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Chromatic Turán problems and a new upper
bound for the Turán density of K−
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We consider a new type of extremal hypergraph problem: given an r-graph F and an integer k ≥ 2 determine the
maximum number of edges in an F -free, k-colourable r-graph on n vertices.

Our motivation for studying such problems is that it allows us to give a new upper bound for an old problem due to
Turán. We show that a 3-graph in which any four vertices span at most two edges has density less than 33

100
, improving

previous bounds of 1
3

due to de Caen [1], and 1
3
− 4.5305× 10−6 due to Mubayi [9].
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Given an r-graph F the Turán number ex(n,F) is the maximum number of edges in an n-vertex r-graph
not containing a copy of F . The Turán density of F is

π(F) = lim
n→∞

ex(n,F)(
n
r

) .

For 2-graphs the Turán density is determined completely by the chromatic number of F , but for r ≥ 3
there are very few r-graphs for which π(F) is known. (Examples of 3-graphs for which π(F) is now
known include the Fano plane [2], F = {abc, abd, abe, cde} [8] and F = {abc, abd, cde} [7].)

The two most well-known problems in this area are to determine π(K4) and π(K−4 ), where K4 =
{abc, abd, acd, bcd} is the complete 3-graph on 4 vertices and K−4 = {abc, abd, acd} is the complete
3-graph on 4 vertices with an edge removed. For π(K4) we have the following bounds due to Turán and
Chung and Lu [3] respectively

5
9
≤ π(K4) ≤

3 +
√

17
12

= 0.59359 . . . .

Although the problem of determining π(K4) is an extremely natural question in some respects the problem
of determining π(K−4 ) is even more fundamental since K−4 is the smallest 3-graph satisfying π(F) 6= 0.
Note also that this problem may be restated as follows: determine the maximum density of a 3-graph in
which any four vertices span at most two edges.
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The problem of determining π(K−4 ) has been considered by many people, including Turán [12], Erdős
and Sós [5], Frankl and Füredi [6], de Caen [1] and Mubayi [9]. Previously the best known bounds were

2
7
≤ π(K−4 ) ≤ 1

3
− (4.5305× 10−6).

The upper bound was proved by Mubayi [9], improving on the upper bound π(K−4 ) ≤ 1/3, due to de
Caen [1]. The lower bound is from a construction due to Frankl and Füredi [6].

Our main result is the following theorem, improving the upper bound for π(K−4 ).

Theorem 1 The Turán density of K−4 satisfies

2
7
≤ π(K−4 ) <

33
100

.

The proof of this result leads naturally to a new general class of extremal problems which we call chro-
matic Turán problems. These are questions of the form: given an r-graph F and an integer k ≥ 2
determine the maximum number of edges in an F-free, k-colourable r-graph on n vertices. (Recall that
an r-graph is k-colourable iff its vertices can be partitioned into k classes, none of which contain an edge.)
We denote this quantity by exk(n,F). The corresponding k-chromatic Turán density is then defined to be

πk(F) = lim
n→∞

exk(n,F)(
n
r

) .

The following lemma shows that any upper bound for the chromatic Turán density π3(K−4 ) will yield an
upper bound for the ordinary Turán density π(K−4 ). (The proof of Theorem 1 actually requires a slightly
stronger result but the principle is the same.)

Lemma 1 If π3 = π3(K−4 ) and π = π(K−4 ) then

π ≤ 2 + π3/π

9
.

To prove Lemma 1 we first note that ifF is aK−4 -free 3-graph with n vertices and m edges then it satisfies

mn =
∑

xy∈V (2)

d2
xy + q1, (1)

where q1 is the number of 4-sets in F spanning exactly one edge. Lemma 1 is proved by giving a lower
bound for q1.

This idea of giving a lower bound for q1 was previously used by Mubayi [9] (he used supersaturation to
achieve this). Our approach is quite different in that it involves a chromatic Turán problem.

To be more precise the key idea used in the proof of Lemma 1 is as follows. Let F be a K−4 -free 3-graph
of order n and let uvw ∈ F . If Eij = {k : ijk ∈ F} then Euv, Euw and Evw are pairwise disjoint. We
say that an edge xyz ∈ F is bad relative to the edge uvw if xyz ∩ uvw = ∅ and none of the following
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4-sets span exactly one edge: uvwx, uvwy, uvwz, xyzu, xyzv, xyzw. It is straightforward to check that
if xyz is bad relative to uvw then xyz ⊂ Euv ∪ Euw ∪ Evw and xyz is not contained entirely in either
Euv, Euw or Evw. Hence the collection of bad edges relative to uvw is 3-colourable. This fact can then
be used to give a lower bound for q1 in terms of the 3-chromatic Turán density π3(K−4 ).

One obvious reason why chromatic Turán problems do not seem to have been considered before is that
for 2-graphs they are rather uninteresting. If Kt is the complete 2-graph of order t then Turán’s theorem
determines not only their Turán numbers but also their chromatic Turán numbers.

Theorem 2 (Turán[11]) If t ≥ 3 then the unique Kt-free graph with n vertices and ex(n, Kt) edges is
the complete (t− 1)-partite graph whose vertex classes are as equal as possible in size.

Corollary 1 If t ≥ 3 and k ≥ 2 then

exk(n, Kt) =
{

ex(n, Kt), k ≥ t− 1,
ex(n, Kk+1), k ≤ t− 2.

For general r-graphs with r ≥ 3 the problems of determining chromatic and ordinary Turán numbers
seem to be genuinely different. While the extremal Kt-free 2-graph is not only Kt-free but also (t − 1)-
colourable this does not seem to be the case in general. For example the conjectured extremal K−4 -free
3-graph has rather large chromatic number.

In order to make use of Lemma 1 we need an upper bound on π3(K−4 ). To achieve this we first consider
π2(K−4 ).

Theorem 3 The 2-chromatic Turán density π2(K−4 ) satisfies

4
9
√

3
≤ π2(K−4 ) ≤ 3

10
.

Proof: The lower bound follows from a simple construction. For the upper bound let F = ((A,B), E) be
a bipartite K−4 -free 3-graph with n vertices and m edges. Let |A| = αn, so |B| = (1− α)n. Then∑

xy∈A×B

dxy = 2m,
∑

xy∈A(2)∪B(2)

dxy = m. (2)

From (1) and the fact that q1 ≥ 0 we obtain

mn ≥
∑

xy∈A×B

d2
xy +

∑
xy∈A(2)∪B(2)

d2
xy

Convexity and (2) then imply that

m ≤ n3

4
α(1−α) + 2

α2+(1−α)2

≤ n3

20
.

The result then follows directly. 2

With some more work we can obtain an upper bound for π3(K−4 ). (Again the lower bound follows from
a simple construction.)
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Theorem 4 The 3-chromatic Turán density π3(K−4 ) satisfies

5
18

≤ π3(K−4 ) <
58
177

.
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