Spanning trees of finite Sierpiński graphs
Elmar Teufl, Stephan Wagner

To cite this version:

HAL Id: hal-01184698
https://hal.inria.fr/hal-01184698
Submitted on 17 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We show that the number of spanning trees in the finite Sierpiński graph of level \(n \) is given by

\[
\sqrt{\frac{3}{20}} \left(\frac{5}{3}\right)^{-n/2} \left(\sqrt{540}\right)^n.
\]

The proof proceeds in two steps: First, we show that the number of spanning trees and two further quantities satisfy a 3-dimensional polynomial recursion using the self-similar structure. Secondly, it turns out, that the dynamical behavior of the recursion is given by a 2-dimensional polynomial map, whose iterates can be computed explicitly.

Keywords: combinatorial enumeration, spanning trees, finite Sierpiński graphs

1 Introduction

The enumeration of spanning trees in a finite graph ranges among the classical tasks of combinatorics and has been studied for more than 150 years. The number of spanning trees in a graph \(X \) is often called the **complexity** and denoted by \(\tau(X) \). Let us recall the famous Matrix-Tree Theorem of Kirchhoff [Kirchhoff(1847)]: The complexity \(\tau(X) \) of a graph \(X \) is equal to any cofactor of the Laplace matrix of \(X \), which is the degree matrix of \(X \) minus the adjacency matrix of \(X \). As a consequence the number of spanning trees in the complete graph with \(n \) vertices is given by \(n^{n-2} \).

In the following the complexity of finite Sierpiński graphs is computed. These graphs are discrete analogs of the well-known Sierpiński gasket (see Sierpinski(1915)) and can be defined as follows: Denote by \(e_1 = (1,0,0) \), \(e_2 = (0,1,0) \), and \(e_3 = (0,0,1) \) the canonical basis vectors of \(\mathbb{R}^3 \). For \(n = 0 \) the Sierpiński graph \(X_0 \) is given by \(V X_0 = \{e_1, e_2, e_3\} \) and \(EX_0 = \{\{e_1, e_2\}, \{e_2, e_3\}, \{e_3, e_1\}\} \). For \(n > 0 \) the Sierpiński graph \(X_n \) is defined iteratively by

\[
V X_n = (2^{n-1}e_1 + V X_{n-1}) \cup (2^{n-1}e_2 + V X_{n-1}) \cup (2^{n-1}e_3 + V X_{n-1})
\]

and

\[
EX_n = (2^{n-1}e_1 + EX_{n-1}) \uplus (2^{n-1}e_2 + EX_{n-1}) \uplus (2^{n-1}e_3 + EX_{n-1}).
\]

The graph \(X_n \) is called **Sierpiński graph of level \(n \)**; see Figure[1] for \(X_0, X_1, \) and \(X_2 \). A simple computation shows that \(|V X_n| = \frac{3}{2}(3^n + 1) \) and \(|EX_n| = 3^{n+1} \).

2 Main result

The complexity \(\tau(X_n) \) of the Sierpiński graph of level \(n \) is given by

\[
\tau(X_n) = \sqrt{\frac{3}{20}} \left(\frac{5}{3}\right)^{-n/2} \left(\sqrt{540}\right)^n.
\]

The first numbers of this sequence are 3, 54, 524880, 803355125990400000, . . .
Since every spanning tree is a subset of the edge set EX_n, it is natural to rewrite this formula in terms of $|EX_n|$: This yields

$$\tau(X_n) = \sqrt[3]{\frac{5}{12}} |EX_n|^{(1-2/d_s)/2} \left(\frac{12}{\sqrt{540}}\right)^{|EX_n|}.$$

Here d_s is the spectral dimension of the Sierpiński gasket, which is given by

$$d_s = 2 \frac{\log 3}{\log 5}.$$

The spectral dimension was first introduced using the integrated density of states of the Laplacian on the infinite Sierpiński graph. Later on, the exponent d_s was studied from several points of view, see for example [Barlow(1998), Kigami(2001)] and the references therein. Furthermore, note that the fraction $\frac{5}{2}$ is the so-called resistance scaling factor of the Sierpiński gasket.

We conjecture that the formula

$$\tau(X_n) = C |EX_n|^\beta (1-2/d_s) \alpha |EX_n|$$

holds for a large class of sequences $(X_n)_{n \geq 0}$ of finite self-similar graphs, where $C > 0$, $\beta \geq 0$ and $\alpha \in (1, 2)$ are some constants; see [Teufl and Wagner(2006)].

3 Proof

The proof is based on the work in the paper [Teufl and Wagner(2006)]. For $n \geq 0$ and $k \in \{1, 2, 3\}$ denote by $F_k(n)$ the set of spanning forests in X_n with k components, so that each component contains at least one vertex of $B_n = 2^n \{e_1, e_2, e_3\}$, and set $F(n) = F_1(n) \cup F_2(n) \cup F_3(n)$. For $n \geq 0$ and $i \in \{1, 2, 3\}$ let X_n^i be the subgraph of X_n, which is induced by $2^{n-1} e_i + V X_{n-1}$, and note that X_n^i is isomorphic to X_{n-1}. The restriction of a spanning forest in $F_k(n)$ to X_n^i yields a spanning forest in $F_{k-1}(n-1)$ for some $j \in \{1, 2, 3\}$. Hence each spanning forest in $F(n)$ can be decomposed into three forests in $F(n-1)$. For example, each spanning tree in $F_1(n)$ is composed of two trees in $F_2(n-1)$ and one forest in $F_2(n-1)$, see Figure 2.

Denote by $c(n)$ the 3-dimensional counting vector

$$c(n) = (c_1(n), c_2(n), c_3(n)) = (|F_1(n)|, \frac{1}{2}|F_2(n)|, |F_3(n)|).$$

Note that there are three possibilities to arrange the vertices of B_n in two components of a spanning forest in $F_2(n)$, and the factor $\frac{1}{2}$ takes care of that. Furthermore, the complexity $\tau(X_n)$ is given by $\tau(X_n) = c_1(n)$.

The decomposition of forests in $F(n)$ into three forests in $F(n-1)$ implies that $c(n)$ satisfies the polynomial recursion

$$c(n) = Q(c(n-1))$$
for $n > 0$, where Q is given by

$$Q : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 6x_1^2 x_2 \\ 7x_1 x_2^2 + x_2^2 x_3 \\ 14x_2^3 + 12x_1 x_2 x_3 \end{pmatrix}$$

The initial vector is given by $c(0) = (3, 1, 1)$.

Now define the map $v : \mathbb{R}_+^2 \to \mathbb{R}^3$ by

$$v(a, b) = (3a, b, b^2/a),$$

then $c(0) = v(1, 1)$ and $c(1) = v(18, 30)$. Finally, define $T : \mathbb{R}_+^2 \to \mathbb{R}_+^2$ by

$$T(a, b) = (18a^2 b, 30ab^2),$$

then the function Q maps the set $v(\mathbb{R}_+^2)$ into itself and $Q \circ v = v \circ T$.

Thus the vector $c(n)$ is given by

$$c(n) = v(T^n(1, 1)),$$

where T^n is the n-fold iterate of T. The n-fold iterate of T can be computed explicitly:

$$T^n(a, b) = \begin{pmatrix} \frac{3^n}{4} \left(\sqrt[3]{60} \right)^{3n-1} a^{(3n+1)/2} b^{(3n-1)/2} \\ \frac{3^n}{4} \left(\sqrt[3]{60} \right)^{3n-1} a^{(3n-1)/2} b^{(3n+1)/2} \end{pmatrix}$$

for all $n \geq 0$. This implies the statement.

4 Conclusion

The ideas of this proof can be formalized and generalized to a large class of fractal-like graphs. In addition, it is also possible to count different combinatorial objects in those graphs; for example matchings (independent edge subsets), connected subsets, subtrees, colorings, factors, and vertex or edge coverings. Using a decomposition argument it is possible to obtain a multi-dimensional polynomial recursion. Of course, one cannot expect to get explicit formulas in general. However, the asymptotic behavior can be deduced under suitable conditions. See [Teufl and Wagner (2006)] for more information.

An interesting reformulation of the Matrix-Tree Theorem states, that the complexity of a graph X is given by the product of all non-zero eigenvalues of the Laplace matrix of X taking the multiplicities into account divided by the number of vertices. Note that the Dirichlet spectrum of the Laplace matrix of finite Sierpiński graphs X_n with respect to the boundary B_n is well understood, see [Shima (1991)]. However, it seems to be much more difficult to understand the normal spectrum.

References

