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Analysis of label-based parameters in
increasing trees
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Grown simple families of increasing trees are a subclass of increasing trees, which can be constructed by an insertion
process. Three such tree families contained in the grown simple families of increasing trees are of particular interest:
recursive trees, plane-oriented recursive trees and binary increasing trees.

Here we present a general approach for the analysis of a number of label-based parameters in a random grown simple
increasing tree of size n as, e.g., the degree of the node labeled j, the subtree-size of the node labeled j, etc. Further
we apply the approach to the random variable Xn,j,a, which counts the number of size-a branches attached to the node
labeled j (= subtrees of size a rooted at the children of the node labeled j) in a random grown simple increasing tree
of size n. We can give closed formulæ for the probability distribution and the factorial moments. Furthermore limiting
distribution results for Xn,j,a are given dependent on the growth behavior of j = j(n) compared to n.
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1 Introduction
1.1 Increasing trees
Increasing trees are labeled trees where the nodes of a tree of size n are labeled by distinct integers of the
set {1, . . . , n} in such a way that each sequence of labels along any branch starting at the root is increasing.
As the underlying unlabeled tree model we use the so called simply generated trees (see Meir and Moon
(1978)) but, additionally, the trees are equipped with increasing labellings. Thus we speak of simple families
of increasing trees, which are introduced in Bergeron et al. (1992).

Several important tree families, in particular recursive trees, plane-oriented recursive trees (also called
heap ordered trees or non-uniform recursive trees) and binary increasing trees (also called tournament trees)
are special instances of simple families of increasing trees. A survey of applications and results on recursive
trees and plane-oriented recursive trees is given in Mahmoud and Smythe (1995). These models are used,
e.g., to describe the spread of epidemics, for pyramid schemes, and quite recently as a simplified growth
model of the world wide web.

1.1.1 Combinatorial description
Formally, a class T of a simple family of increasing trees can be defined in the following way. A sequence
of non-negative numbers (ϕk)k≥0 with ϕ0 > 0 is used to define the weight w(T ) of any ordered tree T
by w(T ) =

∏
v ϕd(v), where v ranges over all vertices of T and d(v) is the out-degree of v (we always

assume that there exists a k ≥ 2 with ϕk > 0). Furthermore, L(T ) denotes the set of different increasing
labellings of the tree T with distinct integers {1, 2, . . . , |T |}, where |T | denotes the size of the tree T ,
and L(T ) :=

∣∣L(T )
∣∣ its cardinality. Then the family T consists of all ordered trees T together with

their weights w(T ) and the set of increasing labellings L(T ). Furthermore we define the total weights by
Tn :=

∑
|T |=n w(T ) · L(T ).

We want to remark that there are two equivalent descriptions of simple families of increasing trees:
one can either think of increasing trees as weighted unlabeled planted plane trees (= weighted ordered
trees), additionally equipped with a set of increasing labels, or equivalently as weighted plane oriented
increasingly labeled trees (= weighted plane-oriented recursive trees). The second point of view would
avoid the introduction of unlabeled tree structures and, e.g., one could define simple families of increasing
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trees via the formal equation that will be given in (4), whereas the first point of view avoids introducing
plane-oriented recursive trees as “known objects” and allows to define simple families of increasing trees
on the basis of ordered trees.

1.1.2 Probability measures
Next we want to explain the model of randomness for the tree families considered. Since there are two
different points of view of increasing tree families we obtain either a probability measure πn on the set of
unlabeled planted plane trees of size n or a probability measure π̂n on the set of plane oriented increasingly
labeled trees of size n. We recall the definition of the total weights Tn :=

∑
|T |=n w(T ) · L(T ).

Let T denote a size-n unlabeled planted plane tree. Then the probability that T is chosen amongst the set
of all unlabeled planted plane trees of size n is proportional to the weight of the tree times the number of
increasing labellings:

πn(T ) =
w(T ) · L(T )

Tn
. (1)

Now, given a size-n unlabeled planted plane tree T , we consider a certain increasing labelling l(T ) ∈
L(T ) of the tree T . Then one can identify Bl(T ) := (T, l(T )) with a plane oriented increasingly labeled
tree of size n. Now the probability that Bl(T ) is chosen amongst the set of all plane oriented increasingly
labeled trees of size n is simply proportional to the weight of the tree:

π̂n(Bl(T )) =
w(T )
Tn

. (2)

1.1.3 Generating functions
For a given degree-weight sequence (ϕk)k≥0 we introduce the degree-weight generating function ϕ(t) :=∑

k≥0 ϕktk.
It follows then that the exponential generating function T (z) :=

∑
n≥1 Tn

zn

n! satisfies the first order
differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (3)

Often it is advantageous to describe a simple family of increasing trees T by the formal equation

T = ©1 ×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
= ©1 × ϕ(T ), (4)

where ©1 denotes the node labeled by 1, × the cartesian product, ∗ the partition product for labeled ob-
jects, and ϕ(T ) the substituted structure (see, e.g., Vitter and Flajolet (1990)). As pointed out before this
description suggests the usage of plane oriented increasingly labeled trees as the underlying tree structure.

1.2 Grown simple families of increasing trees
In applications the subclass of simple families of increasing trees, which can be constructed via an insertion
process or a probabilistic growth rule, is of particular interest. Such tree families T have the property that
for every tree T ′ of size n with vertices v1, . . . , vn there exist probabilities pT ′(v1), . . . , pT ′(vn), such that
when starting with a random tree T ′ of size n, choosing a vertex vi in T ′ according to the probabilities
pT ′(vi) and attaching node n + 1 to it, we obtain a random increasing tree T of the family T of size n + 1.
It is well known that the tree families mentioned above, i.e., recursive trees, plane-oriented recursive trees
and binary increasing trees, can be constructed via an insertion process. In Panholzer and Prodinger (2005)
a full characterization of those simple families of increasing trees, which can be constructed by an insertion
process, is given. This subclass of increasing tree families will be denoted by grown simple families of
increasing trees and its characterization via the so called degree-weight generating function is restated here
as Lemma 1.

The results obtained in this work are mostly restricted to the subclass of grown simple families of in-
creasing trees as described above and characterized as Lemma 1. When considering label-based parameters
in trees it is natural to consider those tree families, where node j has a direct meaning as the j-th indi-
vidual in the insertion process. However, we want to note that methodologically we obtain our results by
using a combinatorial decomposition of simple families of increasing trees, which does not depend on the
existence of a growth rule, i.e., the generating functions solution, Proposition 1, holds for general degree-
weight generating functions ϕ(t). On the other hand it must be noticed further that extracting coefficients
of Proposition 1 depends of course heavily on the properties of ϕ(t) and only due to the “nice structure” of
ϕ(t) for grown simple families computations are quite explicit.
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1.3 Problem description
In this work we present a unifying approach for studying a class of label-based parameters for grown
simple families of increasing trees. This approach has already been carried out successfully for two special
instances, namely for the subtree-size (= number of descendants) of the node labeled by j and the degree
of the node labeled by j, see Kuba and Panholzer (2006b) and Kuba and Panholzer (2006a).

Let us denote by Xn,j a random variable that counts a certain label-based parameter for a specified node
labeled by j, with 1 ≤ j ≤ n, in a random size-n tree, where it is assumed that the parameter depends only
on the subtree rooted at node j. For the sake of simplicity the term “node j” shall always refer to the node
labeled j (the node is associated with its label). Important instances of such parameters are the number of
descendants of node j and the degree of node j as already mentioned. We use a recursive approach, which
leads for all simple families of increasing trees (not only those, which can be described via an insertion
process) to a closed formula for suitable trivariate generating functions of the probabilities P{Xn,j = m}.
For grown simple families of increasing trees we obtain explicit formulæ for the probabilities P{Xn,j = m}
and the s-th factorial moments E

(
(Xn,j)s

)
=

∑
m≥0 msP{Xn,j = m}. Such a detailed description turns

out to be useful to give a full characterization of the limiting distribution behavior of Xn,j dependent on the
growth of j = j(n) compared to n.

We illustrate this approach for the following parameter analyzing the branching structure of increasing
trees. Let Xn,j,a denote the random variable, which counts the number of size-a branches attached to node
j, or in other words the number of subtrees of size a rooted at the children of node j, in a random grown
simple increasing tree of size n. This parameter was studied in Su et al. (2006) for the case of the root node
j = 1 and for the instance of random recursive trees: they derived the distribution of Xn,1,a and a limit law
for it. Further they stated the joint distribution of Xn,1,1, Xn,1,2, . . . , Xn,1,n−1.

By using the approach presented we can extend their results by treating arbitrary grown simple families of
increasing trees and considering the node with label j, not only the root node. We can give closed formulæ
for the probability distribution and the factorial moments of Xn,j,a. Furthermore limiting distribution results
of Xn,j,a are given, not only for j fixed, but a full characterization dependent on the growth j = j(n)
compared to n is presented. Moreover, the joint distribution of Xn,j,1, Xn,j,2, . . . , Xn,j,n−j is computed
for all grown simple families of increasing trees.

1.4 Plan of the paper
In Section 2 we will give a characterization of grown simple families of increasing trees. In Section 3 we
state the results for general label-based parameters and for the branching structure of increasing trees. A
proof of these results is sketched in Section 4; for a detailed analysis and a lot of further results we refer to
Kuba (2006).

Throughout this paper we use the abbreviations xl := x(x−1) · · · (x− l+1) and xl := x(x+1) · · · (x+
l − 1) for the falling and rising factorials, respectively. Moreover, we use the abbreviations Dx for the
differential operator with respect to x, and Ex for the evaluation operator at x = 1. Further we denote

with
[
n
k

]
and

{
n
k

}
the Stirling numbers of the first and second kind, respectively, with X

(d)
= Y the equality

in distribution of the random variables X and Y , and with Xn
(d)−−→ X the weak convergence, i.e., the

convergence in distribution, of the sequence of random variables Xn to a random variable X .

2 Characterization of grown simple increasing trees
We will now characterize grown simple increasing tree families via the degree-weight generating function
ϕ(t) as obtained in Panholzer and Prodinger (2005).

Lemma 1 (Panholzer and Prodinger (2005)) A simple family of increasing trees T can be constructed via
an insertion process and is thus a grown simple family of increasing trees iff the degree-weight generating
function ϕ(t) =

∑
k≥0 ϕktk is given by one of the following three formulæ (with constants c1, c2 ∈ R).

Case A (recursive trees) :

ϕ(t) = ϕ0e
c1t
ϕ0 , for ϕ0 > 0, c1 > 0, (defining c2 := 0),

Case B (d-ary trees) :

ϕ(t) = ϕ0

(
1 +

c2t

ϕ0

)d

, for ϕ0 > 0, c2 > 0, d :=
c1

c2
+ 1 ∈ {2, 3, 4, . . . },
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Case C (generalized plane-oriented recursive trees) :

ϕ(t) =
ϕ0

(1 + c2t
ϕ0

)−
c1
c2

−1
, for ϕ0 > 0, 0 < −c2 < c1.

Therefore for all three cases the probability measures πn and π̂n are induced by an insertion process.

Solving the differential equation (3) one obtains the following explicit formulæ for the exponential gen-
erating function T (z):

T (z) =


ϕ0
c1

log
(

1
1−c1z

)
, Case A,

ϕ0
c2

(
1

(1−(d−1)c2z)
1

d−1
− 1

)
, Case B,

ϕ0
c2

(
1

(1−c1z)
c2
c1
− 1

)
, Case C.

(5)

Furthermore the coefficients Tn are given by the following formula, which holds for all three cases of very
simple increasing tree families (setting c2 = 0 in Case A and d = c1

c2
+ 1 in Case B):

Tn = ϕ0c
n−1
1 (n− 1)!

(
n− 1 + c2

c1

n− 1

)
. (6)

Next we are going to describe in more detail the tree evolution process, which generates random trees
(of arbitrary size n) of grown simple families of increasing trees. This description is a consequence of the
considerations made in Panholzer and Prodinger (2005):

• Step 1: The process starts with the root labeled by 1.

• Step i+1: At step i+1 the node with label i+1 is attached to any previous node v (with out-degree
d(v)) of the already grown tree of size i with probabilities p(v) proportional to (d(v)+1)ϕd(v)+1

ϕd(v)
, i.e.,

p(v) =



1
i
, for Case A,

d− d(v)
(d− 1)i + 1

, for Case B,

d(v) + α

(α + 1)i− 1
, with α := −1− c1

c2
> 0, for Case C.

In order to state our results concerning arbitrary label-based parameters in Section 3 we introduce two
generating functions. For encoding the behavior of the root node j = 1 we introduce the bivariate generating
function

M(z, v) =
∑
n≥1

∑
m≥1

P{Xn,1 = m}Tn
zn

n!
vm, (7)

whereas to describe the behavior of arbitrary nodes j ≥ 1 we introduce the trivariate generating function

N(z, u, v) :=
∑
k≥0

∑
j≥1

∑
m≥0

P{Xk+j,j = m}Tk+j
zj−1

(j − 1)!
uk

k!
vm. (8)

3 Results
3.1 General results for label-based parameters of increasing trees
Proposition 1 The function N(z, u, v) as defined in equation (8), which is the trivariate generating func-
tion of the probabilities P{Xn,j = m}, which give the probability that a certain label-based parameter for
the node labeled j, which depends only on the subtree rooted at node j, in a randomly chosen size-n tree of
a simple family of increasing trees with degree-weight generating function ϕ(t) equals m, is given by the
following formula, where M(z, v) is defined by (7):

N(z, u, v) =
ϕ
(
T (z + u)

)
∂

∂uM(u, v)
ϕ
(
T (u)

) . (9)
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Theorem 1 For grown simple families of increasing trees the probability distribution and the factorial
moments of Xn,j , which counts a label-based parameter in a random size-n tree that depends only on the
subtree rooted at node j, are given as follows.

P{Xn,j = m} =
cj−1
1

( c2
c1

+j−1

j−1

)
(
n−1
n−j

)
ϕ0c

n−1
1

(n−1+
c2
c1

n−1

) [un−jvm]
∂

∂uM(u, v)
(1− c1u)j−1

, (10)

E
(
X

s
n,j

)
=

cj−1
1

( c2
c1

+j−1

j−1

)
(
n−1
n−j

)
ϕ0c

n−1
1

(n−1+
c2
c1

n−1

) [un−j ]
M ′

s(u)
(1− c1u)j−1

, (11)

where we use the abbreviation Ms(z) := EvDs
vM(z, v). For Case A we have to set c2 = 0 and for Case B:

d = c1
c2

+ 1.

Remark 1 For several label-based parameters in increasing trees such as depth of node j, which violates
the condition that the parameter depends only on the subtree rooted at node j, a similar result to Propo-
sition 1 can be obtained (see Panholzer and Prodinger (2005) for details). Note that Proposition 1 can be
used to obtain closed formula for the probability distribution of Xn,j for other increasing tree families such
as Motzkin trees (ϕ(t) = 1 + t + t2), strict d-ary trees, etc.

3.2 Results for the branching structure of increasing trees
Explicit formulæ for the probabilities
Theorem 2 The probability that there are m size-a branches attached to node j is given as follows.

• Case A (recursive trees): we obtain the exact formula

P{Xn,j,a = m} =
1

ama!
`

n−1
j−1

´ bn−j−am
a

cX
l=0

(−1)l

all!

 
n− 1− a(m + l)

j − 1

!
.

• Case B (d-ary increasing trees): we obtain the exact formula

P{Xn,j,a = m}

=

`
d
m

´` d
d−1+j−2

j−1

´
`

n−1
j−1

´`n−1+ 1
d−1

n−1

´min{d−m,bn−j−am
m

c}X
i=0

(−1)i`d−m
i

´„`a−1+ 1
d−1

a−1

´
a(d− 1)

«i+m
 

n− 2− a(i + m) + d−m−i
d−1

n− j − a(i + m)

!
.

• Case C (Generalized plane oriented recursive trees): we obtain

P{Xn,j,a = m} =
ϕ0(j − 1)!(n− j)!cj−1

1

` c2
c1

+j−1

j−1

´` c1
c2

+1

m

´`
c2Ta
ϕ0a!

´m
Tn

×

× [un−j−am]
1

(1− c1u)j−1
`
C(u)

´m− c1
c2

−1
, with C(u) :=

1

(1− c1u)
c2
c1

− c2Ta

ϕ0a!
ua.

Explicit formulæ for the factorial moments
Theorem 3 The factorial moments of the random variable Xn,j,a, which counts the number of size-a sub-
trees attached to node j in a random size-n grown simple increasing tree are given as follows.

• Case A (recursive trees):

E(Xs
n,j,a) =

1
as

(
n−as−1

j−1

)(
n−1
j−1

) .

• Case B (d-ary increasing trees):

E(Xs
n,j,a) =

((a−1+ 1
d−1

a−1

)
a(d− 1)

)s
(j−1+ 1

d−1
j−1

)(n−as−2+ d−s
d−1

n−j−as

)
(
n−1
j−1

)(n−1+ 1
d−1

n−1

) .

• Case C (Generalized plane oriented recursive trees):

E(Xs
n,j,a) =

(−c2

(a−1+
c2
c1

a−1

)
c1a

)s Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)

(j−1+
c2
c1

j−1

)(n−as−1− c2
c1

(s−1)

n−j−as

)
(
n−1
j−1

)(n−1+
c2
c1

n−1

) .
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Limiting distribution results
Theorem 4 For Case A (recursive trees) we obtain the following results.

• for n →∞, j = o(n) and a fixed: Xn,j,a is asympt. Poisson distributed with parameter 1/a:

Xn,j,a
(d)−−→ Xa, P{Xa = m} =

e−
1
a

amm!
.

• for n →∞, j = ρn with 0 < ρ < 1 and a fixed: Xn,j,a is asympt. Poisson distributed with parameter
(1− ρ)/a:

Xn,j,a
(d)−−→ Xρ,a, P{Xρ,a = m} =

e−
1−ρ

a (1− ρ)m

amm!
.

• for n →∞, l = n− j = o(n) and a fixed: Xn,j,a is asympt. zero: Xn,j,a
(d)−−→ X , P{X = 0} = 1.

Theorem 5 For Case B (d-ary increasing trees) we obtain the following results.

• for n →∞, j = o(n) and a fixed: Xn,j,a is asympt. zero: Xn,j,a
(d)−−→ X , P{X = 0} = 1.

• for n → ∞, j = ρn with 0 < ρ < 1 and a fixed: Xn,j,a is asympt. binomial distributed Bin(N, p)
with parameter N = d and p = p(a, d) =

(a−1+ 1
d−1

a−1

)ρ(1−ρ)a

a(d−1) :

Xn,j,a
(d)−−→ Xρ,a, P{Xρ,a = m} =

(
d

m

)
pm(1− p)d−m.

• for n →∞, l = n− j = o(n) and a fixed: Xn,j,a is asympt. zero: Xn,j,a
(d)−−→ X , P{X = 0} = 1.

Theorem 6 For Case C (Generalized plane oriented recursive trees) we obtain the following results.

• for n →∞, j and a fixed: the limiting distribution of Xn,j,a is characterized by its moments:

n
c2
c1 Xn,j

d−→ X, E(Xs) =
Γ(j + c2

c1
)Γ(s− 1− c1

c2
)

Γ(j − c2
c1

(s− 1))Γ(−1− c1
c2

)

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s

.

• for n → ∞, j = o(n) and a fixed: Xn,j,a is asympt. gamma distributed γ(k, λ) with parameters
k = − c1

c2
− 1 and λ = ac1

(−c2)(a−1+
c2
c1

a−1
)

:

(n

j

) c2
c1

Xn,j
d−→ X, X

d= γ(k, λ), E(Xs) = (−c1

c2
− 1)s

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s

.

• for n → ∞, j = ρn with 0 < ρ < 1 and a fixed: Xn,j,a is asympt. negative binomial distributed

NegBin(r, p) with parameters r = −1− c1
c2

and p = p(ρ, c1, c2, a) = (1+(1−ρ)aρ
c2
c1

(a−1+
c2
c1

a−1

) (−c2)
c1a )−1:

Xn,j,a
(d)−−→ Xρ,a, with P{Xρ = m} =

(
m− 2− c1

c2

m

)
p1+

c2
c1

(
1− p

)m
.

• for n →∞, l = n− j = o(n) and a fixed: Xn,j,a is asympt. zero: Xn,j,a
(d)−−→ X , P{X = 0} = 1.

Joint distribution results
Theorem 7 The joint distribution of Xn,1,1 . . . Xn,1,n−1 is for all Cases A, B and C given as follows.

P{Xn,1,1 = m1, . . . , Xn,1,n−1 = mn−1} =
ϕPn−1

i=1 mi
ϕ

Pn−1
i=1 mi−1

0 (
∑n−1

i=1 mi)!(n−1+
c2
c1

n−1

) n−1∏
k=1

(k−1+
c2
c1

k−1

)
kmkmk!

,

for all sequences of non-negative integers satisfying
∑n−1

k=1 kmk = n − 1, with c2 = 0 for Case A and
c2
c1

= 1
d−1 for Case B. For Case B we also have the additional constraint

∑n−1
k=1 mk ≤ d.
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Corollary 1 The joint distribution of Xn,j,1 . . . Xn,j,n−j is for all Cases A, B and C given as follows, where
Zn,j denotes the random variable counting the subtree-size of node j.

P{Xn,j,1 = m1, . . . , Xn,j,n−j = mn−j}

= P{Zn,j = 1 +
n−j∑
i=1

imi}P{X1+
Pn−j

i=1 imi,1,1 = m1, . . . , X1+
Pn−j

i=1 imi,1,n−j = mn−j}.

Results for a randomly chosen node
We denote by X

[R]
n,a = Xn,Un,a the random variable, which counts the number of size-a branches of a

randomly chosen node in a random size-n grown simple increasing tree.

Theorem 8 The limit law of the random variable X
[R]
n,a is given as follows.

• Case A (recursive trees): for a fixed it holds

X [R]
n,a

(d)−−→ Xa, P{Xa = m} = a
(
1− e−

1
a

m∑
k=0

1
k!ak

)
=

∑
k≥m+1

ae−
1
a

k!ak
.

• Case B (d-ary increasing trees): for a fixed it holds

X [R]
n,a

(d)−−→ Xa, P{Xa = m} =
d−m∑
k=0

(−1)k

(
d
m

)(
d−m

k

)(a−1+ 1
d−1

a−1

)m+k

am+k(d− 1)m+k((m + k)(d + 1) + 1)
(
(d+1)(m+k)

m+k

) .

Remark 2 For Case C we were not able to obtain a closed formula for the probability P{Xa = m}, but of
course one has the explicit formula P{Xa = m} =

∫ 1

0
P{Xρ,a = m}dρ.

4 Sketch of the proof of the results presented
4.1 General label-based parameters
We consider in this section the random variable Xn,j that counts a certain label-based parameter for a
specified node j, with 1 ≤ j ≤ n, in a random size-n tree, which is assumed to depend only on the subtree
rooted at node j. In the following we give a general recurrence for the probability P{Xn,j = m}, using the
formal description of increasing trees (4).

For increasing trees of size n with root-degree r and subtrees with sizes k1, . . . , kr, enumerated from left
to right, where the node labeled by j lies in the leftmost subtree and is the i-th smallest node in this subtree,
we can reduce the computation of the probabilities P{Xn,j = m} to the probabilities P{Xk1,i = m}, when
the label-based parameter does only depend on the subtree of node j.

We get as factor the total weight of the r subtrees and the root node ϕrTk1 · · ·Tkr , divided by the total
weight Tn of trees of size n and multiplied by the number of order preserving relabellings of the r subtrees,
which are given here by (

j − 2
i− 1

)(
n− j

k1 − i

)(
n− 1− k1

k2, k3, . . . , kr

)
:

the i − 1 labels smaller that j are chosen from 2, 3, . . . , j − 1, the k1 − i labels larger than j are chosen
from j +1, . . . , n, and the remaining n− 1−k1 labels are distributed to the second, third, . . . , r-th subtree.
Due to symmetry arguments we obtain a factor r, if the node j is the i-th smallest node in the second, third,
. . . , r-th subtree. Summing up over all choices for the rank i of label j in its subtree, the subtree sizes
k1, . . . , kr, and the degree r of the root node gives for n ≥ j ≥ 2 the following recurrence.

P{Xn,j = m} =
∑
r≥1

rϕr

∑
k1 + · · · + kr = n − 1,

k1, . . . , kr ≥ 1

Tk1 · · ·Tkr

Tn
×

×
min{k1,j−1}∑

i=1

P{Xk1,i = m}
(

j − 2
i− 1

)(
n− j

k1 − i

)(
n− 1− k1

k2, k3, . . . , kr

)
. (12)
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To treat recurrence (12) we set n := k + j, multiply the equation with Tk+j
zj−2

(j−2)!
uk

k! v
m and sum up

over k ≥ 0, j ≥ 2 and m ≥ 0. Using the trivariate generating N(z, u, v) as introduced by (8) we obtain
then ∂

∂z N(z, u, v) and ϕ′(T (z + u)
)
N(z, u, v) for the left and right hand side of (12), respectively. These

computations are here omitted; similar ones are carried out in Panholzer and Prodinger (2005).
We obtain thus the following differential equation

∂

∂z
N(z, u, v) = ϕ′(T (z + u)

)
N(z, u, v), (13)

together with the initial condition

N(0, u, v) =
∑
k≥0

∑
m≥0

P{Xk+1,1 = m}Tk+1
uk

k!
vm = M ′(u, v), (14)

where we use the bivariate generating function M(z, v) as introduced by (7). It is an easy task to solve this
differential equation, where some simplifications occur due to T ′(z) = ϕ(T (z)). This leads to Proposi-
tion 1. Using Lemma 1 and equation (5) we obtain by extracting coefficients Theorem 1.

Remark 3 We mention that one could also give a more “combinatorial approach” of equation (13) similar
to the one, which was presented for the depth of nodes in Panholzer and Prodinger (2005).

4.2 The branching structure of increasing trees
The generating function for the root node
Let Xn,j,a denote the random variable, which counts the number of subtrees of size a attached to node j
in a random size-n increasing tree. In order to analyze Xn,j,a by the approach presented here and thus to
apply Proposition 1 one has to compute at first the generating function ∂

∂z M(z, v) as defined in (7).
By definition one gets the following explicit result for the probabilities P{Xn,1,a = m}:

P{Xn,1,a = m} =
∑
r≥m

ϕr

(
r

m

) ∑
k1+···+kr=n−1
ki=a for 1≤i≤m

kj 6=a for m+1≤j≤r

Tk1 . . . Tkr

Tn

(
n− 1

k1, . . . , kr

)
,

(15)

for n ≥ 1 and m ≥ 0. By multiplying with Tnzn−1vm/(n− 1)! and summing up over n ≥ 1, m ≥ 0 this
yields to an explicit formula for ∂

∂z M(z, v), which is given below.

∂

∂z
M(z, v) = ϕ(T (z) + Taza(v − 1)). (16)

This leads for grown simple families of increasing trees to the following formulæ.

∂

∂z
M(z, v) =



ϕ0

1− c1z
exp

(c1Ta

ϕ0a!
za(v − 1)

)
, Case A,

ϕ0

(c2Ta

ϕ0a!
za(v − 1) +

1

(1− (d− 1)c2z)
1

d−1

)d

, Case B,

ϕ0(
1

(1−c1z)
c2
c1

+ c2Ta

ϕ0a! z
a(v − 1)

)− c1
c2

−1
Case C

(17)

Explicit formulæ for the probabilities
Applying Theorem 1 and using (17) leads for all three cases to the results stated. We will here only present
exemplarily the computations for Case A, where we get

P{Xn,j,a = m} =
(j − 1)!(n− j)!

Tn
[un−jvm]

cj−1
1

(1− c1u)j−1

∂

∂u
M(u, v)

=
1(

n−1
j−1

)
cn−j
1

[un−jvm]
exp

(
− c1Ta

ϕ0a! u
a
)

(1− c1u)j
exp

(
v
c1Ta

ϕ0a!
ua

)
(18)

=
cam
1

amm!
(
n−1
j−1

)
cn−j
1

[un−j−ma]
exp

(
− ca

1
a ua

)
(1− c1u)j

=
1

amm!
(
n−1
j−1

) bn−j−am
a c∑

l=0

(−1)l

all!
(
n−1−a(m+l)

j−1

)
.
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Explicit formulæ for the factorial moments

Again by applying the corresponding part of Theorem 1 one obtains by using (17) for all three cases explicit
formulæ for the factorial moments. We derive exemplarily M ′

s(u) for Case A, where we get

M ′
s(u) = EvDs

v

∂

∂u
M(u, v) = EvDs

v

ϕ0

1− c1u
exp

(c1Ta

ϕ0a!
ua(v − 1)

)
=

ϕ0

(
uac1Ta

ϕ0a!

)s

1− c1u
=

ϕ0u
as

( ca
1
a

)s

1− c1u
.

(19)

Limiting distribution results

From the explicit results obtained for the probabilities and the factorial moments as stated in Theorem 2
and Theorem 3 one can for all three cases of grown simple families of increasing trees characterize the
limiting distribution of Xn,j,a dependent on the growth of j = j(n) compared to n (and a fixed). We
restrict ourselves here to present the computations for Case C. To obtain limiting distribution results for that
case we consider the factorial moments of Xn,j,a, which are after simplifications given as follows.

E
(
X

s
n,j,a

)
=

(−c2)s
(a−1+

c2
c1

a−1

)s

cs
1a

s

Γ(j + c2
c1

)(n− j)!Γ(n− as− c2
c1

(s− 1))
Γ(j − c2

c1
(s− 1))(n− j − as)!Γ(n + c2

c1
)
. (20)

For j (and a) fixed an application of Stirling’s formula to (20) leads to

E
(
Xs

n,j,a

)
=

Γ(j + c2
c1

)Γ(s− 1− c1
c2

)
Γ(j − c2

c1
(s− 1))Γ(−1− c1

c2
)

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s(
n− c2

c1
)s(1 +O(

1

n− c2
c1

)). (21)

Similarly one gets for j →∞, such that j = o(n) (and a fixed) that

E
(
Xs

n,j,a

)
=

Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s(n

j

)−s
c2
c1 (1 +O(

( j

n

)− c2
c1 )). (22)

For j = ρn, 0 < ρ < 1, one obtains the following expansion of the factorial moments

E
(
X

s
n,j,a

)
=

Γ(s− 1− c1
c2

)
Γ(−1− c1

c2
)

( (−c2)
(a−1+

c2
c1

a−1

)
c1a

)s

ρs
c2
c1 (1− ρ)as(1 +O(

1
n

)), (23)

which are asymptotically the factorial moments of a negative binomial distribution Xρ
(d)
= NegBin(r, p),

with parameters r = −1− c1
c2

and p = (1 + (1− ρ)aρ
c2
c1

(a−1+
c2
c1

a−1

) (−c2)
c1a )−1:

E(Xs
ρ) =

Γ(r + s)
Γ(r)

(1
p
− 1

)s
. (24)

Joint distribution results

One observes that

TnP{Xn,1,1 = m1, . . . , Xn,1,n−1 = mn−1} (25)

= ϕPn−1
i=1 mi

(
n− 1

1, . . . , 1︸ ︷︷ ︸
m1

, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . ,mn−1

)( ∑n−1
i=1 mi

m1, . . . ,mn−1

) n−1∏
k=1

Tmk

k .

The factor ϕPn−1
i=1 mi

corresponds to the root degree, the factor
( n−1
1, . . . , 1︸ ︷︷ ︸

m1

,2, . . . , 2︸ ︷︷ ︸
m2

,...,mn−1

)
to the choices

for the labels and the factor
( Pn−1

i=1 mi

m1,...,mn−1

)
to the different positions of the subtrees.



330 Markus Kuba and Alois Panholzer

Results for a randomly chosen node
We use the limiting distribution results for the central region of Xn,j,a, i.e., j = ρn, with 0 < ρ < 1, to
derive results for the number of size-a branches X

[R]
n,a attached to a randomly chosen node in a grown simple

increasing tree. Since Xn,j,a
(d)−−→ Xρ,a we obtain X

[R]
n,a

(d)−−→ Xa, where the probabilities P{Xa = m} of
the discrete random variable Xa can be obtained via P{Xa = m} =

∫ 1

0
P{Xρ,a = m} dρ. For Case A and

Case B we obtain closed formulæ for these integrals. We present only the computations for Case A.

P{X = m} =
∫ 1

0

e−
1−ρ

a (1− ρ)m

m!am
dρ =

a

m!

∫ 1
a

0

e−uumdu = a−
m∑

k=0

ae−
1
a

am−k(m− k)!
, for m ≥ 0.
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