $\text{forb}(m, K^1_k)$ is $\Theta(m^{k-1})$). This is fixed by considering a minimal matrix $A(k, 2)$ with the property that any pair of rows has $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ has both with 1’s in some column and such that deleting a column of $A(k, 2)$ would violate this. As above, we have that if $F$ contains $[2 \cdot K^l_k | A(k, 2)]$, then $\text{forb}(m, F) = \Omega(m^k)$. \qed

Lemma 4 leaves two possibilities if we want $\text{forb}(m, f)$ be bounded away from $m^k$. Either $F$ is contained in a matrix $F_B = [K^1_k \cdot t \cdot (K^1_k - B)]$ for an $k \times (k + 1)$ matrix $B$ consisting of one column of each possible column sum or $F$ is contained in a matrix $[K^0_{m/k} \cdot t \cdot C]$ where $C$ is a $k$-rowed simple matrix consisting of all columns which do not have 1’s in both rows 1 and 2 and also with at least one 1. Note, that these are not mutually exclusive cases. Our main result Theorem 2 is that in the first case $\text{forb}(m, F) = O(m^{k-1})$.

Proof of Theorem 2: Let $A$ be an $m \times n$ simple 0-1 matrix, and $B$ a $k \times (k + 1)$ matrix consisting of one column of each possible column sum. Suppose that $A$ does not have $F_B = [K^1_k \cdot t \cdot (K^1_k - B)]$ as configuration. This implies that on a given $k$-tuple $L$ of rows either $K^1_k$ is missing, or if all possible columns of size $k$ occur on $L$, then $t \cdot (K^1_k - B)$ must be missing. This latter means, that for some $0 \leq s \leq k$, two columns of column sum $s$ occur at most $t - 1$ times on $L$, respectively. Let $K$ be the set of $k$-tuples of rows where the latter happens. Using Lemma 5 a set of columns of size $O(m^{k-1})$ can be removed from $A$ to obtain $A'$, so that for all $L \in K$ a column (in fact two) is missing on $L$ in $A'$. However, this implies that $K^1_k$ is not a configuration in $A'$, thus by Theorem 3 $A'$ has at most $O(m^{k-1})$ columns. \qed

Let $K$ be a system of $k$-tuples of rows such that $\forall K \in K$ there are two $(k \times 1)$ columns, $\alpha_K \neq \beta_K$ specified. We say that a column $x$ of $A$ violates $(K, \alpha_K)$, if $x|_K = \alpha_K$, similarly, $x$ violates $(K, \beta_K)$, if $x|_K = \beta_K$. 

Color critical hypergraphs and forbidden configurations
Proof: It can be assumed without loss of generality that for all $K \in \mathcal{K}$, $\alpha_K = \alpha$ and $\beta_K = \beta$ independent of $K$. Indeed, there are $2^k \times 2^k$ possible $\alpha_K, \beta_K$ pairs, that is a constant number of them. Thus, $K$ can be partitioned into a constant number of parts, so that in each part $\alpha_K = \alpha$ and $\beta_K = \beta$ holds. We apply induction on $k$ using the simplification given above. $k = 1$ is obvious.

Consider now $k \times 1$ columns $\alpha \neq \beta$. Assume first, that $\alpha \neq \beta$. That is, there is a coordinate where $\alpha$ and $\beta$ agree, say both have 1 as their $\ell$th coordinate. The case of a common 0 coordinate is similar. For the $i$th row of $A$ we count how many columns have violation so that for some $K \in \mathcal{K}$ the $\ell$th coordinate in $K$ is exactly row $i$. Let $K_{i, \ell}$ be the set of these $k$-tuples from $K$. Columns that have violation on $k$-tuples from $K_{i, \ell}$ have 1 in the $i$th row, let $A_{i,1}$ denote matrix formed by the set of columns that have 1 in row $i$. If row $i$ is removed from $A_{i,1}$, the remaining matrix $A_{i,1}'$ is still simple. Let $K_{i, \ell}'$ denote the set of $(k-1)$-tuples obtained from $k$-tuples of $K_{i, \ell}$ by removing their $\ell$th coordinate, $i$, furthermore let $\alpha'$ ($\beta'$, respectively) denote the $(k-1) \times 1$ column obtained from $\alpha$ ($\beta$) by removing the $\ell$th coordinate, 1. Note, that $\alpha' \neq \beta'$. A column of $A$ has a violation on $K \in K_{i, \ell}$ iff its counterpart in $A_{i,1}'$ has a violation on the corresponding $K' \in K_{i, \ell}'$. The number of those columns is at most $cm^{k-2}$ by the inductive hypothesis. Since $\mathcal{K} = \bigcup_{i=1}^m K_{i, \ell}$, we obtain that the number of columns of $A$ having violation on some $K \in \mathcal{K}$ is at most $cm^{k-2}$.

Let us assume now, that $\alpha = \beta$. A subset $J \subseteq \mathcal{K}$ is called independent if there exists an ordering $J_1, J_2, \ldots, J_g$ of the elements of $J$ such that for every $J_i \in J$ there exists an $m \times 1$ 0-1 column that violates $J_i$ and does not violate any $J_j \in J$ for $j < i$. Let us call a maximal independent subset $B$ of $\mathcal{K}$ a basis of $\mathcal{K}$. If a column of $A$ has a violation on $K \in \mathcal{K}$, then it has a violation on some $B \subseteq \mathcal{B}$, as well. Indeed, either $K \in B$ holds, or if $K \notin B$, then by the maximality of $B$, $K$ cannot be added to it as a $|B| + 1$st element in the order, so the column having violation on $K$ must have a violation on $B \subseteq \mathcal{B}$, for some $B$. By Theorem 1 for a basis $B$ we have

$$|B| \leq \binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0},$$

since a column violating a $k$-tuple $B_i$ from $B$, but none of $B_j$ for $j < i$, gives an appropriate partition of the set of rows. Thus, there could be at most $(2t-2) \left[ \binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0} \right]$ columns violating some $K \in \mathcal{K}$. \hfill \Box

Proof of Theorem 1: We define a polynomial $p_i(x) \in \mathbb{R}[x_1, x_2, \ldots, x_m]$ for each $E_i$ as follows.

$$p_i(x_1, x_2, \ldots, x_m) = \prod_{a \in A_i} (1 - x_a) \prod_{b \in B_i} x_b + (-1)^{k+1} \prod_{a \in A_i} x_a \prod_{b \in B_i} (1 - x_b)$$  \hspace{1cm} (2)

Polynomials defined by \text{(2)} are multilinear of degree at most $k - 1$, since the product $\prod_{c \in E_i} x_c$ cancels by the coefficient $(-1)^{k+1}$. Thus, they are from the space generated by monomials of type $\prod_{j=1}^r x_{ij}$, for $r = 0, 1, \ldots, k - 1$. The dimension of this space over $\mathbb{R}$ is $\binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0}$.\hfill \Box
We shall prove that polynomials $p_1(x), p_2(x), \ldots, p_t(x)$ are linearly independent over $\mathbb{R}$, which implies (1). Assume that

$$\sum_{i=1}^{t} \lambda_ip_i(x) = 0$$

(3)

is a linear combination of the $p_i(x)$'s that is the zero polynomial. Consider the partition $C_t \cup D_t = X$, and substitute $x_c = 0$ if $c \in C_t$ and $x_d = 1$ if $d \in D_t$ into (3). Then $p_t(x) = 1$, but it is easy to see that $p_k(x) = 0$ for $k < t$. This implies that $\lambda_t = 0$. Now assume by induction on $j$, that $\lambda_{t-1} = \ldots = \lambda_{t-j+1} = 0$. Take the partition $C_{t-j} \cup D_{t-j} = X$ and substitute into (3) $x_c = 0$ if $c \in C_{t-j}$ and $x_d = 1$ if $d \in D_{t-j}$. Then, as before, $p_{t-j}(x) = 1$, but $p_k(x) = 0$ for $k < t-j$. This implies $\lambda_{t-j} = 0$, as well. Thus, all coefficients in (3) must be 0, hence the polynomials are linearly independent.

References


