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On the density of truth in modal logics
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The aim of this paper is counting the probability that a random modal formula is a tautology. We examine {→, 2}
fragment of two modal logics S5 and S4 over the language with one propositional variable. Any modal formula
written in such a language may be interpreted as a unary binary tree. As it is known, there are finitely many different
formulas written in one variable in the logic S5 and this is the key to count the proportion of tautologies of S5 among
all formulas. Although the logic S4 does not have this property, there exist its normal extensions having finitely many
non-equivalent formulas.
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1 Introduction
Modal logic is a widely applicable method of reasoning for many areas of computer science. These areas
include artificial intelligence, database theory, distributed systems, programs verification and cryptography
theory (see for example (1), (8)). Computer scientists have examined the difficulty of problems in modal
logic, such as satisfiability. Satisfiability determines whether a formula in a given logic is satisfiable. Our
approach also concerns the satisfiable formulas but in a quite different way. We are interested in counting
the proportions of such formulas among all formulas of some given modal logic. The complexity of this
problem involves we analyze some well described fragments of modal logic.

This paper consists of two parts. The first one is an algebraical characterization of two modal algebras:
one-generated S5 algebra and one-generated algebra for Grzegorczyk’s modal logic. We chose these modal
logics because they have good semantical properties. We are especially interested in their relational seman-
tic, which is known as Kripke frames and models. We start with analysis of the appropriate frame. Then
we characterize its algebraical counterpart, which is some modal algebra (i). By the one-generated modal
algebra we mean the algebra obtained from one non-zero and non-unit element by closing it under the
operations. For details see (2).

The second part is devoted to calculation of numbers of formulas being tautologies of the considered
logics. We are especially interested in asymptotic properties of the fractions of tautologies. Let L be some
logical calculus. Let |Tn| be a number of tautologies of length n of that calculus and |Fn| be a number of
all formulas of that length. We define the density µ(L) as:

µ(L) = lim
n→∞

|Tn|
|Fn|

If the limit exists, then it is the probability that a random formula is a tautology and is called density
of truth. This paper is continuation of research concerning the density of truth in different logics. Until
now, the density of truth for classical (and intuitionistic) logic of implication of one and two variables are
known (see (15),(9)) as well as the density of implicational-negational fragments of that calculus with one
variable (see (18),(13)). There are also many results concerning the density of truth of classical logic with
the connectives of conjunction, disjunction and negation. For example, see (3) and (6). Regarding modal
logics, there is made only a rough estimation of the density of truth for Grzegorczyk’s logic. It is proved in
(11) that

34.672% < µ(Grz) < 61.27%

In this paper we significantly improve the above estimation and compare this result with the one for the
logic S5. The methods described in (3), (6) and (5) will be used.
(i) A structure A = 〈A,∩,∪,−, I, 0, 1〉 is a modal algebra if: (1) 〈A,∩,∪,−, 0, 1〉 is a Boolean algebra, and (2) I is a unary

operator that satisfies (i) I(1) = 1 and (ii) I(a ∩ b)I(a) ∩ I(b) for a, b ∈ A.
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2 Normal extensions of S4 modal logic. Modal logic S5
Syntactically, the modal logic S4 is obtained by adding to axioms of classical logic the following modal
formulas (ii)(re) 2p → p, (K) 2(p → q) → (2p → 2q), (tra) 2p → 22p. The logic S4 is defined as
a set of all consequences of new axioms by modus ponens, substitution and necessitation (RG) rules. The
last one can be presented in the following scheme: ` α/ ` 2α.

By a frame we mean a pair F = 〈W,R〉 consisting of a nonempty set W and a binary relation R on
W . The elements of W are called points (or worlds) and xRy is read as ‘y is accessible from x’. A
modal proposition 2ϕ is regarded to be true in a world x if ϕ is true in all the worlds alternative (being
in relation R) to x; 3ϕ is true in x if ϕ is true at least in one alternative world. Concrete properties of
the alternativeness relation depends on the type of the modality under consideration. For the S4 logic the
relation R should be reflexive and transitive. By x ↑ we mean the set of successors of x and by x ↓ -the set
of its predecessors.

The Grzegorczyk logic Grz is characterized as a normal extension of the Lewis calculus S4 by the
Grzegorczyk axiom: (grz) 2(2(p→ 2p) → p) → p.

Symbolically, the normal extension is written by Grz = S4⊕ (grz), where ⊕ means the closure under
modus ponens, substitution and RG.

Semantically, the Grz logic is characterized by the class of finite reflexive and transitive trees.
Recall, that by a tree we mean a rooted frame F = 〈W,R〉 such that for every point x ∈ W , the set x ↓

is finite and linearly ordered by R. A frame F = 〈W,R〉 is a rooted one if there is a world x ∈W such that
for any y ∈ W, y 6 x, y ∈ x ↑. A transitive frame is rooted if there exists a point x ∈ W such that for any
y ∈W , y ∈ x ↑.

In this section we examine normal extensions of Grzegorczyk’s logic obtained by adding to the set of
axioms new formulas. The considered in this section axiomatic extensions are uniformly connected with
depth of trees.

Definition 1 A frame F is of depth n < ω if there is a chain of n points in F and no chain of more than n
points exists in F.

For n > 0, let Jn be an axiom saying that any strictly ascending partial-ordered sequence of points is
of length n at most. The form of the needed formulas Jn is well known (see (2) p.42). They are defined
inductively as follows(iii):

Definition 2

J1 = 32p1 → p1,

Jn+1 = 3(2pn+1∧ ∼ Jn) → pn+1.

We will consider the logics Grz≤n = Grz ⊕ Jn. Let us notice that for any formula ϕ if ϕ ∈ Grz≤n

(that means ϕ is true in every world of the tree of depth n), then ϕ ∈ Grz≤n−1 ( ϕ is true in every world
of the tree of depth n− 1). Hence the following inclusions hold:

Grz ⊂ ... ⊂ Grz≤n ⊂ Grz≤n−1 ⊂ ... ⊂ Grz≤2 ⊂ Grz≤1. (1)

The Lewis modal logic S5 is characterized as a normal extension of S4 by the axiom:
(sym) p→ 32p.

Semantically, S5 is characterized by the class of reflexive symmetric and transitive frames. Such relation
is an equivalence relation and in that case any two worlds are alternatives to each other.

Because the logics S5 and Grz are axiomatic extensions of S4 logic then the following inclusions take
places: S4 ⊂ S5 and S4 ⊂ Grz.

The logics S5 and Grz are however incomparable. The formula (grz) is not provable in S5 whereas the
formula (sym) is not a theorem of Grz.

(ii) S4 Lewis modal logic is a super-system of the logics S1, S2 and S3 and a sub-system of S5. They were first defined in 1932 in
Lewis and Langford’s book Symbolic Logic and to axiomatize them, the authors used the functor of so-called strict implication. For
details see (7).

(iii) The formulas Jn are defined in the full language (with negation and the operator of possibility and with unrestricted number of
variables). In the language F {→,2} we can find the analogous formulas. In (10) the author considered the sequence of following
formulas defined inductively: A1 := p, A2n := 2A2n−1, A2n+1 := A2n−1 → A2n for n ≥ 1. It is shown that the formula
A2n+1 plays the same role as the formula Jn.
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3 One-generated fragments of Grz≤3 and S5

We will consider set F {→,2} of formulas built up from one propositional variable p by means of necessita-
tion and implication only.

p ∈ F {→,2},

α→ β ∈ F {→,2} iff α ∈ F {→,2} and β ∈ F {→,2},

2α ∈ F {→,2} iff α ∈ F {→,2}.

By a one-generated logic we mean the logic restricted to formulas built up from one variable. The
one-generated parts of logics Grz≤3 and S5, (over the language with → and 2) will be represented appro-
priately by the symbols Grz≤3(1) and S5(1).

The simplest manner to characterize the logics Grz≤3(1) and S5(1) is examining the appropriate Tarski-
Lindenbaum algebras Grz≤3(1)/≡ and S5(1)/≡. Let us introduce an equivalence relation on the consid-
ered logics:

Definition 3 α ≡ β iff α → β ∈ M and β → α ∈ M, where the symbol M stands for Grz≤3(1) or
S5(1).

In (10) the author gave a precise characterization of the quotient algebras Grz≤n(1)/≡ for any n ≥ 1.
For n = 3 as well as for S5(1)/≡ we have:

Lemma 4 Both the algebras Grz≤3(1)/≡ and S5(1)/≡ consist of the following eight equivalence classes:

A1 = [p]≡ A2 = [2p]≡
A3 = [p→ 2p]≡ A4 = [2(p→ 2p)]≡
A5 = A3 → A4 B1 = A4 → A2

B2 = A5 → A2 T = [p→ p]≡

and are closed under the operations → and 2.

Proof. For Grz≤3(1)/≡ see (10). The proof for S5 may be made by a mutual calculation or by taking
the advantage of canonical and universal frames. The universal frame γFS5(1) generated by one variable
consists of one two-point cluster and one reflexive point falsifying p. Hence the dual algebra (which is in fact
isomorphic to the Tarski-Lindenbaum algebra) has to have 23 elements. The classes [p]≡, [2(p→ 2p)]≡,
and [((p→ 2p) → 2(p→ 2p)) → 2p]≡ are atoms of S5(1)/≡. For details we refer the reader to (2). 2

Let us notice, that the equivalence classes presented above, are not identical in the both cases of S5(1)
and Grz≤3(1) logics. They have only the same representant. To avoid misunderstanding, we propose to
mark the class T of tautologies of Grz≤3(1) by TGrz and analogously for S5(1) - TS5.

Observation 5 The operations {→,2} in the algebra Grz≤3(1)/≡ can be displayed in Table 1.

→ A1 A2 A3 A4 A5 B1 B2 TGrz 2

A1 TGrz A3 A3 A3 TGrz TGrz A3 TGrz A2

A2 TGrz TGrz TGrz TGrz TGrz TGrz TGrz TGrz A2

A3 A1 A1 TGrz A5 A5 B1 B1 TGrz A4

A4 B1 B1 TGrz TGrz TGrz B1 B1 TGrz A4

A5 B1 B2 A3 A3 TGrz B1 B2 TGrz A5

B1 A5 A4 A3 A4 A5 TGrz A3 TGrz A2

B2 A5 A5 TGrz A5 A5 TGrz TGrz TGrz A2

TGrz A1 A2 A3 A4 A5 B1 B2 TGrz TGrz

Tab. 1: Truth table for Grz≤3(1)/≡

Observation 6 The operations {→,2} in the algebra S5(1)/≡ can be displayed in Table 2.

The order forms the following lattice diagrams of the eight-element Grz≤3(1)/≡ and S5(1)/≡ modal
algebras, which are, in fact, eight-element Boolean cubes (see Figure 1). The open circle stands for the
open element of the given algebra. An element A is open if 2A = A. Let us stress the main difference
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→ A1 A2 A3 A4 A5 B1 B2 TS5 2

A1 TS5 A3 A3 A3 TS5 TS5 A3 TS5 A2

A2 TS5 TS5 TS5 TS5 TS5 TS5 TS5 TS5 A2

A3 A1 A1 TS5 A5 A5 B1 B1 TS5 A4

A4 B1 B1 TS5 TS5 TS5 B1 B1 TS5 A4

A5 B1 B2 A3 A3 TS5 B1 B2 TS5 A4

B1 A5 A4 A3 A4 A5 TS5 A3 TS5 A2

B2 A5 A5 TS5 A5 A5 TS5 TS5 TS5 A2

TS5 A1 A2 A3 A4 A5 B1 B2 TS5 TS5

Tab. 2: Truth table for S5(1)/≡
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Fig. 1: Diagrams of Grz≤3(1)/≡ and S5(1)/≡.

between the investigated algebras: the class A5 is open in the algebra Grz≤3(1)/≡ whereas in S5(1)/≡ -
is not.

To give a satisfying characterization of the algebra Grz≤3(1)/≡ it is necessary to notice that it has two
non-trivial open filters [A5) and [A4). They determine two congruence relations on Grz≤3(1)/≡. We
divide the considered algebra by them and in this manner obtain some identification of classes. Exactly, we
obtain the following two new quotient algebras AL1 and AL2.

Definition 7

AL1 = Grz≤3(1)/≡/[A5)

AL2 = Grz≤3(1)/≡/[A4)

Their diagrams are presented in Figure 2.
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where

A = A1 ∪B1, B = A2 ∪B2,

C = A3 ∪A4, D = A5 ∪ TGrz,

AB = A ∪B, CD = C ∪D

Fig. 2: Diagram of AL1 and AL2

There is some simple observation from (10):
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Observation 8

AL1 = Grz≤2(1)/≡
AL2 = Grz≤1(1)/≡

In the algebra S5(1)/≡ there is only one open filter [A4). The new quotient algebraAL3 = S5(1)/≡/[A4)

is identical with AL2.

4 Counting formulas and generating functions
In this section we set up the way of counting formulas with the established length. We will consider the set
Fn ⊆ F {→,2} of all formulas of length n.

Definition 9 By |φ| we mean the length of formula φ which is the total number of occurrences of proposi-
tional variable p in the formula, including the implication and the sign of necessity operator. Formally

|p| = 1,
|φ→ ψ| = |φ|+ |ψ|+ 1, (2)

|2φ| = |φ|+ 1.

Definition 10 By Fn we mean the set of formulas from F {→,2} of length n.

We will also consider some appropriate subclasses of Fn. For example if we have a class A ∈ F {→,2}

then An = Fn ∩A.

Definition 11 By |An| we mean the number of formulas from the class An.

The main tool for dealing with asymptotics of sequences of numbers are generating functions. A nice
exposition of this method can be found in (16) and (5).

Lemma 12 The generating function fF for the numbers |Fn| is

fF (z) =
1− z

2z
−

√
(z + 1)(1− 3z)

2z
. (3)

Proof. It is easy to observe that the generating function fF for the numbers |Fn| is the one for unary
binary trees (see (5), p.65). 2

Suppose, we have a system of non-linear equations −→yj = Φj(z, y1, ...ym) for 1 ≤ j ≤ m, where any
yj =

∑∞
n=0 ajz

n. The following result known as Drmota-Lalley-Woods theorem (see (5), Thm. 8.13,
p.71) is of great importance in the both cases of solving the system explicitly or implicitly.

Theorem 13 Consider a nonlinear polynomial system, defined by a set of equations

{−→y = Φj(z, y1, ..., ym)}, 1 ≤ j ≤ m

satisfying the following properties:

1. a-properness: Φ is a contraction, i.e. satisfies the Lipschitz condition

d(Φ(y1, ..., ym),Φ(y′1, ..., y
′
m)) < Kd((y1, ..., ym), (y′1, ..., y

′
m)), K < 1.

2. a-positivity: all terms of the series Φj(−→y ) are ≥ 0.

3. a-irreducibility: the dependency graph of the algebraic system is built on m vertices: 1,2,...,m; there
is an edge from a vertex k to a vertex j if yj appears in φk. The algebraic system is an irreducible if
its dependency graph is strongly connected.

4. a-aperiodicity: z (not z2 or z3...) is the right variable, that means for each φj there exist three
monomials za, zb, and zc such that b− a and c− a are relatively prime.

Then



166 Zofia Kostrzycka

1. All component solutions yi have the same radius of convergence ρ <∞.

2. There exist functions hj analytic at the origin such that

yj = hj(
√

1− z/ρ), (z → ρ−). (4)

3. All other dominant singularities are of the form ρω with ω being a root of unity.

4. If the system is a-aperiodic then all yj have ρ as unique dominant singularity. In that case, the
coefficients admit a complete asymptotic expansion of the form:

[zn]yj(z) ∼ ρ−n

∑
k≥1

dkn
−1−k/2

 . (5)

From (5) there is a simple transition by the so called transfer lemma from (4), to a formula defining
the value of the coefficients [zn]yj(z). So, the a-aperiodicity of a system of equations is a very desirable
property. The application of the above theorem will proceed in the following way. Suppose, we have two
functions fT and fF enumerating tautologies and all formulas of some logic. Suppose, they have the same
dominant singularity ρ and there are the suitable constants α1, α2, β1, β2 such that:

fT (z) = α1 − β1

√
1− z/ρ+O(1− z/ρ), (6)

fF (z) = α2 − β2

√
1− z/ρ+O(1− z/ρ). (7)

Then the density of truth (probability that a random formula is a tautology) is given by:

µ(T ) = lim
n→∞

[zn]fT (z)
[zn]fF (z)

β1

β2
. (8)

Let us notice that the limit (8) exists in the case of a-aperiodic system of equations. The lack of this
property involves the limit does not exist (see for example (17)). Such situation is considered in (14) and in
(12). In the last one the author investigate the existence of density of the purely equivalential fragments of
classical and intuitionistic logics.

5 Counting the density of Grz≤3

At the begining of this section we quote (without a proof) the main generating functions for the classes of
formulas from the algebras AL1 and AL2. From (11) we have (iv):

Lemma 14 The generating functions fAB and fCD for the numbers |ABn| and |CDn| are

fAB(z) =
zf(z)− 1 + z +X

2z
, (9)

fCD(z) =
zf(z) + 1− z −X

2z
, (10)

where

X =
√

4z2 + (1− z − f(z))2.

For simplicity we have written this function in the term of function f . We will repeat it to the other one.

Proof. See the proof of Lemma 8 from (11).
2

(iv) There is a small change in the present approach (actually, we have changed the way of counting length of formula), hence there
are some differences between the functions presented above and those ones from (11). The method of determining them is exactly
the same.
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Lemma 15 The generating function fC for the numbers |Cn| is

fC(z) =
T

4z
+

1
2

√
X +

1
2

√
− Y

921/3z4
+
T 2 + 4U

3z2
− S

Y
+
T 3 + 4TU +R

4Xz3

where

Y = 3z 3
√
W +

√
−4(Sz2)3 +W 2,

W = z3(−2U3 +
9
8
TU +

27
64
R2)− z7(T 2fAB + 72UfAB),

R = 8
(
−1 + (1 + f − fAB)z + (1 + (−1 + f)fAB)z2 + (1 + 2(1 + f)fAB)z3

)
,

X =
Y

921/3z4
+
T 2

4z2
+

2U
3z2

+
S

Y
,

S = U2 − 12fABz
4 − 3

8
TR,

T = −3 + z + 3zf − 2zfAB ,

U = −3 + (2 + 3f − 3fAB)z + (2 + f + 3ffAB)z2.

For simplicity we have omitted in the above function the argument (z) and have written f and fAB instead
of f(z) and fAB(z).

Proof. See the proof of Lemma 10 from (11).
As we see the generating functions for the class Cn is really complicated (to determine it we have to

solve a four-degree equation). Because it is not essential for the paper we do not quote here the functions
fA fB and fD. For the whole algebra Grz≤3(1)/≡ we would have to solve equation of eight degree. From
Table 1 we obtain the system of the following equations:

f1 = (f8f1 + f3(f1 + f2))z + z, (11)
f2 = (f8f2 + f1 + f2 + f6 + f7)z, (12)
f3 = (f1(f2 + f3 + f4 + f7) + f5(f3 + f4) + f6(f3 + f7) + f8f3)z, (13)
f4 = (f6(f2 + f4) + f8f4 + f3 + f4)z, (14)
f5 = (f3(f4 + f5) + f6(f1 + f5) + f7(f1 + f2 + f4 + f5) + f8f5 + f5) z, (15)
f6 = (f3(f6 + f7) + f4(f1 + f2 + f6 + f7) + f5(f1 + f5) + f8f6)z, (16)
f7 = (f5(f2 + f7) + f8f7)z, (17)
f8 =

(
f1(f1 + f5 + f6) + f2(f1 + f2 + f3 + f4 + f5 + f6 + f7) + f2

3 +

+f4(f3 + f4 + f5) + f2
5 + f2

6 f7(f3 + f6 + f7) + f8fF + f8
)
z, (18)

where

f1 = fA1 , f2 = fA2 , f3 = fA3 , f4 = fA4 ,

f5 = fA5 , f6 = fB1 , f7 = fB2 , f8 = fTGrz
.

Furthermore, we have that:

fF = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8, (19)
f2 + f7 = fB (20)
f1 + f6 = fA (21)
f3 + f4 = fC (22)

Application of (19)-(22)into (11)-(18) gives us a simpler system:

f1 = (f8f1 + f3(f1 + f2))z + z,

f2 = (f8f2 + fAB)z,
f3 = (f1(f2 + fC + f7) + f5fC + f6(f3 + f7) + f8f3)z,
f4 = (f6(f2 + f4) + f8f4 + fC)z,
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f5 = (f3(f4 + f5) + f6(f1 + f5) + f7(f1 + f2 + f4 + f5) + f8f5 + f5) z,
f6 = (f3(f6 + f7) + f4fAB + f5(f1 + f5) + f8f6)z,
f7 = (f5fB + f8f7)z,
f8 =

(
f1(fA + f5) + f2(fF − f8) + f2

3 +

+f4(fC + f5) + f2
5 + f2

6 f7(f3 + f6 + f7) + f8fF + f8
)
z.

Of course, there is possible further simplification of the above system of equations. Anyway, this also
leads to 8-degree equation with very complex functions. Even with taking the advantage of the Mathematica
package the needed calculations are not feasible. Hence, we decide to solve the system numerically.

Let us notice that the system of equations (11)-(18) is a-proper, a-positive, a-irreducible and a-aperiodic.
So, it is possible to apply the Drmota-Lalley-Woods Theorem 13. Furthermore, for any i = 1, ..., 8 all the
functions fi have the same dominant singularity z0 = 1

3 and there exist their expansions around z0 in the
form:

fi = ai + bi
√

1− 3z +O(1− 3z).

From equation (3) defining the main generating function, after a simple calculation we obtain:

Lemma 16

fF (z) = 1−
√

3
√

1− 3z +O(1− 3z). (23)

From the system of equations (11)-(18) we are able to count the floating values of functions fi at z0 = 1
3

for any i = 1, ..., 8. We may also take the differential of each equation and solve it with respect to the value
of f ′i at z0 = 1

3
(v). After numerical computation (20.000 steps) we obtain the following values (rounded to

five digits) for the most interesting for us function f8 = fTGrz
.

Lemma 17

fTGrz
(z) ≈ 0.31099− 1.05449

√
1− 3z +O(1− 3z). (24)

From the above it follows that

Theorem 18 The density of truth of the logic Grz≤3(1) is about 60.88%.

Proof. From Lemma 16 and 17 we have:

µ(Grz≤3(1)) ≈ −1.05449
−
√

3
≈ 0.6088 .

2.

6 Counting the density of S5
The case of S5 logic is even more complicated than in Grzegorczyk’s one. There is no nice estimation of
its density with the one exception of trivial logic(vi). The only thing we can do is counting the floating value
of its density. To do this let us consider the following system of equations corresponding to Table 2.

f1 = (f8f1 + f3(f1 + f2))z + z, (25)
f2 = (f8f2 + f1 + f2 + f6 + f7)z, (26)
f3 = (f1(f2 + f3 + f4 + f7) + f5(f3 + f4) + f6(f3 + f7) + f8f3)z, (27)
f4 = (f6(f2 + f4) + f8f4 + f3 + f4 + f5)z, (28)
f5 = (f3(f4 + f5) + f6(f1 + f5) + f7(f1 + f2 + f4 + f5) + f8f5) z, (29)
f6 = (f3(f6 + f7) + f4(f1 + f2 + f6 + f7) + f5(f1 + f5) + f8f6)z, (30)
f7 = (f5(f2 + f7) + f8f7)z, (31)
f8 =

(
f1(f1 + f5 + f6) + f2(f1 + f2 + f3 + f4 + f5 + f6 + f7) + f2

3 +

+f4(f3 + f4 + f5) + f2
5 + f2

6 f7(f3 + f6 + f7) + f8fF + f8
)
z, (32)

(v) Because z0 = 1
3

is an algebraical singularity, to count the differential we have to substitute:
√

1− 3z := t.
(vi) The trivial modal logic Triv is the one in which 2p = p. Then in our case Grz≤1(1) = Triv(1).
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where

f1 = fA1 , f2 = fA2 , f3 = fA3 , f4 = fA4 ,

f5 = fA5 , f6 = fB1 , f7 = fB2 , f8 = fTS5 .

We do not introduce new symbols for the generating functions for classes of formulas from the algebra
S5(1)≡, but of course they are different from the ones for Grz≤3(1)≡. The exception is the main function
fF . It is still defined by (23). By making the same approach as for Grz≤3(1) we may solve the system of
equations (25)-(32) numerically. The expansion of the function f8 = fTS5 around its smallest singularity
z0 = 1

3 is the following:

Lemma 19

fTS5(z) ≈ 0.38156− 1.05320
√

1− 3z +O(1− 3z). (33)

Furthermore

Theorem 20 The density of truth of the logic S5(1) is about 60.81%.

Proof. From Lemma 16 and 19 we get:

µ(S5(1)) ≈ −1.05320
−
√

3
≈ 0.6081

2.

7 Conclusions and open problems
First, let us compare the result from Theorem 18 with the ones for the logics Grz≤2(1) and Grz≤1(1). In
(11) it is shown that

µ(Grz≤2(1)) ≈ 61.27%

µ(Grz≤1(1)) =
1
10

(5 +
√

5) ≈ 72.36%

As we see the difference between µ(Grz≤2(1)) and µ(Grz≤3(1)) is not significant at all. On the
percentage basis, more than 99% of the tautologies of Grz≤3(1) is also the Grz≤2(1) tautologies. It
seems to be very probable that for any n > 1 the density of truth for logic Grz≤n(1) is above the 60%.
To prove this, however, we have to deal with a quite complicated calculation. In (10) it is shown that for
any n, the algebras Grz≤n(1)/≡ have exactly 2n elements. The appropriate system of equation consists of
2n equations written in terms of 2n generating functions. There is no obstacle to apply the Drmota-Lalley-
Woods Theorem 13. Even if we are not able not count the density explicitly, we know that it exists. From
the inclusions (1) we conclude that:

µ(Grz(1)) < ... < µ(Grz≤n(1)) < µ(Grz≤n−1(1)) < ... < 60.88%. (34)

It would be desirable to prove that:
Conjecture 1

µ(Grz(1)) > 60%

In this place we should also raise the problem of the chosen language. Even if we have considered
language without the negation sign, it may be easily defined by ∼ p := p → 2p. This is possible because
in the algebra Grz≤n(1)/≡, the formula 2p plays the role of the zero-element. On the other side, adding
the functor of negation to the considered language leads to obtaining a larger number of different classes and
much more complicated calculations. In the case of S5(1) logic, enriching the language leads to ‘solving’ a
sixteen-element algebra. This is because the universal model consists of one two-element cluster, one point
validating p and one point not validating p. Hence, the dual modal algebra consists of 24 elements. In the
case of extensions of Grzegorczyk’s logic, adding negation involves even more increase of the number of
classes. For example, the number of classes of Grz≤2(1)/≡ (with negation) is 26. For details see (2), p.
272-275. Adding the functor of possibility involves exactly the same complications as adding the negation.
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Let us notice, that there is no difficulty in changing the {→,∼,2} language into {∧,∼,2} language or
into {∨,∼,2} one.

Let us also notice that from the quantitative point of view, the logics Grz≤3(1) and S5(1) do not differ
actually. Of course, it would be very interesting to check whether the same situation holds for a larger num-
ber of variables. Such investigation is connected with counting the number of elements of the n-generated
universal models for S5 and Grz≤n logics. In this place we may only notice that the needed numbers,
although are finite, are incomparably larger than in the case of the one-generated models considered in this
paper.

Problem 1 Estimation of density of truth of Grz≤3(n) and S5(n).
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