On the $L(p, 1)$-labelling of graphs
Daniel Gonçalves

To cite this version:

HAL Id: hal-01184395
https://hal.inria.fr/hal-01184395
Submitted on 14 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the \(L(p, 1)\)-labelling of graphs

Daniel Gonçalves

LaBRI, U.M.R. 5800, Université Bordeaux I
351, cours de la Libération 33405 Talence Cedex, France.

In this paper we improve the best known bound for the \(L(p, 1)\)-labelling of graphs with given maximal degree.

Keywords: lambda-labelling

1 Introduction.

In all the paper we work on a graph \(G\) with maximal degree \(\Delta\). For a set of vertices \(S \subset V(G)\), the graph \(G\setminus S\) is the graph induced by \(V(G)\setminus S\). The distance \(d(u, v)\) between two vertices \(u\) and \(v\) is the number of edges in the shortest path from \(u\) to \(v\). We say that \(v\) is a \(d\)-neighbor of \(u\) if \(d(u, v) = d\). Let \(N_d(v)\) be the set of \(d\)-neighbors of \(v\). We will generally use the common term neighbor instead of \(1\)-neighbor. A \(L(\alpha_1, \alpha_2, \ldots, \alpha_k)\)-labelling of a graph \(G\) is a function \(l : V(G) \to [0, \lambda]\) such that for any pair of vertices \(u\) and \(v\) if \(d(u, v) = d \leq k\) then \(|l(u) - l(v)| \geq \alpha_d\). The problem is to find an \(L(\alpha_1, \alpha_2, \ldots, \alpha_k)\)-labelling of \(G\) that minimizes \(\lambda\). We denote \(\lambda_{\alpha_1, \alpha_2, \ldots, \alpha_k}(G)\) such minimal \(\lambda\). For a sequence of non-negative integers \(S = (\alpha_1, \alpha_2, \ldots, \alpha_k)\), we will use the notation \(\lambda_S(G)\) instead of \(\lambda_{\alpha_1, \alpha_2, \ldots, \alpha_k}(G)\).

This problem arises from the channel assignment problem. The channel assignment problem is to assign a channel to each radio transmitter so that close transmitters do not interfere and such that we use the minimum span of frequency. Roberts proposed to assign channels such that “close” transmitters receive different channels and “very close” transmitters receive channels that are at least two channels apart. This is a \(L(2,1)\)-labelling of a graph \(G\) where the vertices are the transmitters, the “very close” transmitters are adjacent vertices and the “close” transmitters are vertices at distance two in \(G\). Since the constraints between transmitters diminish with the distance, the \(L(\alpha_1, \alpha_2, \ldots, \alpha_k)\)-labelling of graph is interesting for this problem when the sequence \(\alpha_1, \alpha_2, \ldots, \alpha_k\) is decreasing. Many work has been done on \(L(2,1)\)-labeling since the first paper of J.R. Griggs and R.K. Yeh [7]. Many papers deal with bounding \(\lambda_{\alpha_1, \alpha_2}\) for some family of graphs or given some graphs invariants such as \(\chi(G)\) and \(\Delta\) (See for example [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14]). In their paper [7], Griggs and Yeh proved that \(\lambda_{2,1}(G) \leq \Delta^2 + 2\Delta\) and made the following conjecture.

Conjecture 1 For any graph \(G\) with maximal degree \(\Delta \geq 2\), \(\lambda_{2,1}(G) \leq \Delta^2\).

Actually they proved it for \(\Delta = 2\) and for graphs of diameter at most two. They also proved that determining \(\lambda_{2,1}(G)\) is NP-complete. In this paper we focus on bounding \(\lambda_{p,1}\) according to \(\Delta\). In [3] the authors gave an algorithm for the \(L(2,1)\)-labeling and improved the upper bound of \(\lambda_{2,1}\) to \(\Delta^2 + \Delta\). In [4], with the same algorithm they obtained that \(\lambda_{p,1}(G) \leq \Delta^2 + (p - 1)\Delta\). Let \(\sigma(S, \Delta)\) be the function
defined for any sequence $S = (\alpha_1, \ldots, \alpha_k)$ by $\sigma(S, \Delta) = \sum_{i=1}^{k} \alpha_i \Delta(\Delta - 1)^{i-1}$. With the algorithm used in [3, 4], we generalise their result as follow.

Proposition 1 For any sequence of non-negative integers $S = (\alpha_1, \alpha_2, \ldots, \alpha_k)$, with $k \geq 1$, and any graph G with maximum degree Δ, we have that $\lambda_S(G) \leq \sigma(S, \Delta)$.

But this is not the best known bound. In [9], Kráľ and Škrekovski had a result on the list channel assignment problem. As a corollary of their result we have that :

Theorem 1 For any sequence of non-negative integers $S = (\alpha_1, \alpha_2, \ldots, \alpha_k)$, such that $k \geq 2$ and $\alpha_1 > \alpha_2$, and any graph G with maximum degree $\Delta \geq 3$, we have that $\lambda_S(G) \leq \sigma(S, \Delta) - 1$.

In this paper, we improve this last bound by two different ways for some specific sequences S.

Theorem 2 For any sequence $S = (\alpha_1, \ldots, \alpha_k)$ with $k \geq 2$ and such that $\alpha_1 > \alpha_2 \geq \alpha_3 \geq \ldots \geq \alpha_k = 1$, and any connected graph G with maximum degree $\Delta \geq 3$, there is an ordering of the vertices, v_0, v_1, \ldots, v_n and a $L(\alpha_1, \ldots, \alpha_k)$-labelling l of G such that :

- $l(v_0) \leq \sigma(S, \Delta) - 1$
- $l(v_j) \leq \sigma(S, \Delta) - j$ for $1 \leq j < k$
- $l(v_j) \leq \sigma(S, \Delta) - k$ for $k \leq j$

This implies that just a constant number of vertices, k, are labelled more than $\sigma(S, \Delta) - k$.

Theorem 3 For any sequence $S = (\alpha_1, 1)$ with $p \geq 2$ and any graph G with maximum degree $\Delta \geq 3$, we have that $\lambda_{p,1}(G) \leq \sigma(S, \Delta) - 2 = \Delta^2 + (p - 1)\Delta - 2$.

So, for the $L(2,1)$-labelling we obtain that $\lambda_{2,1}(G) \leq \Delta^2 + \Delta - 2$ and we get a little closer to Conjecture 1. To prove Theorem 3 we need the following structural lemma.

Lemma 1 Every graph G with maximal degree $\Delta \geq 3$ has either :

(i) a vertex v with degree less than Δ.

(ii) a cycle of length three.

(iii) two cycle of length four passing through the same vertex v.

(iv) a vertex v with three neighbors u, x and y, such that there is a cycle of length four passing through the edge uv and such that the graph $G\{x, y\}$ is connected.

(v) a vertex u with two adjacent vertices v and w such that the graph $G\{x, y\}$ is connected, where X is the set $\{v, w\}$.

For proving Theorem 2, the following corollary of Lemma 1 is sufficient.

Corollary 1 Every graph G with maximal degree $\Delta \geq 3$ has either :

(i) a vertex v with degree less than Δ.

(ii) a cycle of length ≤ 4.

(iii) a vertex v with two neighbors x and y such that the graph $G\{x, y\}$ is connected.
In this abstract we do not prove Lemma 1 and Theorem 3, but most of the arguments used in the proof of Theorem 3 are in the proof of Theorem 2. In section 2 we generalise the labelling algorithm presented in [3] and we obtain Proposition 1. In section 3 we modify it to prove Theorem 2.

2 The basic algorithm.

In [3] the authors present an algorithm that $L(2, 1)$-label graphs and establish that for a graph G of maximal degree Δ we have $\lambda_{2,1}(G) \leq \Delta^2 + \Delta$. Here we present an extended version of this algorithm that $L(\alpha_1, \ldots, \alpha_k)$-label graphs and establishes Proposition 1.

\[
i = 0;\\\text{while there are unlabelled vertices do}\\\quad \text{for } v_j = v_n \text{ to } v_0 \text{ do}\\\quad \quad \text{if } v_j \text{ is unlabelled and } v_j \text{ can be labelled } i \text{ then}\\\quad \quad \quad \text{let } v_j \text{ be labelled } i;\\\quad \quad \text{end}\\\quad \text{end}\\\quad i = i + 1;\\\text{end}
\]

In this algorithm a vertex v_j can be labelled i if it has no d-neighbor already labelled x with $i - \alpha_d < x < i + \alpha_d$.

Let us denote $l(v)$ the value the algorithm assigns to the vertex v. Observe that if the vertex v is not labelled i it cannot be because its d-neighbor u is labelled $l(u)$, with $i < l(u) < i + \alpha_d$. Indeed, when the algorithm “proposed” v to be labelled i, the vertex u was still unlabelled. So, a vertex u which has been labelled $l(u)$ could only “forbid” its d-neighbor v to be labelled $l(u), l(u) + 1, \ldots$, and $l(u) + \alpha_d - 1$. Let us denote $F(u, v)$, the set of values which have been forbidden by u to v during the execution of the algorithm, we have that $F(u, v) = \{l(u), l(u) + 1, \ldots, l(u) + \alpha_d - 1\}$, if $d(u, v) = d$. The set $F(v)$ of all the values that have been forbidden to v is the union on all the vertices u of $F(u, v)$, $F(v) = \bigcup_{u \in V(G)} F(u, v)$. Note that the algorithm labels v with the smallest value which is not in $F(v)$. So $l(v) \leq |F(v)|$, since there are $|F(v)| + 1$ values in the interval $[0, |F(v)|]$. The set $F(v)$ being a union of possibly disjoint sets we have $|F(v)| \leq \sum_{u \in V(G)} |F(u, v)|$. In a graph of maximal degree Δ, one can easily see by induction on i that there are at most $\Delta(\Delta - 1)^{i-1}$ vertices in $N_i(v)$. Since if u is a i-neighbor of v we have $|F(u, v)| = \alpha_i$, we obtain that $l(v) \leq \sum_{i=1}^{k} \alpha_i \Delta(\Delta - 1)^{i-1}$.

3 The improved algorithm and proof of Theorem 2.

To improve the bound we have in Proposition 1, we have to be more careful on the order the algorithm considers the vertices. If we have two vertices v_p and v_q, with $p < q$ and $d(v_p, v_q) = d \leq k$, the vertex v_p only forbids $\alpha_d - 1$ values to v_q. Indeed, the vertex v_p does not forbid to v_q the value $l(v_p)$, when the algorithm considered the possibility to label the vertex v_q with the value $l(v_p)$ the vertex v_p, being considered after v_q by the algorithm, was still unlabelled. This observation reduces the size of $F(v_p, v_q)$ by one and so the bound on $l(v_p)$. So, if for a vertex v_q there are x vertices v_p, with $p < q$ and $d(v_p, v_q) = d \leq k$, then $l(v_q) \leq |F(v_q)| = \sigma(S, \Delta) - x$. It would be interesting to have an order
Theorem 2. Now we are going to show how to choose
With such numbering of the vertices, by the previous observation, we clearly prove the two last points of
1
Case (i) If there is a vertex of degree less than \(d \) such that many vertices have some
\(\Delta \). In this case, since there are at most \(\Delta - 1 \) vertices in \(N_1(v_0) \), we easily bound \(|F(v_0)| \) by \(\sigma(S, \Delta) - \alpha_1 \).

Case (ii) If there is a cycle of length \(\leq 4 \), let \(r \) be a vertex of this cycle and consider any spanning tree
of \(G \). In this case, since there are at most \(\Delta - 1 \) vertices in \(N_2(v_0) \), we easily bound \(|F(v_0)| \) by \(\sigma(S, \Delta) - \alpha_2 \).

Case (iii) If there is a vertex with two neighbors \(x \) and \(y \) such that the graph \(G \setminus \{x, y\} \) is connected, let \(r \) be this vertex. We construct \(T \) from any spanning tree of \(G \setminus \{x, y\} \) by adding the edges \(rx \) and \(ry \). We then number the vertices by a preorder traversal of \(T \) such that \(x \) and \(y \) are the two last numbered vertices. It is possible since \(x \) and \(y \) are leafs in \(T \). So we have that \(v_0 = r, v_{n-1} = x \) and \(v_n = y \). Since \(v_n \) is the first vertex considered by the algorithm, it clearly labels it 0. Since \(d(v_n, v_{n-1}) = 2 \) (else, see the previous case), the algorithm cannot label \(v_{n-1} \) less than \(\alpha_2 \). We consider two cases according to the label of \(v_{n-1} \).

• If \(v_{n-1} \) is labelled \(\alpha_2 \), since \(\alpha_1 > \alpha_2 \), the value \(\alpha_2 \) is in both \(F(v_{n-1}, v_0) \) and \(F(v_n, v_0) \). This implies that \(|F(v_0)| \leq \sigma(S, \Delta) - 1 \).

• If \(v_{n-1} \) is not labelled \(\alpha_2 \), since there was no vertex labelled \(\alpha_2 \) when the algorithm considered this value for \(v_{n-1} \), there is a vertex \(v_k \) labelled \(l \) such that \(d(v_k, v_{n-1}) = d \) and \(l + \alpha_d > \alpha_2 \). Since \(l < \alpha_2 \) and \(\alpha_d = 1 \) we have that \(d < k \). This implies that \(d(v_k, v_0) \leq k \) and that the value \(l \) is in both \(F(v_k, v_0) \) and \(F(v_n, v_0) \). This implies that \(|F(v_0)| \leq \sigma(S, \Delta) - 1 \).

References

On the $L(p, 1)$-labelling of graphs

