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Solving equations over small unary algebras
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We consider the problem of solving a system of polynomial equations over fixed algebra A which we call MPOLSAT(A).
We restrict ourselves to unary algebras and give a partial characterization of complexity of MPOLSAT(A). We isolate
a preorder P(A) to show that when A has at most 3 elements then MPOLSAT(A) is in P when width of P(A) is
at most 2 and is NP-complete otherwise. We show also that if P 6= NP then the class of unary algebras solvable in
polynomial time is not closed under homomorphic images.
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1 Introduction
We consider the problem of solving a system of polynomial equations over fixed algebra A which we
call MPOLSAT(A). The complexity of this problem has been studied and solved for several classes of
algebras but it is still open in general. A study of this problem can be found in [5]. However they consider
algebras with sufficiently many non-unary operations. Namely the existence of the so called Taylor term
is needed to apply the results of [5]. Their characterization of algebras A with polynomial time algorithms
for MPOLSAT(A) may be applied only if the variety HSP(A) generated by A omits type 1 in the sense
of Tame Congruence Theory of Hobby and McKenzie [4]. This paper starts to fill this gap and eventually
incorporate type 1. To do this one needs to understand first the algebras where all operations are unary.

On the other hand the case |A| = 3 is covered by the transformation of MPOLSAT to Constraint
Satisfaction Problem (CSP) described in [5] and then by applying a deep result of Bulatov [1]. Since this
approach theoretically works in the general setting it produces a characterization that is messy and hard to
follow. Therefore we decided to use our own approach for unary algebras. The class of unary algebras has
been studied in slightly different context in [3] and is also interesting for us because of the phenomena that
solving one equation over unary algebras is very simple, but the complexity of checking whether systems
of equations are solvable (decision version of solving equations) could happen to be NP-complete.

We fully characterize the complexity of MPOLSAT(A) when A has at most 3 elements. We isolate
a preorder P(A) associated with an algebra and our condition for complexity considers only width of
P(A) thus our approach is more compact. This approach, omitting Bulatov’s [1] characterization, seems
to be more transparent for unary algebras. In particular we believe that our approach via width can be
extended for solving equations over unary algebras of arbitrary size.

We also construct a special class of unary algebras to show that if P 6= NP then the class of unary
algebras solvable in polynomial time is not closed under homomorphic images.

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAFind.html


50 Przemyslaw Broniek

2 Basic definitions
An algebra A is an ordered pair (A,F ) where A is a non-empty set called carrier and F is a family of
finitary operations f : An 7→ A. For more detailed description of algebraic terminology the reader is
referred to [2]. We call an algebra A unary if all of its operations in F are unary.

Example 2.1 A = ({0, 1, 2}, f, g, h) with the following operations is unary.

x f(x) g(x) h(x)
0 1 0 0
1 0 1 0
2 0 0 1

The term over A is any proper expression build with operations from F over some set of variables.
The polynomial over A is a term in which some variables are replaced by constants from A. For a unary
algebra A by F ∗ we denote the term-monoid of A, i.e., all (unary) terms of A with composition.

Example 2.2 For the algebra from the Example 2.1 the term-monoid contains 9 elements:

x id f(x) g(x) h(x) 0 1 i(x) j(x) k(x)
0 0 1 0 0 0 1 0 1 1
1 1 0 1 0 0 1 1 0 1
2 2 0 0 1 0 1 1 1 0

By Ker(f) = {(x, y) ∈ A2 : f(x) = f(y)} we denote the kernel of f .

Definition 2.3 For a unary algebra A = (A,F ) we define a preorder 6 on F ∗ by putting f 6 g if and
only if Ker(f) ⊆ Ker(g). We also put P(A) = (F ∗,6).

Example 2.4 In the algebra A = ({0, 1, 2}, f, g, h), with the operations:

x f(x) g(x) h(x)
0 0 0 0
1 0 1 0
2 0 0 1

we have: g 6 f, h 6 f and g, h are incomparable.

By the width of an ordered set (or more general preordered set) P we mean the largest number of
pairwise incomparable elements of P.

In the following problems we assume that the algebra A is never part of the input.

Definition 2.5 Problem POLSAT(A):
Input: Two polynomials t and s over the algebra A
Question: Does the equation t = s have a solution?

Definition 2.6 Problem MPOLSAT(A):
Input: A finite set of equations S = {ti = si|i = 1, . . . , n}, where ti, si are polynomials over the algebra
A.
Question: Does the system S of equations have a solution?
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Note that replacing any composition of basic operations by a single operation symbol from F ∗ reduces
the size of input. Thus the problems MPOLSAT(A,F ) and MPOLSAT(A,F ∗) are polynomially equiva-
lent. We also consider the following auxiliary problem which allows us to formulate our algorithms in a
more transparent way:

Definition 2.7 Problem CMPOLSAT(A):
Input: A set of variables V , a finite set of equations S = {ti = si|i = 1, . . . , n}, where ti, si are
polynomials over the algebra A, and a constraint function C : V 7→ 2A

Question: Does S have a solution J : V 7→ A such that J(v) ∈ C(v) for each v ∈ V ?

Of course, if for any variable v the set C(v) is empty then there is no solution. On the other hand for
any v if C(v) = A then there is in fact no constraint at all on v. CMPOLSAT(A) is a generalization
of MPOLSAT(A). An instance I = (V, S,C) of the problem of CMPOLSAT(A) with C(v) ≡ A is
equivalent to the instance I ′ = S of MPOLSAT(A). It is worth noting that there exists an algebra A′ for
which the problem CMPOLSAT(A′) is NP-complete while MPOLSAT(A′) is in P, which we show in
Proposition 5.2.

We say that two instances I1, I2 of CMPOLSAT(A) are equivalent if I1 has a solution if and only if I2

does. The size(I) of an instance I = (V, S,C) of CMPOLSAT(A) is a pair (number of variables in V ,
number of equations in S).

3 Unary algebras
It is known, see e.g. [5], that there are finite algebras A for which MPOLSAT(A) is NP-complete. Our
first lemma shows that it remains NP-complete even for some unary algebras (even with 3 elements).

Lemma 3.1 There are finite unary algebras for which MPOLSAT(A) is NP-complete.

Proof: A similar argument can be found in [3]. It is easy to check that MPOLSAT(A) belongs to NP,
because we can simply check whether given assignment to variables satisfies all the equations.

Let A = ({0, 1, 2}, f, g, h) be an algebra with the following operations:

x f(x) g(x) h(x)
0 1 0 0
1 0 1 0
2 0 0 1

Next we need the following NP-complete version of SAT problem:
POSITIVE 1-IN-3-SAT is a problem taking on its input a formula F = C1 ∧ · · · ∧ Cn, in which each

clause Ci is of the form (x∨ y∨ z), where x, y, z are (non-negated) variables, and answering the question
if there is a boolean valuation such that in each clause exactly one variable takes value 1. For example for
a formula (x ∨ y ∨ z) ∧ (x ∨ t ∨ v) ∧ (v ∨ t ∨ z) the positive answer can be witnessed by (0 ∨ 1 ∨ 0) ∧
(0 ∨ 0 ∨ 1) ∧ (1 ∨ 0 ∨ 0).

Next we reduce POSITIVE 1-IN-3-SAT to systems of equations of our algebra. A formula F = C1 ∧
· · · ∧ Cn is transformed into 3n equations as follows:

Ci = x ∨ y ∨ z  

 f(vi) = x
g(vi) = y
h(vi) = z

,
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where v1, . . . , vn are new variables not occurring in F .
It is easy to check that a solution of the equations exists if and only if the formula F is satisfiable

according to POSITIVE 1-IN-3-SAT rules. If vi takes the value 0 (1 or 2) then only x (y or z respectively)
takes boolean value 1 to make Ci true. 2

From the next proposition we know how CMPOLSAT(A) is connected with our main problem MPOLSAT(A):

Proposition 3.2 For each algebra A = (A,F ) there exists algebra A′ such that CMPOLSAT(A) is
polynomially reducible to MPOLSAT(A′).

Proof: If |A| = 1 the thesis is trivial because all the constraints are trivial. Otherwise we construct A′ by
adding one operation fX for each X ⊂ A. Let 0, 1 will be two different elements of A. We put:

fX(v) =
{

1, v ∈ X
0, otherwise

Because A is not a part of the input we need not to worry about exponentially (from |A|) many oper-
ations added. Now, given an instance (V, S,C) of CMPOLSAT(A) we reduce it to MPOLSAT(A′) by
adding to equations in the set S one additional equation of the form fC(v)(v) = 1 for each variable v ∈ V .
The solution of the new set of equations will satisfy constraints C. 2

In contrast to Lemma 3.1 solving one equation over unary algebra is always easy:

Proposition 3.3 If A is unary then POLSAT(A) is in P.

Proof: There are at most two variables involved into each equation, since equations over unary algebra
are of the form:

f1(. . . fn(x)) = g1(. . . gm(y)),

where fi, gi are basic operations of A and x, y are variables. We can simply check all the possibilities in
O(n|A|2) time. 2

4 Small algebras with MPOLSAT in P
First we introduce an algorithm that simplifies instances of MPOLSAT by changing them to instances of
CMPOLSAT. Next we state our characterization theorem for at most three element algebras.

4.1 Simplification algorithm
We construct a simplification algorithm SA which takes an instance I as its input and produces instance
SA(I) with the properties:

1. SA(I) is equivalent to I ,

2. size(SA(I)) 6 size(I), where 6 is the lexicographic order on N×N,

3. The only equations in SA(I) are of the form p(x) = r(y), where p, r are polynomials over A and
x, y are different variables. Both p and r are not permutations and |p(C(x)) ∩ r(C(y))| > 1,
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4. |C(x)| > 1 for each variable occurring in SA(I).

The algorithm SA removes some equations, according to inference rules presented below, as long as
possible. We will see that SA works in a polynomial time. Since SA(I) is equivalent to I we get the
answer for I by considering SA(I), which will be done in Section 4.2. Actually one can transform any
solution of SA(I) to a solution of I .

Let I = (V, S,C) be an instance of CMPOLSAT with V - set of variables, S - set of equations, C -
constraint function. By ⊥ we denote that a given instance has no solution. For a set of equations S, a
variable x and a term t by S[x/t] we denote set of equations S in which every occurrence of a variable x
has been replaced by t.

Simplification Algorithm SA(I):
FAIL:
(V, S,C) → ⊥ if v is a variable and C(v) = ∅
CST1:
(V, S ∪ {c1 = c2}, C) → (V, S,C) if c1 and c2 are the same constants
CST2:
(V, S ∪ {c1 = c2}, C) → ⊥ if c1 and c2 are different constants
VAR1:
(V, S ∪ {x = c}, C) → ⊥ if c is a constant, x is a variable and c /∈ C(x)
VAR2:
(V, S ∪ {x = c}, C) → (V \ {x}, S[x/c], C) if c is a constant, x is a variable and c ∈ C(x)
VARS1:
(V, S ∪ {x = y}, C) → (V, S,C) if x and y are the same variables
VARS2:
(V, S ∪ {x = y}, C) → (V \ {x}, S[x/y], C ′) if x and y are different variables;

C ′ := C except C ′(y) := C(x) ∩ C(y)

VARPOL1:
(V, S ∪ {p(x) = c}, C) → (V, S,C ′) if x is a variable;

C ′ := C except C ′(x) := C(x) ∩ p−1(c)
VARPOL2:
(V, S ∪ {p(x) = x}, C) → (V, S,C ′) if x is a variable;

C ′ := C except C ′(x) := C(x) ∩ {a ∈ A : p(a) = a}
VARPOL3:
(V, S ∪ {p(y) = x}, C) → if x, y are different variables;
→ (V \ {x}, S[x/p(y)], C ′) C ′ := C except C ′(y) := C(y) ∩ p−1(C(x))
POL1:
(V, S ∪ {p(x) = r(x)}, C) → (V, S,C ′) if x is a variable;

C ′ := C except C ′(x) := C(x) ∩ {a ∈ A : p(a) = r(a)}

Applying all of the above rules as many times as possible all equations are of the form p(x) = r(y)
where p, r are polynomials over A and x, y are different variables. But we can still remove equations by
the following rules:
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POL2:
(V, S ∪ {p(x) = r(y)}, C) → ⊥ if x, y are different variables and

p(C(x)) ∩ r(C(y)) = ∅
POL3:
(V, S ∪ {p(x) = r(y)}, C) → (V, S ∪ {p(x) = c, r(y) = c}, C) if x, y are different variables and

p(C(x)) ∩ r(C(y)) = {c}

The equations p(x) = c and r(y) = c will be removed by the rule VARPOL1, so that the instance
eventually will be decreased.

POL4:
(V, S ∪ {p(x) = r(y)}, C) → if x, y are different variables and p is a permutation of the algebra;
→ (V \ {x}, S[x/h(y)], C ′) h := pk−1r (?), C ′ := C except C ′(y) := C(y) ∩ h−1(C(x))

(?) It is easy to see that there exists k such that pk(x) = x thus pk(x) = pk−1(r(y)) which is equivalent
to x = pk−1(r(y)), thus we act like in the VARPOL3 rule.

The simplification algorithm works in O(n2) time, where n is size of the input. Each of the rules
transforms instance to a smaller one, so that the number of inference steps is at most linear. Each step can
be done in linear time.

4.2 Characterization theorem
Lemma 4.1 For a unary algebra A = (A,F ) with every f ∈ F being a constant or a permutation
MPOLSAT(A) ∈ P.

Proof: We apply our simplification algorithm SA. Because all the operations in F and thus in F ∗ are
constants or permutations SA finishes with empty set of equations (then the solution exists) or breaks
with result ⊥ meaning that there is no solution. 2

For our main proof we need two following lemmas:

Lemma 4.2 For a unary algebra A with 3 elements the problem MPOLSAT(A) is NP-complete if width(P(A)) =
3.

Proof:
To witness width 3 in the preorder P(A) the algebra A must have 3 polynomials f0, f1, f2 with pair-

wise incomparable kernels. Without loss of generality we may assume that f0, f1, f2 act as follows
(ai 6= bi):

x f0(x)
0 b0

1 a0

2 a0

x f1(x)
0 a1

1 b1

2 a1

x f2(x)
0 a2

1 a2

2 b2

We are going to show that there are f, g, h ∈ F ∗ and ⊥ 6= > in A such that:
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P1 P2
x f(x) g(x) h(x)
0 > ⊥ ⊥
1 ⊥ > ⊥
2 ⊥ ⊥ >

x f(x) g(x) h(x)
0 ⊥ ⊥ ⊥
1 > > ⊥
2 > ⊥ >

• Case 1: There exists i ∈ {0, 1, 2} such that i 6= bi.

Without loss of generality we can assume that i = 0 and b0 = 1. Then for f3 := f1f0 ∈ F ∗ we
have:

x f0(x) f1(x) f2(x) f3(x)
0 1 a1 a2 b1

1 a0 b1 a2 a1

2 a0 a1 b2 a1

– Subcase 1.1: {a1, b1} 6= {0, 1}. Then f2, f2f1, f2f3 satisfy:

x f2(x) f2(f1((x)) f2(f3((x))
0 a2 a2 b2

1 a2 b2 a2

2 b2 a2 a2

or

x f2(x) f2(f1((x)) f2(f3((x))
0 a2 b2 a2

1 a2 a2 b2

2 b2 b2 b2

i.e., P1 or P2 (with 0 and 2 interchanged).

– Subcase 1.2: {a1, b1} = {0, 1}. Since we are not going to use f0 any more without loss
of generality we can assume that a1 = 0, b1 = 1. Observe that if {a2, b2} = {0, 1} then
f1, f2, f3 satisfy either P1 or P2. Let {a2, b2} 6= {0, 1} and put:

f4 =
{

f1f2 if b2 = 2 and a2 = 1
f3f2 if b2 = 2 and a2 = 0 f5 =

{
f1f2 if a2 = 2 and b2 = 1
f3f2 if a2 = 2 and b2 = 0

to get:

x f1(x) f3(x) f2(x) f4(x) f5(x)
0 0 1 a2 1 0
1 1 0 a2 1 0
2 0 0 b2 0 1

So that f1, f3, f4 satisfy P2 or f1, f3, f5 satisfy P1.

• Case 2: For each i ∈ {0, 1, 2} we have i = bi.

Without loss of generality we can assume that a0 = 1, so that:
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x f0(x) f1(x) f2(x)
0 0 a1 a2

1 1 1 a2

2 1 a1 2

If a2 = 0 then replacing f2 by f0f2 we fall into case 1. If a2 = 1 and a1 = 2 then the polynomials
f1, f2, f1f0 put us into P2 situation. Finally, if a2 = 1 and a1 = 0 the polynomials f0, f1, f1f2

again put us into P2 situation.

Now we know that A has 3 polynomials f, g, h satisfying either P1 or P2.
Being in situation P1 we use the reduction of POSITIVE 1-IN-3-SAT presented in Lemma 3.1 to con-

clude that MPOLSAT(A) ∈ NP-complete. The reduction of POSITIVE 1-IN-3-SAT in situation P2 is
only a bit harder. A formula F = C1 ∧ · · · ∧ Cn is transformed into equations as follows. For each
variable x occurring in F we need two variables vx and x′ and 3 equations:

x 

 f(vx) = >
g(vx) = x
h(vx) = x′

Next, for each clause Ci we need a variable vi and then Ci is transformed into 3 equations as follows:

Ci = x ∨ y ∨ z  

 f(vi) = x′

g(vi) = y
h(vi) = z

The equations for variable x force x′ to simulate the negation of x. Indeed, because of the equation
f(vx) = > the variable vx cannot be valuated to 0. If vx = 1 then x = > and x′ = ⊥, while for vx = 2
we have x = ⊥ and x′ = >. The equations for the clause Ci work as in the proof of Lemma 3.1. Indeed,
if vi = 0 then x′, y, z take value ⊥ and thus x take value >. If vi takes value 1 or 2 again exactly one of
the variables x, y, z takes value >. 2

Lemma 4.3 For a unary algebra A with 3 elements the problem MPOLSAT(A) is in P (in fact it is
O(n2)) if width(P(A)) 6 2.

Proof:
Given a system S of equations we put C(x) = A for all variables x and apply our simplification

algorithm SA described in Subsection 4.1. As a result we get an equivalent instance SA(I) satisfying:

1. All equations are of the form f(x) = g(y), where x 6= y, f(A) = g(A) and |f(A)| = 2.

2. |C(x)| > 1 for each x.

Now we present the algorithm solving such simplified instance. We do a reduction into 2-SAT which
is known to be polynomial (in fact O(n2)). For each pair (v, f) ∈ V × F ∗ we need a SAT variable Xv,f .
Since |f(A)| = 2, there is exactly one cf ∈ A with |f−1(f(cf ))| = 1 and then our intended interpretation
can be described by:
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Xv,f is valuated by T ⇔ v is valuated by cf

v f(v) Xv,f

0 a F
1 a F
2 b T

(?)

The equation f(v) = g(u) is transformed into two 2-SAT clauses:

Xv,f ⇔ Xu,g , if f(cf ) = g(cg),
or

Xv,f ⇔ ¬Xu,g , otherwise.
(??)

For polynomials f, g ∈ F ∗ and a variable v with C(v) = A we add a clause which code the interaction
between SAT variables Xv,f and Xv,g:

Xv,f ⇒ Xv,g , if cf = cg ,
or

Xv,f ⇒ ¬Xv,g , if cf 6= cg .
(? ? ?)

If there is a constraint on a variable v with C(v) 6= A then from (2) we know that |C(v)| = 2. For each
such variable v and f, g ∈ F ∗ we add clauses:

• ¬Xv,f , whenever cf 6∈ C(v),
• Xv,f ⇔ Xv,g , if cf = cg and {cf , cg} ∈ C(v),
• Xv,f ⇔ ¬Xv,g , if cf 6= cg and {cf , cg} ∈ C(v).

(? ? ?′)

It is easy to check that any solution of the system of equations SA(I) can be transformed into an
assignment for the variables Xv,f satisfying all the clauses defined above. This can be simply done by
(?).

Conversely, for a boolean valuation satisfying all clauses (defined above) we define a valuation of v in
A as follows:

• Case 1: Xv,f = T for some f ∈ F ∗. We evaluate v by cf . The clauses of the form (???) or (???′)
guarantee that it does not conflict with Xv,g for g 6= f .

• Case 2: Xv,f = F for all f ∈ F ∗. Since width(P(A)) 6 2, we get a ∈ A with a 6= cf for all
f ∈ F ∗. We evaluate v by a. If there is a constraint on v then from (? ? ?′) we know that evaluating
y by one out of two elements of C(v) will satisfy all Xv,f .

Now our condition (??) ensures us that this valuation is a solution for the instance SA(I). 2

Now we are ready to state the main theorem:

Theorem 4.4 For a unary algebra A with at most 3 elements, we have MPOLSAT(A) is in P (in fact it
is O(n2)) if width(P(A)) 6 2 holds, otherwise it is NP-complete.

Proof: Note that width(P(A)) = 1 for any two element algebra. On the other hand on the 2-element set
all four unary operations are constants or permutations. Lemma 4.1 gives us that MPOLSAT(A) ∈P. For
|A| = 3 we directly apply Lemma 4.2 and 4.3. 2
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5 Other properties
We start with the following generalization of Lemma 4.1:

Theorem 5.1 Let A = (A,F ) be a unary algebra in which there is x0 ∈ A such that for all f ∈ F :

1. f(x0) = x0

2. |f−1(x)| 6 1 for all x 6= x0.

Then MPOLSAT(A) ∈P.

Proof: Given an instance of MPOLSAT(A) we apply our simplification algorithm to get I = (V, S,C).
Following the algorithm SA one can check that the condition x0 ∈ C(v) is kept invariant for all variables
in S. For example, if SA sets C(v) := C(v)∩h−1(c) and c 6= x0 then C(v) has at most one element and
this variable is reduced by SA. If c = x0 then obviously x0 ∈ h−1(x0).

Now we evaluate all variables in S by x0 and note that by (1) all equations in S are satisfied. 2

One consequence of Theorem 5.1 blocks a natural generalization of our characterizing Theorem 4.4:

Proposition 5.2 For each n there exists An such that width(P(An)) = n and MPOLSAT(An) is poly-
nomial.

Proof: Put An = ({0, . . . , n}, f1, . . . , fn), where:

x f1(x) f2(x) . . . fn(x)
0 0 0 . . . 0
1 1 0 . . . 0
2 0 1 . . . 0
...

...
...

. . .
...

n 0 0 . . . 1

The algebra An satisfies (1) and (2) of Theorem 5.1 and therefore MPOLSAT(An) ∈P. On the other hand
one easily check that width(P(An)) = n. 2

Note however, that if we allow constraints, e.g of the form C(x) = {1, 2, 3} then the problem will be
NP-complete.

Theorem 5.3 If P 6= NP then the class {A : MPOLSAT(A) ∈ P} of unary algebras is not closed under
homomorphic images.

Proof: Note that the 7 element algebra H given by:

x f(x) g(x) h(x) p(x)
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 1 0 0 1
5 0 1 0 2
6 0 0 1 3
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satisfies (1) and (2) of Theorem 5.1, so that MPOLSAT(H) ∈P.
On the other hand congruence Θ with the only nontrivial block being {1, 2, 3} gives rise to the quotient

algebra H′ = H/Θ:

x f(x) g(x) h(x) p(x)
0 0 0 0 0
1 0 0 0 0
4 1 0 0 1
5 0 1 0 1
6 0 0 1 1

Following the argument in the proof of Lemma 3.1 with additional twist given by equations of the form
p(v) = 1 for each variable v, we conclude that MPOLSAT(H′) ∈NP-complete. 2

Theorem 5.3 shows that MPOLSAT cannot be reduced to smaller structures as it can happen that after
such reduction it appears to be harder. This situation stays in a great contrast to CSP, where actually such
reduction is often done, see [1].

6 Conclusion
From Proposition 5.2 we know that there is no uniform bound for width of an preorder that will guarantee
that MPOLSAT is in P. Although we can still have hope to find connections between width (or other
properties of preorder) and complexity. For example a sublinear function of |A| can possibly limit width
of preorders for algebras with tractable systems of equations.
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