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Efficient estimation of the cardinality of large
data sets

Philippe Chassaing! and Lucas Gerin'
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France

Giroire (Gir05) has recently proposed an algorithm which returns the approximate number of distincts elements in a
large sequence of words, under strong constraints coming from the analysis of large data bases. His estimation is based
on statistical properties of uniform random variables in [0, 1]. In this note we propose an optimal estimation, using
Kullback information and estimation theory.
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1 Introduction

The problem. The aim of this note is to improve a solution proposed by Giroire (Gir0S) to the following
problem: consider a sequence Y = (Y7,...,Yx) of words (one may think to a sequence of file on a disk,
a list of requests, a novel from Skakespeare, efc...); we don’t make any assumption on the structure of Y,
and we want to know the number (often denoted Fj in the data base community) of distinct elements of
this sequence. The motivation comes from analysis of large data sets, and especially analysis of internet
traffic: certain attacks may be detected at router level, because they generate an unusual number of dictinct
connections (see (Fla04))). Usual algorithms use a dictionnary to store every word, so that the memory
needed is linear in Fy. Here the size of data sets is huge, making it impossible to store every word. A
possible algorithm should satisfy the two following constraints: it should use constant memory and do only
one pass over the data. These constraints are very strong, but on the other hand we allow the algorithm to
give only an estimation of Fy.
Probabilistic Counting The main idea used in (GirQ3)), introduced by Flajolet and Martin (FM83J), is to
transform this problem in a probabilistic one, using hash fuctions.

A hash function is a function h : C — [0, 1], where C is a finite set of words (say english language,

{0,118, etc...) such that the image of a typical sequence of words behaves as a sequence of ii.d

random variables, uniform in [0, 1].

This definition is of course somewhat informal, but we will assume, from now on, that, noting X; = h(Y;),
then X = {X;,..., Xy} is the realization of Fj i.i.d. r.v., uniform on [0, 1]. Existence and construction of
good hash functions is discussed in (Knu73).

Set ) = F{y and denote as usually X ;) the smallest X;, X ) the second smallest, and so on. The key point
is that the information on @ contained in {Y7, ..., Yy} is equivalent to that contained in (X (1) -+ X(0)-

As a consequence, we are now dealing with a classical statistical problem: given a (small) sample of
(X1,...,Xp), i.i.d. r.v.,, uniform on [0, 1], we want to estimate the (large) parameter 6. Denote by M the
memory available (how many real numbers that can be stored). One should determine:

1. A way of extracting a M -sample of X (the M smallest, the M with the longest sequence of zeros in
their binary representation, etc...).

2. A function é :[0,1]™ — R which approximates 6, when applied to the M-sample.

State of the Art. Flajolet and Martin (EM85)) have used these ideas to construct an algorithm based on
research of patterns of 0’s and 1’s in the binary representation of the hashed values Xi,..., Xy. It has
been improved by Durand and Flajolet (DF93)). Bar-Yossef et alii (BYJK™02), have proposed 3 performant
algorithms, their ideas have been generalized by Giroire (Gir05). In a different way, Alon, Matias, and
Szegedy consider estimation by moment method, making implementation proposed in (FM85)) easier. For a
nice survey about these ideas one may read (Fla04).
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Giroire’s algorithm. The starting idea in (Gir0S) is to use this simple property:

1

0+1

Consequently, a naive algorithm would hash every data, compare it to the smallest hashed value already
seen, and finally return 1/X ;). Unfortunately, E[1/X ;)] = co. However, 1/X(5),1/X(3) ... have finite
expectation. This leads Giroire to propose an algorithm which return a function of Xy, for some k. In order
to improve the precision of such an algorithm, one may wish to execute it m times with m different hashing
functions, but this would cost too much time. Therefore Giroire uses stochastic averaging, introduced in
(EM83): the idea is to simulate m different experiments, by dividing [0, 1] in m intervals.

E[Xu] =

Algorithm 1 4
let k, m be integers. initialize (X (1), -, X(x),i»0 = 1,...,m) with Xy ; = -~ for all i, p.
forj=1to N

Xj = h(Yj).

let i the integer such that X lies in [=1, L[,
update the k-dimensional vector of k smallest values X (1) ;, ..., X(x),; lying in [%, %[
next j.
Jor all p,i, renormalize X ) ; = m(X(p)}i - Z;ll )
return an estimator & = é(X(l),i;i =1,....ml=1,...k).
Thus we get m vectors in RF. X (k),i 18 the k-th smallest hashed value lying in [i;ll, #] renormalized to

get a real in [0, 1]. If less than [ values have fell in the i-th interval, then X4 ; = 1. Obviously, Algorithm
makes only one pass over each data Y;. Memory used by the algorithm is indeed M, if we have chosen
k-m = M. The estimation returned by the algorithm does not depend on any assumption on the repetitions
in the sequence X1,..., Xn.

Giroire (GirO5) proposes 3 estimators &1, &2, €3, using inverse function, square root function and log
respectively. For example,

63 = M B .E*i P IOgX(k)‘i_
(k)

For each k, m these estimators are asymptotically unbiased, i.e. E[;] ~ 0 when 6 goes to co. Their
variances are all about 1/km. Here we give a fourth estimator, which is also asymptotically unbiased:

km —1
Yt X
Plan Using information and estimation theories, we first show that the estimator f is optimal under a
simplified model, that we call the independent model. Then we discuss its actual optimality.

E=

2 The best estimation under the independant model

Recall that a real-valued random variable X is said to follow the Gamma law with parameters (k, 0) if

P(X € [t,t+dt)) = %er_ekltzodto

The asymptotic behavior of the minimum X ;) of & random uniform variables in [0, 1] is well-known (see

for example (Fel70)): 6.X 1) £, ~1, where 7 follows the Gamma(1, §) law. More generally, we can prove
here the following convergence:

L
(GX(k),la"'aoX(k),m) m (’717'-'77m)3 (D

where the v; are i.i.d. r.v. of law Gamma(k,1). Consequently, we assume in this section that the Xz, ; are

ii.d. r.v. of law Gamma(k,f), this is the so-called independent model. We set é = szfmfl

i1 Xy
Remark 2.1 This estimator depends only on the m values (X (g ;,% = 1,...,m), not on the m(k — 1) other hashed
values stored by the algorithm. This follows from the fact that the knowledge of these values does not provide additional

. . . . .. X(1).4 X(h_1).4
information on ¢: for a given i, conditionnally on X 4, ;, the r.v. (X((;; e, )((k(k)l)fb

[0,1].

) are distributed uniformly on
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A simple calculation shows that under the independent model,

92

E[f) =0,  Var(d) = —

This is indeed better than the 3 estimators proposed in (Gir05). We can now use the powerful information
theory. One calls statistic any random variable which is a function of the sample (here, S = Y7 | Xy ; is
a statistic).

Theorem 1 (Lehmann-Scheffé) Ler S be a sufficient and complete statistic. Let £* be an unbiased esti-
mator of 6 (i.e. E[£*] = 0). Among all the unbiased estimators of 6, E[£*|S] has a minimal variance. Such
an estimator is said to be efficient.

For the definitions of sufficientness and completeness, one may read for example (Leh83). Here S is
sufficient and complete.

Corollary 1 (Optimality in the independent model) Let & be another unbiased estimator of 0. Under the
independant model,

E[(£ - 6)*] > E[(£ - 6)?].
3 Optimality in the real model

From now on, we consider the real model: X ) ; is the p-th smallest realization of ¢ i.i.d. r.v. uniform on
[0, 1], among the values lying in [=1 ,#} For all 4, j, there is now dependency between X 1 ; and X ) ;.
We can no more use directly information theory.

Theorem 2 (Optimality in the exact model) Set & = kai’l Let E(X) with X = (X&), 15+ X(k),m)s

ie1 X (k)i

be another estimator of 6. We assume that b(0) := Eg[€ — 0] = O(v/6). Then

Eo[(€ —6)%] = Eq[(€ — 6)*] + O(6).

Remark 3.1 We have already seen that Var(é) is about 02. It has been shown (IW03) that it is an optimal universal
bound.

Proof: There are mainly two steps in the proof:

1. It can be shown that then 0 is large, the “good” case (i.e. at least k real fall in each interval) occurs
with high probability.

2. The convergence in (I)) has then to be studied in details.
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