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An on-line vertex coloring algorithm receives vertices of agraph in some externally determined order. Each new
vertex is presented together with a set of the edges connecting it to the previously presented vertices. As a vertex is
presented, the algorithm assigns it a color which cannot be changed afterwards. The on-line coloring problem was
addressed for many different classes of graphs defined in terms of forbidden structures. We analyze the class ofIs-
free graphs, i.e., graphs in which the maximal size of an independent set is at mosts − 1. An old Szemerédi’s result
implies that for each on-line algorithmA there exists an on-line presentation of anIs-free graphG forcing A to use
at leasts

2
χ(G) colors. We prove that any greedy algorithm uses at mosts

2
χ(G) colors for any on-line presentation

of anyIs-free graphG. Since the class of co-planar graphs is a subclass ofI5-free graphs all greedy algorithms use
at most5

2
χ(G) colors for co-planarG’s. We prove that, even in a smaller class, this is an almost tight bound.

Keywords: on-line algorithm, graph coloring, planar graph

A graphis a pairG = (V, E) of sets such thatE ⊆ [V ]2, i.e., the elements ofE are 2-element subsets
of V . The elements ofV areverticesof the graphG, the elements ofE are itsedges. For {x, y} ∈ E
verticesx, y are said to beadjacent. A setS ⊆ V is acliqueif each two points inS are adjacent. Dually,
S ⊆ V is an independent setif S has no two adjacent points. We consider only finite graphs, i.e.,V is
always finite. Acomplementof a graphG = (V, E) is a graphG = (V, [V ]2 \E), i.e., a graph containing
precisely the edges missing inG. For other graph terminology we refer the reader, e.g., to [3].

A functionc : V → N is acoloringof the graphG = (V, E) if for all n ∈ N, c−1(n) is an independent
set. The valuec(v) is acolor of the vertexv. A functioncc : V → N is aclique coveringof the graph
G = (V, E) if for all n ∈ N, cc−1(n) is a clique. In such a case a numbercc(v) is aclique numberof a
vertexv. Note that a functionc : V → N is a coloring of graphG = (V, E) if and only if it is a clique
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covering ofG. Thechromatic numberof a graphG, i.e., the minimal number of colors needed to color
G, is denoted byχ(G). The minimal number of cliques needed to coverG is denoted byv(G).

An on-line coloring of a graph may be viewed as a two person game. In each step of the game the first
player, calledSpoiler, presents one vertex of a graph together with edges connecting it to the previously
presented vertices. A graphG together with the order of presentation of its vertices is called anon-line
presentationof G (or just anon-line graph) and is denoted byG<. As each vertex is presented, the
second player, calledAlgorithm, assigns a color (a natural number) to it. This color cannot be changed
afterwards. By anon-line algorithmwe mean a strategy for Algorithm. Its goal is to find a graph coloring
with the smallest possible number of colors. The goal of Spoiler is to force Algorithm to use as many
colors as possible. A color assigned by the on-line algorithm A to a vertexv is denoted byA(v). The set
of colors used byA to color vertices fromX ⊆ V is denoted byA(X). The set of vertices colored by
the algorithmA with color n is denoted byA−1(n). Finally, χA(G<) denotes the number of colorsA
uses to colorG<. Analogously, we define an on-line clique covering game and an on-line clique covering
algorithmA. ThenA(v) is a clique number assigned byA to the vertexv. Similarly, we putA(X),
A−1(v) andvA(G<). Note that the algorithm that colors a graph finds a clique covering for presented in
the same order complement of this graph and vice versa, the algorithm that covers a graph finds a coloring
for presented in the same order complement of this graph. Themost familiar on-line coloring (clique
covering) algorithms are so calledgreedyalgorithms, which try to assign – to the current vertex – a color
(a clique number) already in use always when it is possible.

The performance of an on-line algorithm is measured by a function which compares its results to the
optimal (off-line) results. An on-line coloring algorithmA is competitive with a functionf (i) on a class of
graphsΓ if for all but finitely manyG ∈ Γ and for all its on-line presentationsG<, χA(G<) 6 f(χ(G)).
The classΓ is f–competitiveif there exists an on-line, competitive algorithm onΓ with the functionf . A
class of graphsΓ is at leastf–competitiveif for all n there is a strategy for Spoiler building a graph with
at leastn vertices and forcing Algorithm to usef(χ) colors whereχ is the chromatic number of a given
graph. Finally,Γ is exactlyf–competitiveif it is at leastf–competitive andf–competitive. Analogously,
we may discuss the competitiveness of on-line clique covering algorithms.

The on-line graph coloring problem has been widely studied for various classes of graphs. The class
of trees is not competitive (see [4]). This implies that classes containing all trees are not competitive,
e.g., bipartite graphs, perfect graphs, etc. There are manyexamples of competitive classes: split graphs
are exactlyχ-competitive (i.e., there is an on-line algorithm using optimal numberχ(G) colors for all
on-line split graphsG<), complements of bipartite graphs are exactly3

2χ–competitive and complements
of chordal graphs are exactly (2χ − 1)–competitive (all these results are in [4; 2]), interval graphs are
exactly (3χ − 2)–competitive [6].

The power of on-line coloring algorithms depends, to some extend, on the absence of certain induced
subgraphs. A graphG is calledH-free if it does not contain an induced subgraph isomorphic toH . The
following notation is used:Ps - path withs vertices,Is - independent set withs vertices,Ks - clique
with s vertices andKs,t - complete bipartite graph with parts ofs andt vertices. Some classes defined
in terms of forbidden substructures had been already studied. For example, it is known [4] thatP4-free
graphs are exactlyχ-competitive and thatP6-free graphs are not competitive at all. There is a huge gap
between known lower and upper bounds for on-line coloring ofP5-free graphs. Kierstead, Penrice and
Trotter [8] have shown(4χ−1

3 )–competitiveness while the only known lowerbound is
(

χ+1
2

)

[2]. Even

(i) For example, we will simply use notations:χ-competitive or
`

χ

2

´

–competitive iff(x) = x or f(x) =
`

x

2

´

, respectively.
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narrowing this competitiveness gap for the substantially smaller class of2K2-free graphs seems to be
hard. Gyarfas and Lehel [4] reduced here the upper bound to(2χ − 1), while [2] exhibits a quadratic
lowerbound. Since trees are bothKs-free (s > 3) as well asKs,t-free (s, t > 2), none of the classes of
Ks-free graphs orKs,t-free graphs is competitive. Cieślik [1] has shown thatK1,t-free graphs are exactly
((t − 1)χ − t + 2)–competitive. Some general result on on-line coloring ofT -free graphs, whereT is a
tree, is established in [7].

This paper is devoted to determine the exact competitiveness ofIs-free graphs and the competitiveness
of co-planar graphs. To warm-up observe that the class ofIs-free graphs is(s − 1)χ–competitive, by
considering the on-line algorithm coloring each point witha new color. We claim that it uses at most
(s − 1) · χ(G) colors for each presentation of anIs-free graphG = (V, E). Indeed, it uses exactly|V |

colors whileχ(G) >
|V |
s−1 as at mosts − 1 points may have the same off-line color. We improve this

trivial upper bound by showing that this class is exactlys
2χ–competitive. First, the upper bound will be

established for each on-line, greedy algorithm to bes
2χ. We are indebted to revisor for reminding us an old

Szemerédi’s result which easily implies that the competitive function forIs-free graphs is at leasts2χ. We
will shortly discuss it. In the second part we investigate co-planar graphs. A graphG is planar if it can be
drawn in the plane with its edges intersecting at their vertices only, in other words, without edge crossing.
In particular, all trees are planar. As the class of trees is not competitive (see [4]) the class of planar
graphs is also not competitive. The complements of planar graphs are called co-planar graphs. Since
planar graphs areK5-free, co-planar graphs areI5-free. Therefore, from Theorem 1, greedy algorithms
perform no worse than52χ. We show that for any algorithmA there exist a graphG of arbitrarily large
chromatic number for whichχA(G<) ≥ 5

2χ(G) − 11.5. We start with the analysis of the behavior of the
greedy algorithm.

Theorem 1 Each on-line, greedy, coloring algorithm uses at mosts
2χ(G) colors on every presentation of

an Is-free graphG. Thus, the class ofIs-free graphs iss
2χ–competitive.

Proof: Let A be an on-line, greedy, coloring algorithmA andG< be an on-line presentation of anIs-
free graphG = (V, E). Consider an optimal coloring ofG and letC1, . . . , Cχ(G) be a partition ofV
into monocolored, independent sets. Analogously, letA1, . . . , AχA(G<) be a partition determined by
a coloring ofG< produced byA. We say that an independent setAi (1 6 i 6 χA(G<)) is constrainedif
there are at least two independent sets amongC1, . . . , Cχ(G) containing at least one vertex fromAi, i.e.,
Ai ∩ Ck 6= Ø 6= Ai ∩ Cl for somek 6= l. Inspecting the result ofA on G<, i.e. A1, . . . , AχA(G<), we
define

• c = number of constrainedAi’s,

• u = number of unconstrainedAi’s,

• kc = number of vertices in the join of all constrainedAi’s,

• ku = number of vertices in the join of all unconstrainedAi’s.

Obviously,u 6 ku andc + u = χA(G<). Since each constrainedAi has at least two points, we have
c 6

kc

2 . The fact thatG is Is-free yields thatG has at most(s − 1) · χ(G) vertices and therefore,
kc + ku 6 (s − 1) · χ(G). Finally, sinceA is greedy eachCj contains at most one unconstrainedAi.
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Thus,u 6 χ(G). After these remarks we are ready to bound the number of colors used byA as follows

χA(G<) = c + u 6
kc

2
+ u 6

(s − 1) · χ(G) − ku

2
+ u

6
(s − 1) · χ(G)

2
+

u

2
6

s · χ(G)

2
.

2

Before a general case, a lowerbound for on-line, greedy algorithms is provided.

Proposition 2 For eachs > 2 there exists an on-line,Is-free graphG< forcing all greedy on-line color-
ing algorithms to uses2χ(G) colors.

Proof: Consider an on-line bipartite graphG< = (V ∪ U, E, <), whereV = {v1, . . . , vs−1}, U =
{u1, . . . , us−1} andv1 < u1 < v2 < u2 < . . . < vs−1 < us−1. Each pointvi is adjacent to all vertices
in U \ {ui}. Similarly, each pointui is adjacent to all vertices inV \ {vi}. Moreover,vs−1 is adjacent to
us−1. Obviously,G is Is-free andχ(G) = 2. It is also easy to check that each on-line, greedy algorithm
A is forced to uses colors onG<, asA(vi) = i = A(ui) exceptA(us−1) = s. 2

The fact thatIs-free graphs are at leasts
2–competitive follows from Szemerédi’s theorem concerned

on an on-line antichain partitioning of partially ordered sets. Apartially ordered set(an order) is a pair
P = (X, R) whereX is a set, andR is a reflexive, antisymmetric, and transitive binary relation onX . A
setC ⊆ X is achainin P if xRy for all x, y ∈ X . Dually, a setA ⊆ X is anantichainin P if ¬xRy for
all distinctx, y ∈ X . Thewidth of P is the maximal size of an antichain inP and theheightof P is the
maximal size of a chain inP . We say that a graphG = (V, E) is acomparability graphof P = (X, R)
if {x, y} ∈ E iff xRy or yRx for all x, y ∈ V . We may consider on-line orders and therefore on-line
algorithms for (anti)chain partitioning of orders. For theterminology of orders as well as for an overview
of an on-line partitioning problems we refer the reader to [10].

Theorem 3 (Szemeŕedi [9] ) For everyk > 1 there is a strategySk for presenting points of on-line
order of heightk and widthk such that every on-line antichain partitioning algorithm uses at least

(

k+1
2

)

antichains.

Note that Theorem 3 may be easily extended to:

For eachk, x > 1 there is a strategySk,x for presenting points of on-line order of heightk ·x and width
k such that every on-line antichain partitioning algorithm uses at least

(

k+1
2

)

·x antichains.

Indeed, it suffices to repeat a strategySk x times in such a way that all vertices ofi-th presented order
are below all vertices ofj-th one for all1 6 i < j 6 x.

Observe also that each on-line coloring algorithmA induces an on-line antichain partitioning algorithm
A′ by coloring the comparability graph of the order presented as an input. IfP< is an on-line order and
G< is an on-line presentation of his comparability graph (an order of appearance of the the graphG< is
naturally inherited fromP<) then the number of antichains used byA′ on P< is exactly the number of
colors used byA onG<. On the other hand, height of the orderP is the size of the maximum clique in the
comparability graphG. Therefore, since comparability graphs are perfect, height of P is equal toχ(G).
Moreover, width ofP is exactly equal to the number of the maximal independent setin G. Having these
observations we immediately get.
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Proposition 4 For eachs > 2 and for each chromatic numberχ > 1 there is a strategy for Spoiler
presenting on-line graph such that for each on-line coloring algorithmA it produces an on-lineIs-free
graphG< with χ(G) > χ forcingA to use at leasts2χ(G) colors.

Proposition 4 implies that the class ofIs-free graphs is at leasts2χ–competitive.

Now, we are going to investigate the competitiveness of on-line coloring for co-planar graphs. To show
that no on-line algorithm can color a co-planar graphG of arbitrarily large chromatic number (and thus
of arbitrary large size) using less then52χ(G) − 11.5 we produce a strategy for presenting appropriate
on-line graphs. As we have already mentioned a graph isplanar if it can be drawn in the plane without
edge crossing. Such a drawing of a planar graph is called a plane drawing or aplane graph. A plane graph
divides the plane into several regions called faces. In other words, afacein a plane graph is a subset of the
plane bounded by a cycle without diagonal paths. For an overview of planar graphs we refer the reader
to [3]. Description of co-planar graphs as complements of planar graphs may be cumbersome, so we are
working with the on-line clique covering problem for planargraphs instead.

We present a strategy for Spoiler which, for any given on-line clique covering AlgorithmA, produces a
connected, planar, on-line graphG< of arbitrarily big clique covering number (and thus of arbitrary large
size) and such thatvA(G<) ≥ 5

2 (v(G) − 5) + 1. The construction ofG< is presented instages. By
an abuse of notation we denote byG<, or simplyG, a graph that is being presented by the Spoiler. For
simplicity we denote

∣

∣A−1(A(v))
∣

∣ by ωA(v), note that at any step of constructionωA(v) ≤ 2 for every
vertexv. At the end of each stage the set of vertices ofG< is a disjoin union of

⋃

V , two sets of vertices
L1, L2 (calledloose ends) and a one element set{r} (r is called aroot of G) such that:

• ωA(r) = 1 and

• for anyW ∈ V the setW is a clique inG< and
∑

v∈W
1

ωA(v) ≥ 5
2 ,

• one of the following is true for each loose end:

– the loose end is empty, or

– the loose end consists of one elementv, andωA(v) = 2, or

– the loose end consist of two verticesu, v such that there is no edge inG< betweenu andv,
bothu andv are adjacent to the same face of the graphG<, ωA(u) = 2 andωA(v) = 2.

Note that the sets{r}, L1, L2,V change (the use of this slightly imprecise notation allows us to simplify
the presentation without leading to confusion).

A configurationof a graphG< is a triple consisting of a root and two loose ends and denotedby
[r, L1, L2]. The following notation simplifies the construction:〈vertices: edges〉 is a pair consisting of a
set of vertices and a set of edges to be presented by Spoiler (in any order).

Each member ofV is a clique thus, at the end of each stage,v(G) ≤ |V| + 5 (if a graph presented so
far isG<). At the same time

|A(V )| =
∑

v

1

ωA(v)
≥

∑

W∈V

∑

v∈W

1

ωA(v)
+

1

ωA(r)
≥

5

2
|V| + 1,

so certainlyvA(G<) ≥ 5
2 (v(G)− 5) + 1. Intuitively, the setV contains cliques such that the algorithmA

uses approximately52 “on-line cliques” to cover it.
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b3

b1 b2

b4

b3

b1 b2

b4

b5

Fig. 1: Play schema

The following “pattern” appears very often in the strategy:Suppose that a graph contains two vertices
b1, b2 connected by an edge, and thatA(b1) 6= A(b2). Moreover, there exist unique verticesd1, d2 such
that A(b1) = A(d1), A(b2) = A(d2) and b1 6= d1, b2 6= d2. Under such conditions the following
strategy (compare Figure 1) produces a loose end instead of these two vertices. Present two vertices
b3, b4 and edges{b1, b3}, {b1, b4}, {b2, b3}, {b2, b4}. There are two possibilities: eitherA(b3) = A(b4)
or A(b3) 6= A(b4). In either caseA(b3) andA(b4) are numbers not used previously. IfA(b3) 6= A(b4) set
V := V ∪ {{b1, b3, b4}} (or V := V ∪ {{b2, b3, b4}}) and the single element set{b2} (or {b1}) is a new
loose end. If, on the other hand,A(b3) = A(b4) presentb5 and edges{b5, b1}, {b5, b2}, {b5, b3}. The
numberA(b5) is a new number; setV := V ∪ {{b1, b2, b3, b5}} and{b4} is a new loose end.

An algorithmic description of one stage of the strategy for Spoiler follows. We assume that a graph
presented so far is denoted byG = (V, E) the configuration of the graph is[r, L1, L2] and the set of
“dealt with” cliques isV .

1: If L1 ∪ L2 = ∅ then present〈a : {a, r}〉

1.1: if A(a) = A(r) then present〈b : {b, a}〉. Note thatA(b) /∈ A(V ), the new configuration is
[b, {r}, {a}] and this stage isDONE

1.2: elsepresent〈b : {b, r}, {b, a}〉

1.2.1: if A(b) = A(a) (or duallyA(b) = A(r)) then the new configuration is[r, {a}, {b}] (or
dually [a, {r}, {b}]) DONE

v

a1

a2

A) First move B) Second move C) Third move

v

a1

a2

a4

a3
v

a1

a2

a4

a3

a5

Fig. 2: Loose end type one
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1.2.2: elseA(a) 6= A(b) 6= A(r), setV := V ∪ {{a, b, r}} and present〈c : {c, r}〉. If A(c) 6=
A(r) the new configuration is[c, ∅, ∅], if A(c) = A(r) we present〈d : {d, c}〉 with
A(d) 6= A(c) and the new configuration is[d, {c}, ∅] DONE

2: if |L1| = 1 or |L2| = 1 then without loss of generality we may assume thatL1 = {v} for
some vertexv. In this case present〈a1, a2 : {v, a1}, {v, a2}, {a1, a2}〉 (compare Figure 2). If
A(a1) 6= A(a2) thenV := V ∪{{v, a1, a2}} and the new configuration is[r, ∅, L2]. If, on the other
hand,A(a1) = A(a2) present two more vertices〈a3, a4 : {v, a3}, {a1, a3}, {a3, a4}, {a1, a4}〉.

2.1: if A(a3) 6= A(a4) then setV := V ∪ {{a1, a3, a4}} and follow the schema presented in
the pattern above with verticesv, a2 in place of b1, b2. Depending on the choice of the
algorithm putV := V ∪ {{v, b3, b4}} and the new configuration[r, {a2}, L2] or V :=
V ∪ {{v, a2, b3, b5}} and the new configuration[r, {b4}, L2] DONE

2.2: elsepresent〈a5 : {a5, v}, {a5, a1}, {a5, a3}〉. ThenA(a5) /∈ A(V ∪ {a1, a2, a3, a4}). Set
V := V ∪ {{v, a1, a3, a5}} and the new configuration to be[r, {a2, a4}, L2] DONE

C) Third move

u

v

c1

c2

c3

c4 c5

c6

B) Second move

u

v

c1

c2

c3

c4

u

v

c1

c2

A) First move

Fig. 3: Loose end type two

3: if |L1| = 2 or |L2| = 2 then without loss of generality we may assume thatL1 = {u, v} for some
verticesu, v. In this case present〈c1, c2 : {v, c1}, {u, c1}, {u, c2}〉 (compare Figure 3).

3.1: if A(c1) 6= A(c2) then setV := V ∪{{u, c1, c2}} and the new configuration to be[r, {v}, L2]
DONE

3.2: elsepresent〈c3, c4 : {c1, c4}, {v, c4}, {c3, c4}, {v, c3}, {c2, c3}, {u, c3}〉.
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3.2.1: if A(c3) 6= A(c4) then setV := V ∪ {{v, c3, c4}} and follow the pattern presented in the
example with verticesu, c2 taken to beb1, b2 (introduce new vertices in a face adjacent
to c1).

3.2.1.1: ifA(b3) = A(b4) then putV := V ∪ {{u, c2, b3, b5}} and the new configuration to
be[r, {c1, b4}, L2] DONE

3.2.1.2: elseputV := V ∪ {{c2, b3, b4}} and once more follow the pattern presented in the
example. Take verticesu, c1 to beb1, b2. Depending on the choice of the algorithm
put V := V ∪ {{u, b3, b4}} and the new configuration[r, {c1}, L2] or V := V ∪
{{u, c1, b3, b5}} and the new configuration[r, {b4}, L2] DONE

3.2.2: elsepresent〈c5, c6 : {c5, u}, {c5, c2}, {c5, c3}, {c6, v}, {c6, c1}, {c6, c4}〉. Certainly
A(c5), A(c6) /∈ A(V ∪ {c1, c2, c3, c4}). PutV := V ∪ {{v, c1, c4, c6}, {u, c2, c3, c5}},
new configuration is[r, ∅, L2] DONE

The strategy starts with presenting a single vertexr, the starting configuration is[r, ∅, ∅] andV = ∅.
This strategy is a way of constructing, for any given clique covering algorithmA, on-line presentation

of planar graphs of arbitrarily large clique covering number such thatA uses approximately52 -times too
many cliques to cover such a graph. It shows that for co-planar graphs of sufficiently large chromatic
number no coloring algorithm can perform essentially better than a greedy algorithm. More precisely

Theorem 5 For each on-line coloring algorithmA and each chromatic numberχ there exists an on-line
presentationG< of a co-planar graphG such thatχ(G) ≥ χ andχA(G<) ≥ 5

2χ(G) − 11.5.

The construction immediately implies that a class of co-planar graphs is at least(5
2χ−11.5)–competitive.
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