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Mixed powers of generating functions

Manuel Lladser1
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Given an integer m ≥ 1, let ‖·‖ be a norm in Rm+1 and let Sm
+ denote the set of points d = (d0, . . . , dm) in Rm+1 with

nonnegative coordinates and such that ‖d‖ = 1. Consider for each 1 ≤ j ≤ m a function fj(z) that is analytic in an
open neighborhood of the point z = 0 in the complex plane and with possibly negative Taylor coefficients. Given n =
(n0, . . . , nm) in Zm+1 with nonnegative coordinates, we develop a method to systematically associate a parameter-
varying integral to study the asymptotic behavior of the coefficient of zn0 of the Taylor series of

Qm
j=1{fj(z)}nj , as

‖n‖ → ∞. The associated parameter-varying integral has a phase term with well specified properties that make the
asymptotic analysis of the integral amenable to saddle-point methods: for many d ∈ Sm

+ , these methods ensure uniform
asymptotic expansions for [zn0 ]

Qm
j=1{fj(z)}nj provided that n/‖n‖ stays sufficiently close to d as ‖n‖ → ∞. Our

method finds applications in studying the asymptotic behavior of the coefficients of a certain multivariable generating
functions as well as in problems related to the Lagrange inversion formula for instance in the context random planar
maps.

Keywords: Airy phenomena, asymptotic enumeration, analytic combinatorics, large powers of generating functions,
discrete random structures, saddle point method, uniform asymptotic expansions.

1 Introduction and Main Definitions
We start by introducing some notation that will be used consistently throughout this manuscript. In what
follows, m ≥ 1 is a fixed integer. Define Z+ := {0, 1, 2, . . .} and R+ := [0,∞). We use bold-face notation
to refer to vectors in Rm+1 and denote the coordinates of a vector d as (d0, . . . , dm). The symbol n is
reserved for elements in Zm+1

+ . We let ‖·‖ be an arbitrary yet fixed norm in Rm+1. Define Sm
+ := {d ∈

Rm+1
+ : ‖d‖ = 1} and, for ε > 0, Bε := {d : ‖d‖ < ε}. The boundary of a set D ⊂ Sm

+ is denoted as ∂D.
Given ε > 0 we write [|z| < ε] to refer to the open disk of radius ε centered at the origin in C.
For the remainder of this manuscript, r > 0 is a fixed radius and, for each 1 ≤ j ≤ m, fj(z) is an

analytic function over the disk [|z| < r]. We write fj as a shortcut for fj(z). For an arbitrary function f(z)
that is analytic about the origin we write [zn] f(z) to refer to the coefficient of zn of the Taylor series of
f(z) about z = 0.

We are interested in the behavior of the Taylor coefficients of
∏m

j=1 f
nj

j for non-negative integer expo-
nents nj . More specifically, given n = (n0, . . . , nm), we would like to systematically provide an asymp-
totic expansion for the coefficient

[zn0 ]
m∏

j=1

f
nj

j (1)

as ‖n‖ → ∞. Since in a finite dimensional space all norms are equivalent, the condition ‖n‖ → ∞ is
equivalent to the condition ‖n‖∞ := max{|n0|, . . . , |nm|} → ∞. The terminology of mixed powers of
generating functions used in the title of this manuscript aims to emphasize the following fact: in order for
the asymptotic analysis of the coefficients in (1) to fall in the context of our discussion it suffices that at
least one of the exponents n0, . . . , nm blows up to infinity. Although the actual norm used in Rm+1 is not
theoretically relevant, it is worth to stress out that a suitable choice for ‖·‖ may considerably simplify the
numerical analysis in an specific example. We take a considerably advantage of this fact in the applications
discussed in sections 3 and 4 ahead.

Various special instances of (1) can be found in the literature. Coefficients of this form include the well-
studied case of the coefficients [zj ] f(z) as j → ∞ (Wil90; FS06). It also includes the case [zj ] f(z)k as
j →∞ or k →∞. Coefficients of this form occur frequently in Discrete Probability. For instance, if X is
a non-negative integer-valued random variable with moment generating function f(z) = E(zX), [zj ] f(z)k

corresponds to the probability that X1 + . . . + Xk = j, where X1, . . . , Xk are independent copies of X .
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On the other hand, at the very core of Computer Science, coefficients of this form also occur in standard
multinomial allocation problems (also called occupancy problems). For example, using the identity

∑
j1,...,jk

(
j

j1, . . . , jk

)
= j! · [zj ](ez − 1)k

where the summation indices are such that ji ≥ 1 and j1 + . . . + jk = j, it is not difficult to see that
j!
(

l
k

)
[zj ](ez − 1)j represents the number of ways of allocating j distinguishable balls to exactly k of l

available urns of unbounded capacities (JK77).
Terms of the form of (1) also include the coefficients [zj ] f(z)kg(z)l. Coefficients of this last form, with

k/j → 1 and l bounded, arise in the context of the Lagrange inversion formula (GJ04): if f(0) 6= 0 and
h(t) is defined implicitly through the relation h(t) = t · f(h(t)) then

[tj ] g(h(t)) =
1
j
· [zj−1] {f(z)}jg′(z).

All the above instances of (1) have the following in common: Cauchy’s formula is used to represent the
coefficients in (1) via a contour-integral which is then analyzed using saddle-point methods (see (BH86) for
a comprehensive discussion of this method as well as other related methods). This method has two variants:
the non-coalescing, and the coalescing version. While the non-coalescing version has been used systemati-
cally in the context of asymptotic enumeration, it was not until recently that Banderier et al (BFSS01) used
the more elaborated coalescing saddle-point method to unravel the asymptotic distribution of the core size
of random planar maps. Their analysis relies on studying the asymptotic behavior of certain coefficients of
the form [zj ] f(z)kg(z)lh(z) as j, k and l grow to infinity at a comparable rate. Roughly speaking, they
show that these coefficients may expose phase transitions (from quadratic-exponential to cubic-exponential)
that are determined by subtle asymptotic linear dependences between j, k and l.

In a different context, Pemantle and Wilson (PW02; PW04) use residue theory and multidimensional non-
coalescing saddle-point methods to analyze the asymptotic behavior of the coefficients of multi-variable
generating functions of a meromorphic type. Indeed, since

[zn0 ]
m∏

j=1

f
nj

j = [un0vn1
1 · · · vnm

m ]
1∏m

j=1(1− vj · fj(u))
,

under some technical conditions, the asymptotic treatment of the coefficients in (1) is adequate to Pemantle
and Wilson’s scheme but provided that all the exponents n0, . . . , nm grow to infinity at a comparable rate
i.e. ‖n‖ = O(nj), for all 0 ≤ j ≤ m. In the special case of m = 1 on the right-hand side above, the par-
tially unpublished dissertation of Lladser (Lla03) implies that the condition that n0 and n1 grow to infinity
at a comparable rate can be relaxed. This extension of Pemantle and Wilson’s scheme for two-variable gen-
erating functions follows from an adaptation of the coalescing saddle-point method (see (Lla06a; Lla06b)).

To the best of our knowledge, the most general discussion of the asymptotic behavior of the coefficients
in (1) is due to Gardy (Gar95). However the machinery developed in (Gar95) is restricted to terms fj with
non-negative Taylor coefficients. Specifically, under the additional assumption that f1(0) · f ′1(0) 6= 0 and
that nj = o(n1/

√
n0) for j > 1, Gardy determines the leading order asymptotic term of the coefficients

in (1) for two different regimes, namely n0 = Θ(n1) and n0 = o(n1). The role of these hypotheses is
primarily technical: they prevent the saddle-point of the integral obtained by applying Cauchy’s formula in
(1) to stay away from the saddle-point of integral (also obtained from Cauchy’s formula) that represents the
coefficients

∏
j>1 fj(ρ)nj · [zn0 ]fn1

1 . Here ρ is uniquely defined by the relation ρf ′1(ρ)/f1(ρ) = n0/n1.
In this manuscript we introduce a framework that permits a systematic treatment for analyzing the asymp-

totic behavior of the coefficients in (1) as ‖n‖ → ∞. The special cases considered in the literature for coeffi-
cients of this sort are developed in more generality and without restricting the terms fj to have non-negative
coefficients nor the exponents n0, . . . , nm to be of the same asymptotic order. Within this framework, the
asymptotic analysis of the coefficients in (1) is amenable to either the non-coalescing or the coalescing
saddle-point method.

Our main result, Theorem 2.1, states that it is often possible to relate the asymptotic behavior of the
coefficients in (1) with the asymptotic behavior of an oscillatory integral of the form∫

exp
{
−‖n‖ · F

(
θ;

n
‖n‖

)}
dθ,
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where the integration occurs over a subinterval of [−π, π] that is centered at the origin. Theorem 2.5, the
accompanying result to Theorem 2.1, states that the function F , that we refer to as the associated phase
term, is a continuous function of its arguments however it is also an analytic function of θ. Furthermore,
since ∂F

∂θ (0;n/‖n‖) = 0 and the <{F (θ;n/‖n‖)} is minimized at θ = 0 the asymptotic behavior of the
above integral is amenable to saddle-point methods.

Our methodology was partially developed in (Lla03) for a special cases of m = 1 and m = 2 in (1). The
proof of our two main results are omitted but are included in the full version of this manuscript. Further-
more, to keep the present discussion accessible for a wide audience, the application discussed in Section 3
relies exclusively on the non-coalescing saddle-point method. The coalescing saddle-point method is rele-
vant only for Section 4 however we do not implement it in there and rely on known results already available
in the literature. We refer the interested reader to (BFSS00; BFSS01) and to Section 5.5 in (Lla03) to
complement the discussion in Section 4.

In what follows it is assumed that for all 1 ≤ j ≤ m,

(H1) fj(0) 6= 0, and

(H2) fj is a non-constant function of z.

It should be clear that condition (H2) does not reduce the generality of our exposition. On the contrary,
while condition (H1) seems to reduce the generality of our results, this restriction is only apparent (see
Remark 2.2).

Our main result develops from the following definition.

Definition 1.1 Given a vector d ∈ Rm+1
+ , we say that a point z with |z| < r is a critical point associated

with the direction d for (f1, . . . , fm) if

m∏
j=1

|fj(z)|dj = max
x:|x|=|z|

m∏
j=1

|fj(x)|dj , (2)

d0 =
m∑

j=1

dj ·
zf ′j(z)
fj(z)

. (3)

If the maximum in (2) is achieved only at x = z, then we say that z is a strictly minimal critical point
associated with the direction d.

Some technical remarks are worth mentioning regarding the above definition. First, observe that if z is
a critical point associated with d for (f1, . . . , fm) then it is also a critical point associated with t · d, for
any t > 0. Therefore, without loss of generality, we may always assume that d ∈ Sm

+ . In particular, due
to condition (H1), it follows that z = 0 is a strictly minimal critical point associated with any direction
d ∈ Sm

+ such that d0 = 0. Secondly, observe that due to the maximum modulus principle, (H2) and (2)
imply that

m∏
j=1

fj(z) 6= 0, (4)

whenever z is a critical point associated with some direction d for (f1, . . . , fm).
Finally, we remark that the occurrence of critical points and more specifically strictly minimal points

is somewhat common in the context of combinatorial or probabilistic generating functions. In this case,
the functions fj have nonnegative coefficients implying that condition (2) is certainly satisfied for each
z ∈ [0, r). In particular, for all nonzero (d1, . . . , dm) ∈ Rm

+ , each z ∈ [0, r) turns out to be a critical point
associated with the direction

d(z) :=
(d0(z), d1, . . . , dm)
‖(d0(z), d1, . . . , dm)‖

,

where

d0(z) :=
m∑

j=1

dj ·
zf ′j(z)
fj(z)

.

Furthermore, if there exists j such that dj > 0 and fj is aperiodic, or if there are j and k such that dj , dk > 0
and the period of fj is relative prime with the period of fk, then each z ∈ [0, r) turns out to be a strictly
minimal critical point associated with the direction d(z) for (f1, . . . , fm).
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2 Main results.
Our main result is the following one.

Theorem 2.1 (Parameter-varying integral representation.) Suppose that conditions (H1) and (H2) are
satisfied, that D ⊂ Sm

+ is a compact set and that Z : D → [|z| < r] is a continuous function such that for
all d ∈ D, Z(d) is a strictly minimal critical point associated with the direction d for (f1, . . . , fm). Define

F (θ;d) := i · θ · d0 −
m∑

j=1

dj · ln

{
fj

(
Z(d) · eiθ

)
fj

(
Z(d)

) }
, (5)

and consider the shortcut notation

Z := Z
(

n
‖n‖

)
. (6)

There exists ε > 0 sufficiently small such that

(a) (large exponent) for all compact sets D1 ⊂ D \ Z−1{0} there exists a constant c > 0 such that

[zn0 ]
m∏

j=1

f
nj

j =
Z−n0

2π

m∏
j=1

{fj(Z)}nj ·
(∫ ε

−ε

exp
{
−‖n‖ · F

(
θ;

n
‖n‖

)}
dθ +O(e−‖n‖·c)

)
, (7)

for all n ∈ ‖n‖ · D1,

(b) (small exponent) for all set D0 ⊂
(
Z−1{0}+ Bε

)
∩
(
D \ Z−1{0}

)
,

[zn0 ]
m∏

j=1

f
nj

j =
Z−n0

2π

m∏
j=1

{fj(Z)}nj ·
∫ π

−π

exp
{
−‖n‖ · F

(
θ;

n
‖n‖

)}
dθ, (8)

for all n ∈ ‖n‖ · D0.

The terminology of large versus small exponent is motivated by the applications of Theorem 2.1 in the
combinatorial or probabilistic setting i.e. when each fj has nonnegative coefficients. In this case, under the
hypotheses of the theorem, we must have that Z(D) ⊂ [0, r). Suppose that n ∈ ‖n‖ · D as ‖n‖ → ∞; in
particular, if Z is as defined in (6) then

n0

‖n‖
= Z ·

m∑
j=1

nj

‖n‖
·
f ′j
(
Z
)

fj

(
Z
) . (9)

If Z is confined to a compact set of (0, r), as ‖n‖ → ∞, then asymptotics for [zn0 ]
∏m

j=1 f
nj

j fall in the
context of part (a) in Theorem 2.1. However, due to condition (H2), the right-hand side of (9) vanishes only
at Z = 0 unless n1 = . . . = nm = 0. In either case, it follows that n0 and ‖n‖ are of the same order.
Therefore, part (a) describes the coefficient of a relatively large power of z in

∏m
j=1 f

nj

j . On the contrary,
if Z → 0 as ‖n‖ → ∞ then asymptotics for [zn0 ]

∏m
j=1 f

nj

j fall in the context of part (b). However, in this
case, (9) implies that n0 = o(‖n‖) i.e. part (b) provides information about a relatively small power of z in∏m

j=1 f
nj

j .

Remark 2.2 Condition (H1) in Theorem 2.1 is not as restrictive as it may seem. Indeed, if kj is the degree
of vanishing of fj about z = 0 then one may rewrite fj(z) = zkj · gj(z), with gj(0) 6= 0. As a result,

[zn0 ]
m∏

j=1

f
nj

j = [zn0−
Pm

j=1 kjnj ]
m∏

j=1

g
nj

j . (10)

The asymptotic analysis of the coefficients on the right-hand side above is now amenable for Theorem 2.1.
Indeed, for all d ∈ Sm

+ , z is a strictly minimal critical point associated with d for (g1, . . . , gm) if and only
if z is a strictly minimal critical point associated with (d0 +

∑k
j=1 kjdj , d1, . . . , dm) for (f1, . . . , fm).
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Remark 2.3 In some situations one might be more inclined to study the asymptotic behavior of coefficients
of the form [zn0 ] f0(z) ·

∏m
j=1 f

nj

j as ‖n‖ → ∞, where f0 is certain analytic function defined on the disk
[|z| < r]. In this particular setting, if one defines

A(θ;d) := f0(Z(d) · eiθ), (11)

then the asymptotic formulae in (7) and (8) are respectively replaced by

[zn0 ] f0
m∏

j=1

f
nj

j =
Z−n0

2π

m∏
j=1

{fj(Z)}nj·
(∫ ε

−ε

e−‖n‖·F(θ; n
‖n‖ ) ·A

(
θ;

n
‖n‖

)
dθ +O(e−‖n‖·c)

)
, (12)

[zn0 ] f0
m∏

j=1

f
nj

j =
Z−n0

2π

m∏
j=1

{fj(Z)}nj·
∫ π

−π

e−‖n‖·F(θ; n
‖n‖ ) ·A

(
θ;

n
‖n‖

)
dθ. (13)

The above approach could be preferred, for instance, if some of the exponents nj in (1) remain constant as
‖n‖ → ∞. In this case, f0(z) would collect all factors associated with a constant exponent. An advantage
to this approach stems from the fact that it might be slightly simpler to find strictly minimal points associated
with directions in Sm

+ for (f1, . . . , fm) than in Sm+1
+ for (f0, f1, . . . , fm).

Remark 2.4 It should be noted that formula (8) is not an asymptotic expansion but an equality based on
the integral representation of the coefficient [zn0 ]

∏m
j=1 f

nj

j by means of Cauchy’s formula.

Theorem 2.1 would be of no use without aditional quantitative information about the phase term F (θ;d).
The following accompanying result reveals the principal ingredients required to determine uniform asymp-
totic expansions (via non-coalescing or coalescing saddle-point methods) for the integral terms appearing
in (7), (8), (12) and (13).

Theorem 2.5 (Associated phase term properties.) Under conditions (H1) and (H2) it follows that for all
open disk Θ ⊂ C centered at the origin there exists an open disk B ⊂ Θ centered at the origin such that
F (θ;d), as defined in (5), is a continuous function over the set

Λ :=
(
Θ×Z−1B

)
∪
(
B × D

)
.

Furthermore,

(a) for d ∈ D, F (θ;d) is an analytic function of θ such that F (0;d) = ∂F
∂θ (0;d) = 0,

(b) for (θ;d) ∈ Λ such that θ ∈ R \ {0} and d /∈ Z−1{0}, the <{F (θ;d)} > 0,

(c) F (θ;d) = Z(d) ·G(θ;d), for a certain continuous function G(θ;d) defined over Λ, and

(d) for (θ;d) ∈ Λ such that d ∈ Z−1{0}, G(θ;d) = ∂H
∂z (θ, 0;d)− θ · ∂2H

∂z∂θ (0, 0;d), where

H(θ, z;d) := i · θ · d0 −
m∑

j=1

dj · ln
{
fj(z · eiθ)
fj(z)

}
.

3 Application: Coefficients of a tri-variate generating function
From a set of cardinality k a collection of n disjoint pairs is named. Let c(n, k, t) be the number of subsets
of cardinality t that fail to contain all of the pairs as subsets. By definition c(n, k, t) = 0 for 2n > k. On
the other hand, a simple inclusion-exclusion argument shows for 2n ≤ k that

c(n, k, t) =
n∑

i=0

(−1)i

(
n

i

)(
k − 2i
t− 2i

)
,

where it is understood that
(

i
j

)
= 0 unless 0 ≤ j ≤ i. Following the lines of (PW05) in Section 4.10,

observe that ∑
n,i,k,t:2n≤k

(
n

i

)(
k − 2i
t− 2i

)
xnykztwi =

1
1− y(1 + z)

· 1
1− xy2(1 + 2z + (1 + w)z2)

.
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In particular, by letting w = −1, we see that

C(x, y, z) :=
∑

n,k,t:2n≤k

c(n, k, t)xnykzt =
1

1− y(1 + z)
· 1
1− xy2(1 + 2z)

. (14)

Up to notational modifications, the coefficients of C(x, y, z) are analyzed in (PW05) for some special
cases where n, k and t blow up to infinity at a comparable rate. These coefficients are also analyzed
in (LPŠ+06) for a special case where n and k blow up to infinity at a comparable rate, however, t grows
sub-linearly with k. The discussion that follows extends the asymptotic analysis in (PW05) and (LPŠ+06).

The connection between the coefficients of C(x, y, z) and the discussion in the previous two sections
is revealed in the following lemma. Its proof can be found in (LPŠ+06) and follows by two consecutive
applications of the geometric series.

Lemma 3.1 If 2n ≤ k, then [xnykzt]C(x, y, z) = [zt] (1 + z)k−2n(1 + 2z)n.

In what follows, it is assumed that 2n ≤ k. In R3 consider the norm ‖d‖ := |d0| + |d1| + 2|d2|, where
d = (d0, d1, d2); in particular, S2

+ := {d ∈ R3
+ : d0 + d1 + 2d2 = 1}. Define D to be the set of elements

d ∈ S2
+ for which there exists a strictly minimal critical point associated with d for (1 + z, 1 + 2z). An

explicit description of D is revealed by the following result.

Lemma 3.2 D = {d ∈ S2
+ : d1 + d2 > d0} and, the transformation Z : D → R+ defined as

Z(d) :=
2d0

d1 + 2d2 − 3d0 +
√

(d1 + 2d2 − 3d0)2 + 8d0(d1 + d2 − d0)
, (15)

is such that for all d ∈ D, Z(d) is a strictly minimal critical point associated with d for (1 + z, 1 + 2z).
Furthermore,

Z−1{0} = {d ∈ R3
+ : d0 = 0 and d1 + 2d2 = 1}. (16)

Proof: Since f1(z) := 1+z and f2(z) := 1+2z are aperiodic polynomials with non-negative coefficients,
strictly minimal critical points associated with any direction for (f1, f2) must lie in R+. In particular, for
a fixed d ∈ S2

+, z is a strictly minimal critical point associated with d for (f1, f2), provided that it is a
solution of the equation

d0 =
d1z

1 + z
+

2d2z

1 + 2z
, z ≥ 0. (17)

We claim that the above equation has at most one solution. To show this, and since the above equation
has no solution if d ∈ S2

+ is such that d1 = d2 = 0, we may assume without loss of generality that d1 6= 0
or d2 6= 0. Given any such d ∈ S2

+, suppose that z ≥ 0 is a solution of (17). Then, since z/(1 + z) and
2z/(1 + 2z) are strictly increasing functions of z ≥ 0, it follows for 0 ≤ z1 < z < z2 that

d1z1
1 + z1

+
2d2z1

1 + 2z1
<

d1z

1 + z
+

2d2z

1 + 2z
= d0 <

d1z2
1 + z2

+
2d2z2

1 + 2z2
.

This shows our first claim.
Next, we claim that D ⊂ {d ∈ S2

+ : d1 + d2 > d0}. We show this by contradiction. Indeed, if
d1 + d2 ≤ d0 and (17) had a solution z then

d1 + d2 ≤ d0 =
d1z

1 + z
+

2d2z

1 + 2z
.

In particular,
d1

1 + z
+

d2

1 + 2z
≤ 0.

Since d ∈ S2
+, the above implies that d0 = 1 and d1 = d2 = 0. This is inconsistent with (17) which would

imply that d0 = 0. Therefore, D ⊂ {d ∈ S2
+ : d1 + d2 > d0} as claimed.

Finally, we show that {d ∈ S2
+ : d1 + d2 > d0} ⊂ D. As a matter of fact, observe that the solutions

of (17) coincide with the solutions of

2(d1 + d2 − d0)z2 + (d1 + 2d2 − 3d0)z − d0 = 0, z ≥ 0.
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Since for d1 + d2 > d0,

z =

√
(d1 + 2d2 − 3d0)2 + 8d0(d1 + d2 − d0)− (d1 + 2d2 − 3d0)

4(d1 + d2 − d0)
(18)

is a solution to the above equation, the claim follows. This in turn implies that D = {d ∈ S2
+ : d1 + d2 >

d0}. Furthermore, since equation (17) has at most one solution, it follows that z, as defined in (18), is
a a strictly minimal critical point associated with d for (f1, f2). The lemma follows by noticing that the
conjugate expression of (18) coincides with the definition of Z(d) in (15). 2

As a first application of Theorem 2.1 consider a fixed compact set K ⊂ D \ Z−1{0}. According to
Lemma 3.1, if 2n ≤ t then [xnykzt]C(x, y, z) = [zt] (1+z)k−2n(1+2z)n. In particular, using Lemma 3.2
and part (a) in Theorem 2.1, it follows that for all sufficiently small ε > 0 there exists a constant c > 0 such
that

[xnykzt]C(x, y, z) = Z−t(1 + Z)k−2n(1 + 2Z)n ·
(
Iε(n, k, t) +O(e−‖(t,k−2n,n)‖·c)

)
, (19)

for all (n, k, t) such that 2n ≤ k and (t, k − 2n, n)/‖(t, k − 2n, n)‖ ∈ K as ‖(t, k − 2n, n)‖ → ∞, where

Z := Z
(

(t, k − 2n, n)
‖(t, k − 2n, n)‖

)
=

2t
k − 3t+

√
(k − 3t)2 + 8t(k − n− t)

, (20)

Iε(n, k, t) :=
1
2π

∫ ε

−ε

exp
{
−‖(t, k − 2n, n)‖ · F

(
θ;

(t, k − 2n, n)
‖(t, k − 2n, n)‖

)}
dθ, (21)

F (θ;d) := i · d0 · θ − d1 · ln
{

1 + Z(d)eiθ

1 + Z(d)

}
− d2 · ln

{
1 + 2Z(d)eiθ

1 + 2Z(d)

}
, (22)

=
Z(d)

2

{
d1

(1 + Z(d))2
+

2d2

(1 + 2Z(d))2

}
θ2 + . . . (23)

Using the quantitative properties stated for F (θ;d) in Theorem 2.5, one may analyze the asymptotic be-
havior of Iε(n, k, t) by means of the non-coalescing saddle-point method. Our findings are summarized in
the following result.

Corollary 3.3 Let δ ∈ (0, 1). If (n, k, t) is such that 2n ≤ k, (1 + δ)t + n ≤ (1 − δ)k, and k = O(t) as
t→∞ then

[xnykzt]C =
Z−(t+1/2)(1 + Z)k−2n(1 + 2Z)n

√
2π

·
{

k − 2n
(1 + Z)2

+
2n

(1 + 2Z)2

}−1/2

· (1 + o(1)). (24)

Proof: Observe that (1 + δ)t + n ≤ (1 − δ)k is equivalent to t + δ‖(t, k − 2n, n)‖ ≤ (k − 2n) + n.
As a result, if t 6= 0 and α > 0 is such that k ≤ αt then (t, k − 2n, n)/‖(t, k − 2n, n)‖ ∈ K, where
K := {d ∈ S2

+ : 1/(1+α) ≤ d0 ≤ (d1 +d2)− δ} is a compact set. On the other hand, Lemma 3.2 implies
that K ⊂ D \ Z−1{0}. Since ‖(t, k − 2n, n)‖ = (k + t) → ∞ as t → ∞, formula (19) applies for the
regime of Corollary 3.3 if α is the multiplicative constant in k = O(t).

According to Theorem 2.5 there exists an open disk B ⊂ C centered at the origin such that F (θ;d) is
continuous for (θ;d) ∈ B × K and analytic for θ ∈ B. Without loss of generality assume that ε in (19) is
such that [−ε, ε] ⊂ B. Since, for d ∈ K, Z(d) 6= 0, we see from (23) that

1
2!
∂2F

∂θ2
(0;d) =

Z(d)
2

{
d1

(1 + Z(d))2
+

2d2

(1 + 2Z(d))2

}
. (25)

Since the above quantity is strictly positive for d ∈ K, F (θ;d) vanishes to constant degree 2 about θ = 0
for all d ∈ K. This motivates us to consider the transformation

τ = φ(θ;d) := θ ·
{

1
2!
∂2F

∂θ2
(0;d)

}1/2

·

(
1 +

F (θ;d)− 1
2!

∂2F
∂θ2 (0;d) · θ2

1
2!

∂2F
∂θ2 (0;d) · θ2

)1/2

,

where the square-roots are to be interpreted in the principal sense. The above transformation is a well-
defined continuous function of (θ;d) ∈ B × K and analytic function of θ ∈ B provided that the disk B is
chosen with a sufficiently small radius. Indeed, for a sufficiently small radius, one can warranty that for all
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d ∈ K, φ(θ;d) is a 1-to-1 analytic function of θ ∈ B. Furthermore, since φ(0;d) = 0 and, using that K is
compact,

inf
d∈K

∣∣∣∣∂φ∂θ (0;d)
∣∣∣∣ > 0,

Köbe 1/4-Theorem implies that there exists a radius ρ > 0 such that, for all d ∈ K, [|τ | < ρ] ⊂ φ(B;d). On
the other hand, since for each d ∈ K, φ−1(τ ;d) is a 1-to-1 analytic function of τ such that φ−1(0;d) = 0
and

inf
d∈K

∣∣∣∣∂φ−1

∂τ
(0;d)

∣∣∣∣ = 1

sup
d∈K

∣∣∣∂φ
∂θ (0;d)

∣∣∣ > 0,

Köbe 1/4-Theorem implies that there exists a radius δ > 0 such that, for all d ∈ K, [|θ| < δ] ⊂ φ−1([|τ | <
ρ];d). Summarizing, we have shown that there exist δ, ρ > 0 such that, for all d ∈ K, φ([|θ| < δ];d) ⊂
[|τ | < ρ] ⊂ φ(B;d). Assume without loss of generality that ε < δ. In particular, if (n, k, t) is such that
d = (t, k − 2n, n)/‖(t, k − 2n, n)‖ ∈ K then, by substituting τ = φ(θ;d) in (21), it follows that

Iε(n, k, t) =
1
2π

∫ φ(ε;d)

φ(−ε;d)

e−(k+t)·τ2 ∂

∂τ

[
φ−1(τ ;d)

]
dτ, (26)

uniformly for (t, k − 2n, n)/‖(t, k − 2n, n)‖ ∈ K. Furthermore, since ε < δ, the integrant above is an
analytic function of τ for |τ | < ρ and hence the line integral above is path independent. On the other hand,
observe that if τ = φ(±ε;d) then <{τ2} = <{F (±ε;d)}. Since K is a compact subset of D \ Z−1{0},
Theorem 2.5 implies that

inf
d∈K

<{(φ(±ε;d))2} = inf
d∈K

<{F (±ε;d)} > 0.

Consequently, according to the saddle-point method, the asymptotic behavior of the integral in (26) is, up to
an exponentially decreasing term, equivalent to the asymptotic behavior of the same line integral but with
the contour of integration replaced by a small real-neighborhood of τ = 0. More specifically, since

∂

∂τ

[
φ−1(τ ;d)

]∣∣∣∣
τ=0

=
{

1
2!
∂2F

∂θ2
(0;d)

}−1/2

,

it follows that

Iε(n, k, t) =
{

1
2!
∂2F

∂θ2
(0;d)

}−1/2

· 1
2π

∫ ∞

−∞
e−(k+t)·τ2

dτ · (1 + o(1)),

=
{

1
2!
∂2F

∂θ2
(0;d)

}−1/2

· 1
2

√
1

π · (k + t)
· (1 + o(1)).

The corollary follows from (19) and (25). 2

The second application of Theorem 2.1 is concerned with the asymptotic behavior of [xnykzt]C for
(n, k, t) such that (t, k − 2n, n)/‖(t, k − 2n, n)‖ ∈ D however (t, k − 2n, n)/‖(t, k − 2n, n)‖ approaches
to the setZ−1{0} as ‖(t, k−2n, n)‖ → ∞. In this case, part (b) in Theorem 2.1 and part (c) in Theorem 2.5
imply that

[xnykzt]C = Z−t(1 + Z)k−2n(1 + 2Z)n · I(n, k, t), (27)

where

I(n, k, t) :=
1
2π

∫ π

−π

exp
{
−‖(t, k − 2n, n)‖ · Z ·G

(
θ;

(t, k − 2n, n)
‖(t, k − 2n, n)‖

)}
dθ, (28)

G(θ;d) =
1
2

{
d1

(1 + Z(d))2
+

2d2

(1 + 2Z(d))2

}
θ2 + . . . (29)

and Z is as defined in (20). Observe that if Z → 0 as ‖(t, k−2n, n)‖ → ∞ then the coefficient [xnykzt]C
exposes a phase transition when ‖(t, k − 2n, n)‖ · Z goes from a bounded quantity to an unbounded one.
The properties specified for G(θ;d) in Theorem 2.5 lets us obtain the following result.
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Corollary 3.4 If (n, k, t) is such that 2n ≤ k and t = O(1) as k →∞ then

[xnykzt]C(x, y, z) =
kt

t!
· (1 + o(1)). (30)

If (n, k, t) is such that 2n ≤ k and t = o(k) as k →∞ and t→∞ then

[xnykzt]C(x, y, z) =
Z−t(1 + Z)k−2n(1 + 2Z)n

√
2πt

· (1 + o(1)). (31)

Proof: Lemma 3.2 implies that Z−1{0} = {d ∈ S2
+ : d0 = 0 and d1 + 2d2 = 1}. Observe that in the

context of formulae (30) and (31), t = o(k); in particular, since 2n ≤ k, t < k − n for all k sufficiently
large. Thus, for k large, Lemma 3.2 implies that (t, k − 2n, n)/‖(t, k − 2n, n)‖ ∈ D. In addition, since
t/‖(t, k − 2n, n)‖ = t/(t+ k) → 0 as k →∞, it follows that (t, k − 2n, n)/‖(t, k − 2n, n)‖ approaches
the set Z−1{0} as k →∞. All this implies that the asymptotic formula in (27) applies for all k sufficiently
large. On the other hand, part (d) in Theorem 2.5 implies that G(θ;d) = (d1 + 2d2) · (1 + iθ − eiθ) =
(1 + iθ − eiθ), for all d ∈ Z−1{0}. As a result,

lim
k→∞

G

(
θ;

(t, k − 2n, n)
‖(t, k − 2n, n)‖

)
= (1 + iθ − eiθ), (32)

and the above limit is uniform for all θ ∈ [−π, π]. Furthermore, since t = o(k) then, using (20), it follows
that Z = t/k · (1 + o(1)) as k → ∞. As a result, since ‖(t, k − 2n, n)‖ = (k + t) = k · (1 + o(1)), the
condition that t = o(k) implies

‖(t, k − 2n, n)‖ · Z ·G
(
θ;

(t, k − 2n, n)
‖(t, k − 2n, n)‖

)
= t · (1 + iθ − eiθ) · (1 + o(1)),

as k →∞, uniformly for all θ ∈ [−π, π].
If t = O(1) as k → ∞ then, in particular, t = o(k). As a result, we may use the above asymptotic

formula in (27) to obtain that

[xnykzt]C = Z−t(1 + Z)k−2n(1 + 2Z)n · 1
2π

∫ π

−π

e−t(1+iθ−eiθ)·(1+o(1))dθ,

=
(
k · e
t

)t

·
{

1
2π

∫ π

−π

e−t(1+iθ−eiθ)dθ + o(1)
}
· (1 + o(1)),

=
(
k · e
t

)t

·

{
1

2πi

∫
|z|=1

et(z−1)

zt+1
dz + o(1)

}
· (1 + o(1)),

=
(
k · e
t

)t

·

{
1
t!

(
t

e

)t

+ o(1)

}
· (1 + o(1)),

=
kt

t!
· (1 + o(1)).

This shows (30).
Finally, we consider the case where (n, k, t) is such that 2n ≤ k and t = o(k) as k, t → ∞. Since t =

o(k) then ‖(t, k−2n, n)‖·Z = t·(1+t/k)·(1+o(1)) ≥ t(1+o(1)); in particular, ‖(t, k−2n, n)‖·Z → ∞.
On the other hand, using (32), it follows that

lim
k→∞

<
{
G

(
θ;

(t, k − 2n, n)
‖(t, k − 2n, n)‖

)}
= 1− cos θ,

uniformly for all θ ∈ [−π, π]. In particular, under the regime we are considering, it follows that for all
sufficiently small ε > 0 there exists a constant γ > 0 such that

I(n, k, t) =
1
2π

∫ ε

−ε

exp
{
−(k + t) · Z ·G

(
θ;

(t, k − 2n, n)
‖(t, k − 2n, n)‖

)}
dθ +O(e−(k+t)·Z·γ).

To analyze the asymptotic behavior of the integral above, observe that from (29) it follows that

1
2!
∂2G

∂θ2
(0;d) =

1
2

{
d1

(1 + Z(d))2
+

2d2

(1 + 2Z(d))2

}
.
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In particular, G(θ;d) vanishes to constant degree 2 about θ = 0 for all d ∈ D sufficiently close to Z−1{0}.
By repeating the argument used to show Corollary 3.3, it follows this time that

I(n, k, t) =
{

1
2!
∂2G

∂θ2

(
0;

(t, k − 2n, n)
‖(t, k − 2n, n)‖

)}−1/2

· 1
2

√
1

π(k + t)Z
· (1 + o(1)) +O(e−(k+t)·Z·γ).

The asymptotic formula in (31) follows from (27) and (32). This completes the proof of the corollary. 2

4 Application: Core size of planar maps
To end our manuscript we would like to emphasize that the methodology we have provided can also deal
with the occurrence of factors with negative Taylor coefficients in (1). To fix ideas consider the probability
pn,k that a non-separable rooted map with (n+ 1)-edges has a 3-connected non-separable rooted sub-map
with (k + 1)-edges. The asymptotic behavior of coefficients like these is exhaustively studied in (BFSS01)
as part of a more general apparatus developed by Banderier et al to study the connectivity properties of the
root of a random planar map.

Let Mn be the number of non-separable rooted maps with (n + 1)-edges and Ck the number of 3-
connected non-separable rooted maps with (k + 1)-edges. It follows from Tutte’s work that

pn,k =
k · Ck

n ·Mn
· [zn−1]φ(z)nψ(z)k−1ψ′(z),

where φ(z) := (1 + z)3 and ψ(z) := z(1− z). Since the coefficients Ck and Mn are of a Lagrangean type
their asymptotic behavior can be determined using singularity analysis (FO90). Hence asymptotics for pn,k

are reduced to asymptotics for [zn−1]φ(z)nψ(z)k−1ψ′(z) as n, k →∞. Using the non-coalescing version
of the saddle-point method Banderier et al (BFSS00) obtain asymptotic formulae for pn,k for the central
region k = n/3. On the contrary, the coalescing saddle-point method must be used to study the asymptotic
behavior of these coefficients in the central region with scaling window of size n2/3, namely when k and n
satisfy an asymptotic relation of the form

k − n

3
= O(n2/3). (33)

For this regime, the leading asymptotic term of the integral obtained by representing pn,k via Cauchy’s
formula corresponds to the occurrence of two simple-saddles that coalesce at z = 1/2 as n→∞. Banderier
et al obtain for all finite real numbers a ≤ b that

lim
(n,k)→∞

sup
a≤ k−n/3

n2/3 ≤b

∣∣∣∣n2/3 · pn,k −
16
81
· 34/3

4
· A
(

34/3

4
· k − n/3

n2/3

)∣∣∣∣ = 0 , (34)

where A(x) := 2 e−2x3/3
(
x · Ai(x2) − Ai′(x2)

)
is the density of the map-Airy distribution and Ai(z) is

the Airy function (see (BFSS00) for more details).
The end of our manuscript is devoted to show how the above analysis would fit in our framework. For

this observe that

[zn−1]φ(z)nψ(z)k−1ψ′(z) = [zn0 ](1 + z)n1(1− z)n2 − 2[zn0−1](1 + z)n1(1− z)n2 , (35)

where n0 := (n−k), f1(z) := (1+z), n1 := 3n, f2(z) := (1−z) and n2 := (k−1). In what follows we use
‖·‖∞ as the reference norm; in particular, S2

+ = {d ∈ R3
+ : 0 ≤ min{d0, d1, d2} ≤ max{d0, d1, d2} = 1}.

Notice that for the regime in (33), ‖(n0, n1, n2)‖∞ = 3n and (n0, n1, n2) ∼ n · (2/3, 3, 1/3). In particular,
under the restriction imposed by (33) it applies that

lim
n→∞

(n0, n1, n2)
‖(n0, n1, n2‖∞

=
(

2
9
, 1,

1
9

)
. (36)

Furthermore, observe that the above limit belongs (D ∩ ∂D), where D is the set defined as

D := {d ∈ S2
+ : d1 = 1 and (d1 − d2)2 ≥ 4d0(d1 + d2 − d0)} \ {(0, 1, 1), (1, 1, 0)}.

The link between the Airy phenomena as described by Banderier et al and our framework is revealed by the
following result.
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Lemma 4.1 The transformation Z : D → R+ defined as

Z(d) :=
2d0

(d1 − d2) +
√

(d1 − d2)2 − 4d0(d1 + d2 − d0)

is such that for all d ∈ D, Z(d) is a strictly minimal critical point associated with d for (1 + z, 1 − z).
Furthermore,

∂2F

∂θ2
(0;d) ≥ 0

for all d ∈ D with equality only for d such that d0 = 0 or (d1 − d2)2 = 4d0(d1 + d2 − d0).

Proof: Set f1(z) := 1 + z and f2(z) := 1 − z. Consider d = (d0, d1, d2) ∈ D; in particular, d1 = 1 and
d2 < 1. Furthermore, 2d0 ≤ (1−

√
d2)2 or 2d0 ≥ (1 +

√
d2)2 and if either of these inequalities is indeed

an equality then d ∈ ∂D. In what follows it is assumed that 2d0 ≤ (1 −
√
d2)2. The proof of the lemma

for the other case is similar and left to the reader.
In order for z to be a critical point associated with d for (f1, f2) it is necessary that d0 = d1z/(1 + z)−

d2z/(1−z). A straightforward calculation shows that z = Z(d) is a non-negative solution of this equation.
On the other hand, by reducing to polar coordinates, one determines for r ≥ 0 that |f1(x)|d1 |f2(x)|d2 has
x = r as its unique maxima on the circle |x| = r provided that

1− d2

1 + d2
≥ 2r

1 + r2
. (37)

Solving for the above inequality in terms of the variable r, one sees that the condition r ≤ (1−
√
d2)/(1 +√

d2) is sufficient for (37) and that the above inequality is strict unless r = (1 −
√
d2)/(1 +

√
d2). In

particular, since

Z(d) ≤ (1−
√
d2)2

1− d2 +
√

(1− d2)2 − 4d0(1 + d2 − d0)
,

=
1−

√
d2

1 +
√
d2

· 1− d2

1− d2 +
√

(1− d2)2 − 4d0(1 + d2 − d0)
,

≤ 1−
√
d2

1 +
√
d2

,

it follows that Z(d) is a strictly minimal simple point associated with d for (f1, f2). The above shows in
particular that Z(d) < 1. In addition, since

∂2F

∂θ2
(0;d) =

(1− d2)Z(d)
2(1−Z(d)2)2

(
Z(d)− 1−

√
d2

1 +
√
d2

)(
Z(d)− 1 +

√
d2

1−
√
d2

)
,

it also follows that ∂2F
∂θ2 (0;d) ≥ 0. Furthermore, ∂2F

∂θ2 (0;d) = 0 if and only if Z(d) = 0 or Z(d) =
(1 −

√
d2)/(1 +

√
d2). The first condition is equivalent to having d0 = 0. The second condition is

equivalent to having 2d0 = (1−
√
d2)2 which in turn implies that d ∈ ∂D. This completes the proof. 2

With the aid of the above lemma and of theorems 2.1 and 2.5, we see from (35) that the asymptotic
behavior of [zn−1]φ(z)nψ(z)k−1ψ′(z) can be reduced to the one of an oscillatory integral provided that
n→∞ and that for all n sufficiently large,(

n− k

3n
, 1,

k − 1
3n

)
∈ D.

Indeed, as it follows from the proof of the Lemma 4.1, the above condition is equivalent to request that
1 ≤ k ≤ n and that

2(n− k)
3n

≤

(
1−

√
k − 1
3n

)2

or
2(n− k)

3n
≥

(
1 +

√
k − 1
3n

)2

.

The regime in (33) is a particular instance of the left-hand side above. In terms of our framework, the
occurrence of the Airy function in (34) is due to (36) and the fact that

F

(
θ;

1
9
, 1,

2
9

)
=

8i
81
θ3 +

10
81
θ4 + . . .
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The local limit in (34) results from part (a) in Theorem 2.1 and from a second-order asymptotic expansion
(obtained using the coalescing saddle-point method) of the integrals associated with the two terms on the
right-hand side of (35). The need for second-order expansions is because the factor ψ′(z) = 1− 2z on the
right-hand side of (35) cancels out at z = Z(1/9, 1, 2/9) = 1/2.
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