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Equivalent Subgraphs of Order 3
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It is proved that any graph of order 14n/3 + O(1) contains a family of n induced subgraphs of order 3
such that they are vertex-disjoint and equivalent to each other.
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1 Introduction

A graph is finite and non-directed with no multiple edge or loop. For a graph G, we denote the
vertex set G by V (G). Let G and H be a pair of graphs and let n be a positive integer. A partition
V (G) into V0, V1, . . . , Vn is called an (n, H)-decomposition of G, if 〈Vi〉G ∼= H for 1 ≤ i ≤ n, where
〈Vi〉G is a subgraph of G induced by Vi. Let N(G, H) be the maximum integer n such that G
admits an (n, H)-decomposition. For a family of graphs H, we denote max{N(G, H) : H ∈ H}
by N(G,H). Moreover, for a positive integer n, we define f(n,H) as the minimum integer s such
that N(G,H) ≥ n for any graph G of order s.

The function f(n,H) has a close connection to Ramsey numbers. The classical Ramsey number
R(k, l) is defined as the minimum integer s such that any graph G of order s contains Kk or Kl

as a subgraph. In our definition, R(k, l) = f(1, {Kk,Kl}).
It is not difficult to show that f(n, {K2,K2}) = 3n − 1. Burr, Erdös, and Spencer showed

that f(n, {K3,K3}) = 5n for n ≥ 2 [3]. Let k, l ≥ 2. Burr proved that f(n, {Kk,Kl}) =
(k + l − 1)n + f(1, {Kk−1,Kl−1})− 2 for sufficiently large n [1, 2].

Let Gk be the family of all graphs of order k. For k = 3, G3 consists of four graphs K3, K3,
K1,2 and K1,2. Let Dk = {Kk,Kk,K1,k−1,K1,k−1} for k ≥ 3. Our main result is as follows.

Theorem 1. Let k ≥ 3. Then f(n,Dk) = (2k − 1− 1
k

)n + O(1).

Since G3 = D3, we have an immediate consequence of Theorem 1.

Corollary 2. f(n,G3) =
14
3

n + O(1).

In Section 2 and Section 3, we outline the proof of Theorem 1.
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2 Proof of Theorem 1—Lower Bound
For a pair of graphs G1 and G2, we denote the union(the join) of G1 and G2 by G1∪G2(G1+G2).
Let k − 2 < n. Let α = b{(k − 1)n + (k − 2)}/kc and β = (k − 1)n − 1. Let us define
G = Kα + (Kβ ∪Kβ). It turns out that N(G,Dk) < n. Hence, we have f(n,Dk) ≥ |V (G)|+ 1 >
(2k − 1− 1

k )n− 2 for k − 2 < n.

3 Proof of Theorem 1—Upper Bound
For a given graph G, we consider the following inequalities.
(I1) N(G, Kk) ≥ n,
(I2) N(G, Kk) ≥ n,
(I3) k ·N(G, Kk) + k ·N(G, Kk) + N(G, K1,k−1) ≥ (2k + 1)n,
(I4) k ·N(G, Kk) + k ·N(G, Kk) + N(G, K1,k−1) ≥ (2k + 1)n.

We say that a graph G is (n, k)-good if G satisfies at least one of the inequalities from (I1) to
(I4).

Let G0 = Kk(k2−1)+(Kk(k2−1)∪K2k2(k−1)). Set n0 = 2k2. Note that |V (G0)| = (2k−1− 1
k )n0.

Lemma 3. Both G0 and G0 satisfy all of the inequalities from (I1) to (I4) with n = n0.

Proposition 4. There exists a positive integer c depending on k such that any graph G with

|V (G)| ≥ (2k − 1− 1
k

) + c is (n, k)-good.

Note that Proposition 4 implies that f(n,Dk) ≤ (2k − 1− 1
k )n + c.

Proof of Proposition 4. Let us take a constant c sufficiently large. We proceed by induction
on n. There are two cases.
Case 1. G contains G0 or G0 as an induced subgraph.
We may assume G contains G0. We decompose V (G) into V1 = V (G0) and V2 = V (G)−V1. Let
G′ = 〈V2〉G. We have |V (G′)| ≥ (2k− 1− 1

k )(n−n0) + c. Hence, by the inductive hypothesis, G′

is (n− n0, k)-good. By Lemma 3, G becomes (n, k)-good.
Case 2. G does not contain either G0 or G0.
In this case, possible structures of G are considerably restricted. Hence, by a relatively short
argument, we can show that G is (n, k)-good.

4 Further Discussions
1. For k ≥ 4, f(n,Gk) is not known well. For k = 4, let G = K2n−1 ∪ (Kn−1 + K3n−1). Then we
have N(G,G4) < n. It follows that f(n,G4) ≥ 6n− 2. We conjecture f(n,G4) = 6n + O(1).
2. There are some related results. Let Ck be the family of graphs G such that G is a disjoint
union of complete graphs with |V (G)| = k. Let g(n, k) be the minimum integer s such that
N(G, Ck) ≥ n for any graph G ∈ Cs. First we consider the case n = 2 [4, 5].

Theorem 5. g(2, k) = 2k+min{r : k ≤ cr}, where c0 = 1, c1 = 4, and cr = cr−1 + cr−2 +2r+1
for r ≥ 2.

For k ≥ 3, g(n, k) is not determined in general. However, if n is large enough with respect to k,
we have the following result [5].
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Theorem 6. Let k, n ≥ 2 with k − 2 ≤ n. Then g(n, k) = (k + 1)n− 1.
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