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Samples of geometric random variables with
multiplicity constraints

Margaret Archibald and Arnold Knopfmacher†

The John Knopfmacher Centre for Applicable Analysis and Number Theory, Department of Mathematics,
University of the Witwatersrand, P. O. Wits, 2050, Johannesburg, South Africa
marchibald@maths.wits.ac.za, arnoldk@cam.wits.ac.za

We investigate the probability that a sample Γ = (Γ1, Γ2, . . . , Γn) of independent, identically distributed random
variables with a geometric distribution has no elements occurring exactly j times, where j belongs to a specified finite
‘forbidden set’ A of multiplicities. Specific choices of the set A enable one to determine the asymptotic probabilities
that such a sample has no variable occuring with multiplicity b, or which has all multiplicities greater than b, for any
fixed integer b ≥ 1.
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1 Introduction
We study samples of independent, identically distributed (i.i.d.) random variables with a geometric dis-
tribution. Specifically, let Γ1,Γ2,Γ3, . . . be i.i.d. geometric random variables with parameter p, that is,
P(Γ1 = j) = pqj−1, j ∈ N, with p + q = 1. There is now an extensive literature on the combinatorics of
geometric random variables and its applications in Computer Science. We are interested in the probability
that a random sample of n such variables consists of elements whose multiplicities belong to specified sets.
That is, we place restrictions on the number of times any element/letter can occur in the sample.

As a simple example, we may wish to consider a sample where none of the n elements occur exactly b
times. In this case A = {b}. Another example of such a forbidden set is when a letter can occur only b
times or more (or not at all), i.e., A = {1, 2, . . . , b − 1}, where b ≥ 2. Note that we do not allow 0 in
the forbidden set. Previously in (HK05; LP05), certain geometric samples with 0 in the forbidden set were
studied under the names of ‘complete’ and ‘gap-free’ samples.

Theorem 1 Let A be any finite set of positive integers. The probability pn that a geometric sample of length
n has no letter appearing with multiplicity j, for any j ∈ A is (asymptotically as n →∞),

pn = 1− T ∗(0)
ln(1/q)

− 2
ln(1/q)

<
( ∞∑

k=1

exp{χk ln(q/n)}T ∗(χk)
)

+ O(n−1),

where we set χk := 2kπi
ln(1/q) , and where

T ∗(0) =
∑
j∈A

pj
∑
n≥0

pnqn 1
n + j

(
n + j

j

)
(1.1)

and

T ∗(χk) =
∑
j∈A

pj

j!

∑
n≥0

pn
qn

n!
Γ(n + j + χk), for k ∈ Z\{0}. (1.2)
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2 Outline of the proof of Theorem 1
We want a recursion on the variable pn, the probability that the sample does not have letters which appear
exactly j times if j is an element of the forbidden set A ⊂ N. Let B represent the set of all permitted
samples. If we let pn = P(Γ ∈ B) (the probability that the sample Γ = (Γ1,Γ2, . . . ,Γn) has no letter
occurring exactly j times for j ∈ A), then we can write

pn =
∑
j≥0

j 6∈A

P
(
{Γ ∈ B} ∩

{ n∑
`=1

IΓ`=1 = j

})
=

∑
j≥0

j 6∈A

P
(
Γ ∈ B

∣∣∣ n∑
`=1

IΓ`=1 = j
)
· P
( n∑

`=1

IΓ`=1 = j

)
,

where the indicator function I takes values 1 for true and 0 for false. Using the law of total probability, and
the memoryless property of geometric random variables, we obtain the recursion:

pn =
n∑

j=0

pn−j

(
n

j

)
pjqn−j −

∑
j∈A

pn−j

(
n

j

)
pjqn−j . (2.1)

We would like to see how pn behaves asymptotically as n →∞. The Poissonisation technique we use can
be seen in (JS98; Szp01), but we follow more specifically the process used in (HK05; JS97). Namely, we
consider the Poisson transform of the sequence (pn), analyse its asymptotics with Mellin transforms, then
de-Poissonise to recover the asymptotics of (pn). To do this, we make use of the exponential generating
function P (z), which is the Poisson transform of (pn), given by P (z) :=

∑
n≥0

pn
zn

n! e
−z . We use (2.1) to

show that

P (z)− e−z =
∑
n≥1

pn
zn

n!
e−z = P (qz)− e−pz

∑
j∈A

(pz)j

j!
P (qz)− e−z.

We thus have a functional equation of the form:

P (z) = P (qz)− e−pz
∑
j∈A

(pz)j

j!
P (qz). (2.2)

The technique we now use is the Mellin transform. A standard reference on Mellin transforms is (FGD95).
We define the function (see (2.2))

T (z) := e−pz
∑
j∈A

(pz)j

j!
P (qz)

(
=
∑
n≥0

pn
qn

n!

∑
j∈A

pj

j!
zn+je−z

)
. (2.3)

We note that the Mellin transform of T (z) has a fundamental strip of at least 〈−1,∞〉. Now we find the
Mellin transform of (2.3) to be

T ∗(s) =
∑
n≥0

pn
qn

n!

∑
j∈A

pj

j!
M(zn+je−z) =

∑
n≥0

pn
qn

n!

∑
j∈A

pj

j!
Γ(n + j + s).

In particular we will make use of the values T ∗(0) and T ∗(χk), as given in (1.1) and (1.2). After iterating
(2.2) we get

P (z) = P (qz)− T (z) = P (qm+1z)−
m∑

j=0

T (qjz),

for any m ≥ 0 and thus in the limit as m →∞, P (z) = 1−
∑∞

j=0 T (qjz). We define Q(z) := P (z)−1 =

−
∞∑

j=0

T (qjz). Then the corresponding Mellin transform is

Q∗(s) = −
∞∑

j=0

q−jsT ∗(s) = − T ∗(s)
1− q−s

=
T ∗(s)

q−s − 1
,

where Q∗(s) exists in the fundamental strip 〈−1, 0〉. The inverse Mellin transform is

Q(x) =
1

2πi

∫ c+i∞

c−i∞
Q∗(s)x−sds,
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for any −1 < c < 0. The residue theorem can be used to evaluate this. This process (compare to (HK05))
results in

Q(x) ∼ −
∑

χ

Ress=χ(Q∗(s)x−s).

Now, x−sQ∗(s) = x−sT ∗(s)/(q−s − 1) has simple poles at q−s = 1, i.e. at χk = 2kπi/ ln(1/q), k ∈ Z,
and the corresponding residues are

lim
s→χk

(s− χk)
x−sT ∗(s)
q−s − 1

=
x−χkT ∗(χk)
q−χk ln(1/q)

=
( q

x

)χk T ∗(χk)
ln(1/q)

.

Of these quantities, all but the k = 0 term contribute oscillations of small amplitude. We need to use
asymptotic de-Poissonisation to deduce that pn ∼ P (n) = Q(n) + 1. We consider the theorem given in
Szpankowski, (Szp01, page 463), whose five conditions are met by choosing γ1(z) = 0, γ2(z) = 1, and
t(z) = −T (z). We can now deduce that

pn = P (n) + O(n−1) = Q(n) + 1 + O(n−1)

where

P (n) = Q(n) + 1 ∼ 1− T ∗(0)
ln(1/q)

− 2
ln(1/q)

<
( ∞∑

k=1

exp{χk ln(q/n)}T ∗(χk)
)

,

with T ∗(0) and T ∗(χk) given in (1.1) and (1.2) respectively. This concludes the proof of Theorem 1.

3 The complementary set N\A is finite
We consider now the complementary problem where the permitted set B = N\A is finite. The de-
Poissonisation method cannot be used in this case, but we can bound the probabilities by elementary means
to show that pn → 0 for all finite sets B. (Consequently fluctuations are also absent in these cases.) Sup-
pose the permitted set of multiplicities B = N\A is finite with largest element k. The probability that
all multiplicities belong to such a set B is bounded above by the case when B = {0, 1, 2, ..., k}. Now
samples where all multiplicities are at most k are themselves a subset of the set of samples with the weaker
restriction that there are at most k ones.

The probability of exactly j ones in a sample of length n is
(
n
j

)
pj(1− p)n−j . Hence the probability of at

most k ones is
k∑

j=0

(
n

j

)
pj(1− p)n−j ≤ (k + 1)

(
n

k

)
(1− p)n−k = O(nkqn),

which is exponentially small.

4 Further work
We aim to continue this work by considering other examples of forbidden sets A. In addition, we would
like to reconsider the results of this paper from an urn model standpoint, as was used to obtain the results
in (LP05).
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