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Statistical Properties of Similarity Score
Functions

Jérémie Bourdon and Alban Mancheron
LINA, CNRS FRE 2729 and University of Nantes

In computational biology, a large amount of problems, such as pattern discovery, deals with the comparison of several
sequences (of nucleotides, proteines or genes for instance). Very often, algorithms that address this problem use score
functions that reflect a notion of similarity between the sequences. The most efficient methods take benefit from
theoretical knowledge of the classical behavior of these score functions such as their mean, their variance, and sometime
their asymptotic distribution in a given probabilistic model.

In this paper, we study a recent family of score functions introduced in [MR03], which allows to compare two words
having the same length. Here, the similarity takes into account all matches and mismatches between two sequences and
not only the longest common subsequence as in the case of classical algorithms such as BLAST or FASTA. Based on
generating functions, we provide closed formulas for the mean and the variance of these functions in an independent
probabilistic model. Finally, we prove that every function in this family asymptotically behaves as a Gaussian random
variable.

Keywords: average-case analysis; score functions; sequence comparison.

1 Introduction
In the last few decades, bio-informatics became a full discipline, at the crossroad of computer sciences and
biology. Thus, several algorithms were developed in order to solve some biological problems (see [VA03]
for a – non-exhaustive – review). In this paper, we focus on methods that try to solve the problem of
discovering patterns in a set of nucleic or amino acid sequences, which may have biological properties. The
main idea of almost all these algorithms is that a meaningful pattern (from biological point of view) is over-
represented in input sequences, according to a similarity notion. Actually, a pattern is almost never perfectly
conserved in biological sequences, due to mutations over the evolution process. So, algorithms may decide
whenever two patterns are similar or not. But extracting all similar patterns is not sufficient, because the
number of solutions may be too much important. For example, TEIRESIAS algorithm [RF98], used with
default parameters, provides much more than 30 patterns that appears in all the sequences, for a set of 10
random i.i.d sequences having length 100 over DNA alphabet. It is sometime useful to assign a measure
to each solution that permits to order the patterns and to output only “promising” solutions. So, methods
should define the similarity notion and then, suggest at least one measure in order to refine the solution
space. But, even if some measurement may indicate how similar patterns are, it is rarely sufficient. Some
methods provide an estimation or an exact calculation of the expected value and the standard deviation of
the behavior of the measure. Thus, these methods use the well known so called Z-value, or Z-score (also
named “standardized score”). This score expresses how many standard-deviation units above or below the
mean of the initial score falls. Thereafter, we will rather use the term “score” than “measure”. Just recall
that a score is not necessary a resemblance measure (either a distance or a similarity – for more details
see [BB95] –).

The Z-score is quite useful when comparing two scores following different distributions (whatever they
are) or when the distribution of the score function is known. In this last case, one can efficiently computes
the probability of having at least one such score according to its distribution. This probability is also called
the p-value, or p-score. Actually, knowing the Z-score is better than just having a score. But the p-value
expresses a probability, which accredits the relevance of the result (see [DRV01] for a discussion).

In practice, most of the algorithms do not use Z-score, because the mean and the standard deviation
of the score function is not known. Some methods compute the average score and the standard deviation
empirically, but since it often requires too much time, they only compute an approximation. More often,
the approximation is done under strong assumptions of independent model (for example, by supposing that
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in pattern matching, each symbol occurs with a probability which is independent from the context). This
appears to provide good approximations on the expected results.

For example, very popular methods in Combinatorial Biology like BLAST [AGM+90, KA90], or like
FASTA [WL83, LP85, PL88] (more generally tools based on the Needleman-Wunsch algorithm [NW70])
use score functions, which were shown to follow the extreme value distribution (or “Gumbel”) laws. This
explains why their are so efficient and thus so popular. Another score function, which provides good
(biologically speaking) results is the “Information Content” [Sha48, SSGE86]. This kind of score functions
follows a gamma distribution [HS99]. This function is used in PRATT [EJT99, Jon97].

Mancheron & al. [MR03] elaborate an algorithm for pattern extraction problem that could use three
families of score function. The first one allows to use substitution matrices, the second one corresponds
to the function based on “Information Content” [Sha48], and the third family consists in the cutting in
consecutive blocks of “matches” and “mismatches” in the pair-wise compared patterns. This cutting is often
refereed as the “similarity” between the two sequences. In this paper, we will show that all the functions
in this family asymptotically follow a normal distribution under the Bernoulli assumption. This family
will be fully introduced in the latter section, as well as the method employed. Then, Section 3 concerns the
computation of expected value and variance of these score functions, whereas Section 4 is dedicated to their
distribution. Finally, we provide some closed formulas of some score functions and experimental results.

2 Generating functions for similarities
In this paper, we study the statistical behavior of a score between two sequences. This score is computed
by using a decomposition of the similarity of these sequences.

More formally, we address the following problem: let s = s1 . . . sn and s′ = s′1 . . . s′n be two sequences
having length n. We denote by w(s, s′) = w1 . . . wn the binary word of length n that is defined by wi = 1
if si = s′i and wi = 0 otherwise. The word w(s, s′) is called the similarity of the two sequences s and s′.

The similarity is a sequence of runs of 0’s and 1’s that corresponds to the different matches and mis-
matches between the two original sequences. It can be written as

w(s, s′) = 0`
(1)
0 1`

(0)
1 0`

(1)
1 · · · 1`

(0)
t 0`

(1)
t 1`

(0)
t+1 ,

where t ≥ 0, ∀i ∈ {1, . . . , t}, `(1)i , `
(0)
i > 0 and `

(1)
0 , `

(0)
t+1 ≥ 0.

We will now use two functions f (1) and f (0) for scoring the runs of matches (runs of 1’s) and the runs of
mismatches (runs of 0’s). These two functions are called the component scoring functions.

The score between two sequences equals the sum of all the values of the function f (1) (resp. f (0)) for
all the (length of the) runs of matches (resp. all the runs of mismatches) between the two sequences. It is
defined by using the similarity w(s, s′) between s and s′,

S(w(s, s′)) =
t+1∑
i=1

f (1)(`(0)i ) +
t∑

i=0

f (0)(`(1)i ), (2.1)

where w(s, s′) = 0`
(1)
0 1`

(0)
1 0`

(1)
1 · · · 1`

(0)
t 0`

(1)
t 1`

(0)
t+1 is the similarity between s and s′. In fact, the score S(w)

is defined for any binary word w since any binary word can be decomposed as a sequence of runs of 0’s and
1’s.

This scoring function scheme has been used by the motifs extraction algorithm STARS [MR03].

When the sequences s and s′ are some random sequences drawn by a memoryless source of respective
probabilities {pα}α∈Σ, the similarity between s and s′ is itself is a random binary sequence produced by a
memoryless source of probabilities {p0 := 1− p, p1 := p}, where

p =
∑
α∈Σ

pαp′α.

It is convenient here to introduce some formalism. We denote by Ω = {0, 1}N (resp.Ωn = {0, 1}n) the
set of infinite binary words (resp. words with n letters). We endow these sets with the memoryless source
of probabilities {p0, p1}, that we denote by Pp and P(n)

p (or more simply P, and P(n). In other words,
under this distribution the letters are i.i.d. Bernoulli random variables with parameter p = p1. Since the
score of any words w ∈ Ωn depends only on the lengths of the runs of 0 and 1 in w, we recall some
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classical properties of the runs under Pp. Under Pp, the successive lengths of runs of 0’s L
(0)
i , i ≥ 1 and of

1’s, L
(1)
i , i ≥ 1 are independent. Furthermore, L

(0)
i and L

(1)
i are geometric random variables of respective

parameters p and 1− p and thus, they satisfies ∀i ≥ 1,

E0 = E
[
L

(0)
i

]
=

1
p
,E1 = E

[
L

(1)
i

]
=

1
1− p

, V0 = Var
[
L

(0)
1

]
=

p

(1− p)2
and V1 = Var

[
L

(1)
1

]
=

1− p

p2
.

Hence, under Pp, the score can be expressed as a sum of terms of the type f (0)(L(0)
i ) and f (1)(L(1)

i ). When
the function f (0) and f (1) are of polynomial order, all the moments of these random variables are finite; we
set

E′
0 = E

[
f (0)(L(0)

1 )
]
, E′

1 = E
[
f (1)(L(1)

1 )
]
, V ′

0 = Var
[
f (0)(L(0)

1 )
]

and V ′
1 = Var

[
f (1)(L(1)

1 )
]
. (2.2)

These quantities will be used to express most of our results. To avoid non trivial complications, we restrict
our study to component scoring functions that are functions on N of polynomial order (i.e., there exists
κ > 0 such that f (1)(m) = O(mκ) and f (0)(m) = O(mκ)). This condition is quite natural as it ensures
the existence of all moments of f (0)(L(0)

1 ) and f (1)(L(1)
1 ).

The constants defined in (2.2) are geometric-like series. Thus, for reasonable score component functions,
they are efficiently approximated (in the sense that the computation of the n-th digit requires O(n) terms of
the series). Furthermore, for a large class of component functions, these constants admits a closed formula
(in section 5 we provide formulas and results for polynomial score component functions).

Under Pn
p , the score Sn is the sum of contributions of each blocks, it rewrites as

Sn =
τn∑
i=1

(f (0)(L(0)
i ) + f (1)(L(1)

i )) + Rn (2.3)

where τn = max{k,
∑k

i=1 L
(0)
i + L

(1)
i ≤ n} is the number of complete pairs of complete blocks that is

needed to attain a word of length n. The quantity Rn is the contribution of the remainder part of the word,
i.e., Rn = f0(K

(0)
n ) + f1(K

(1)
n ), where K

(0)
n and K

(1)
n are the lengths of the last blocks of 0’s and 1’s and

are eventually null.
The remaining part of the paper is devoted to the asymptotic study of Sn when n → +∞. We derive its

mean, its variance and prove that its distribution behaves asymptotically as a Gaussian variable.

2.1 Score generating functions

If the component scoring functions are linear, it is easy to show that the mean and the variance are moments
of Bernoulli sums, and that the distribution is then the one of a sum of Bernoulli trials, i.e. a binomial
distribution, which is asymptotically normal. But in the general case we need another approach.

We now introduce a very useful tool for studying problems on words. Let L be a set of words. The
(probabilistic) generating function in one variable associated to the set L is the formal sum L(z) defined
by:

L(z) :=
∑
w∈L

pwz|w| =
∑
n≥0

zn
∑

w∈L,|w|=n

pw,

where |w| denotes the length of w and pw is the probability that a random word begins by w (which is
commonly called the probability of w). We will denote by [zn]L(z) the coefficient of zn in the formal sum
L(z).

The score generating function associated to the score function S(w) is the bivariate (probabilistic) gen-
erating function L(z, u) associated to the set L defined by:

L(z, u) :=
∑
w∈L

pwuS(w)z|w| =
∑
n≥0

zn
∑

w∈L,|w|=n

pwuS(w).

The coefficient of zn in L(z, u) and its derivatives at u = 1 are fundamental in an average-case study.
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2.2 Mean and variance of the score.
In the sequel, we will focus on the mean and the variance of a random variable Sn corresponding to a
certain score function S(w), when w is a random word of the set Σ? = {0, 1}? that has length n. These two
quantities are easily expressed by means of the derivatives of the score generating function L(z, u). Indeed,
we have:

E[Sn] :=
∑
|w|=n

pwS(w) = [zn]
∂

∂u
L(z, u)|u=1, and Var[Sn] = E

[
S2

n

]
− (E[Sn])2,

with E
[
S2

n

]
:=

∑
|w|=n

pwS(w)2 = [zn]
(

∂2

∂u2
L(z, u)|u=1 +

∂

∂u
L(z, u)|u=1

)
.

Thus, obtaining tractable expressions for the score generating function and its derivatives allows to easily
extract the coefficient of zn.

With some natural assumptions on the score function (the score function is additive), we can use a “dic-
tionary” that translates relations on sets to relations on their generating functions (cf. [FSar] for a detailed
presentation of generating functions).

Sets Generating functions
Σ z · (

∑
m∈Σ pmuS(m))

A ∪ B A(z, u) + B(z, u)
A× B A(z, u)×B(z, u)

A? :=
⋃

i≥0Ai 1
1−A(z, u)

Unfortunately, in general, the score functions do not satisfy the additive property. Nevertheless, they are
additive “by blocs” (i.e., S(u · v) = S(u) + S(v) if the last letter of u differs from the first letter of v).
The previous dictionary also applies to the score generating function for any decomposition that respects
“blocs”.

The final step of the study of the mean and the variance consists in an extraction of the coefficient of zn

in the generating function. The following lemma helps a lot:

Lemma 1 (Coefficient extraction) if A(z) is a power series that admits the following decomposition

A(z) =
(

1
1− z

)b+1

zmP (z),

where P (z) is an analytic function in a complex neighborhood of z = 1 and is such that P (1) are non null,
then the coefficients of zn in A(z) equals

[zn]A(z) =
b∑

r=0

(−1)r

(
n−m + b− r

b− r

)
P (r)(1)

r!
+ o(1).

Proof: After a Taylor development of order b of P (z) in a neighborhood of z = 1, we obtain A(z) =

zm
∑b

r=0(−1)r × P (r)(1)
r! ×

(
1

(1−z)

)b−r+1

. Next, it is a basic application of Flajolet-Odlyzko “Transfer
Theorem” [FO90] that states

[zn](1− z)−(b+1) =
(

n + b

n

)
=

(
n + b

b

)
.

2

Notice that when P (r)(1) is not null, the r-th term of the sum is a polynomial of order nb−r. Thus, the
first order term of [zn]A(z) is given by the term r = 0, while the second order term is provided by the term
r = 1 (and r = 0). The remainder is o(nb−1).
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3 The average score and its variance
First, notice that any word on alphabet {0, 1} decomposes as sequences of runs of 0’s and runs of 1’s.
Formally, in a regular expression language, one has

{0, 1}? = 0?(1+0+)?1?,

where 0+ and 1+ denotes respectively the sets of runs of 0’s (resp. 1’s) of any strictly positive length.
This decomposition respects blocs. Furthermore, the score function is additive “by blocs” (i.e., S(u·v) =

S(u) + S(v) if the last symbol of u differs from the first symbol of v). We are thus able to apply the
dictionary that translates relations on languages on relations on generating functions and

L(z, u) = (1 + S0(z, u)) · 1
1− S1(z, u)S0(z, u)

· (1 + S1(z, u)),

where S0(z, u) :=
∑

k>0 pk
0uf(0)(k)zk and S1(z, u) :=

∑
k>0 pk

1uf(1)(k)zk are the score generating func-
tions associated to the sets 0+ and 1+.

In the sequel, it proves useful to introduce the series

G0(z, u) :=
∑
k>0

p1p
k−1
0 uf(0)(k)zk and G1(z, u) :=

∑
k>0

p0p
k−1
1 uf(1)(k)zk.

They are the generating functions of random geometric variables of respective probabilities p1 and p0.
These series are closely related to S0 and S1 and one has S0 = p0G0/p1 and S1 = p1G1/p0. Thus L(z, u)
rewrites as,

L(z, u) = (1 + p0G0(z, u)/p1) ·
1

1−G1(z, u)G0(z, u)
· (1 + p1G1(z, u)/p0).

In order to obtain the average score, we compute the first derivative (according to variable u) of L(z, u).
One has

∂

∂u
L(z, u) =

p0
p1

∂G0(z,u)
∂u (1 + p1

p0
G1(z, u))2 + p1

p0

∂G1(z,u)
∂u (1 + p0

p1
G0(z, u))2

(1−G0(z, u)G1(z, u))2
. (3.1)

When evaluated at point u = 1, most of the quantities simplify. Indeed, one obtain

1 +
p0

p1
G0(z, 1) =

1
1− zp0

, 1 +
p1

p0
G1(z, 1) =

1
1− zp1

, and

1
1−G0(z, 1)G1(z, 1)

=
(1− zp0)(1− zp1)

1− z
.

Furthermore, notice that the functions (∂G0(z,u)
∂u /z) and (∂G1(z,u)

∂u /z) are analytic functions on R, non null
for z = 0 and z = 1. The first derivative thus equals

∂

∂u
L(z, u)

∣∣
u=1

=
z

(1− z)2
1

p0p1
[p2

0

∂G0(z, u)/z

∂u

∣∣
u=1

(1− zp0)2 + p2
1

∂G1(z, u)/z

∂u

∣∣
u=1

(1− zp1)2].

Finally, Lemma 1 clearly applies. This provides the following expression for the average score:

E[Sn] = (n− 1)p0p1(E′
0 + E′

1) + 2(p2
0E

′
0 + p2

1E
′
1)− p0p1(C0 + C1) + o(1), (3.2)

where C0 and C1 are given by

C0 = E
[
L(0)f (0)(L(0))

]
, and C1 = E

[
L(1)f (1)(L(1))

]
.

The determination of the variance of the score involves the second derivative of L(z, u) at point u = 1.
Although this computation is more intricate, it does not imply additional technical improvements.

Finally we prove the following theorem.

Theorem 1 The expectation and the variance of the score function S(w) when w is a word of length n
produced by a binary Bernoulli source of probabilities p0 = 1− p and p1 = p satisfy

E[Sn] = (n− 1)p0p1(E′
0 + E′

1) + 2(p2
0E

′
0 + p2

1E
′
1)− p0p1(C0 + C1) + o(1), (3.3)

Var[Sn] = np0p1(V ′
0 + V ′

1 + (E′
0 + E′

1)
2(p3

0 + p3
1 − 2) + 2p0p1(E′

0 + E′
1)(C0 + C1) + o(n) (3.4)

where the constants are closely related to moments of two independent geometric random variables L(1)

and L(0) of respective success probabilities p0 and p1,
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At this point, we have proven a linear behavior for the mean and the variance of the score for random
strings. Thus, Bienaymé-Tchebyshev inequality allows to express a concentration property for the distribu-
tion of the score.The next step is to study the distribution of the score. We prove in the following section
that this distribution follows asymptotically a normal law.

4 Distribution
The asymptotic distribution is one of the most informative results in the study of a sequence of random
variables. For instance, Z-scores (i.e., the centered and normalized version of scores) that are used in a
large amount of probabilistic heuristics, are especially meaningful when the refereed parameter possesses a
normal distribution with mean 0 and variance 1.

When the component functions are linear functions, the score is a linear function of a binomial random
variable and converges in distribution to a Gaussian random variable. In this section, we extend this result
to any pair of component score functions of any type.

Theorem 2 Under Pn
p , the score Sn admits the following convergence in law

Sn − nc′

c√
Var[Sn]

(d)−−−−→
n→∞

N (0, 1),

where c = E0 + E1 = 1
p(1−p) , c′ = E′

0 + E′
1 and Var[Sn] admits the expressions (3.2) and (3.4).

We recall the following classical lemma:

Lemma 2 Let (Xn) and (Yn) be two sequences of random variables in Rd, if Xn
L−−→
n

X and ||Xn −

Yn||
proba−−−−→

n
0 (for a given norm on Rd), then Yn

L−−→
n

X .

Proof of Theorem 2:
We introduce two centered random walks that will be useful to decompose the quantities of interests.

Zk =
k∑

i=1

L
(0)
i + L

(1)
i − c, and Z ′k =

k∑
i=1

f (0)(L(0)
i ) + f (1)(L(1)

i )− c′,

where c = E0 + E1 = 1
p(1−p) and c′ = E′

0 + E′
1.

The random variable Sn admits the following representation:

Sn −
nc′

c
=

(
Z ′τn

− Z ′n/c

)
+ Z ′n/c +

(
τn −

n

c

)
c′ + Rn.

Theorem 2 is a consequence of the following proposition:

Proposition 1 The following convergences holds

(1) n−1/2Rn
proba−−−−→

n
0;

(2) n−1/2
√

c
(
Z ′n/c , (τn − n

c )c′
)

L−−→
n

N (0,M), the centered Gaussian distribution in R2 with covari-
ance matrix

M =
(

V ′
0 + V ′

1 (c′/c)ρ
(c′/c)ρ (c′/c)2(V0 + V1)

)
where ρ =

c′

c
cov

(
f (0)(L(0)

1 ) + f (1)(L(1)
1 ), L(0)

1 + L
(1)
1

)
,

(3) n−1/2(Z ′τn
− Z ′n/c)

proba−−−−→
n

0.

Indeed, thanks to (2),

n−1/2
(
Z ′n/c + (τn −

n

c
)c′

)
L−−→
n

1√
c
N (0,Σ2),
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where the variance Σ2 = 1
c ((c′/c)2(V0 + V1) + (V ′

0 + V ′
1) + 2(c′/c)ρ. Now it is easy to check that this

quantity is the same as the first order term of Var[Sn] given in (3.4).. Lemma 2 concludes the proof of
theorem 2. 2

We now prove all the points in the proposition.

Proof: (1) Since f (0) and f (1) are of polynomial order, there exists κ such that f (0)(m) ≤ mκ and
f (1)(m) ≤ mκ. Thus, one has

|Rn| = |f (0)(K(0)
n ) + f (1)(K(1)

n )| ≤ |(K(0)
n )κ|+ |(K(1)

n )κ| ≤ | sup
1≤n/2

(L(0)
i )κ|+ sup

1≤n/2

|(L(1)
i )κ|,

since K
(0)
n and K

(1)
n are included in one of the n first blocks.

Now, it is easy to prove that the probability that the maximum of n/2 i.i.d. geometrical random variable
is larger than ε

√
n goes to 0 when n → +∞ (the right order of this maximum is log n).

(2) First, the definition of τn implies that{
(τn − n/c)c′√

n
≤ y

}
=

{
Zn

c +y
√

n

c′
≥ −y

√
n

c

c′

}
.

By a simple application of the Bienaymé-Tchebyshev inequality n−1/2(Zn
c
− Zn

c +y
√

n

c′
)

proba.−−−−→
n

0, and

then applying lemma 2, Xn = (Z ′n
c
, Zn

c
) and Yn = (Z ′n

c
, Zn

c +y
√

n

c′
) have the same limit in distribution in

R2, if any. Now the vector Xn = (Z ′n, Zn) is clearly a sum of n i.i.d. (centered) random variables Γi with

Γi = (f (0)(L(0)
i ) + f (1)(L(1)

i )− c′, L
(0)
i + L

(1)
i − c).

The result is now a consequence of the central limit theorem applied to Xn/c.

(3) Let ε > 0. We shall establish that limn→∞ Prob
[
|Z ′τn

− Z ′n/c| ≥ ε
√

n
]

= 0. We distinguish two cases

whether the condition |τn − n/c| ≤ n2/3 is satisfied or not. One has

Prob
[ |Z′

τn
−Z′

n/c|√
n

≥ ε
]

≤ Prob
[
|Z ′τn

− Z ′n/c| ≥ ε
√

n, |τn − n/c| ≤ n2/3
]

+ Prob
[
|τn − n/c| > n2/3

]
.

The second probability tends to zero when n → ∞ by (2). The first probability, denoted from now on by
an satisfies

an ≤ Prob
[
∆(Z ′, [n/c− n2/3, n/c + n2/3]) ≥ ε

√
n
]

(4.1)

= Prob
[
∆(Z ′, [0, 2n2/3] ≥ ε

√
n
]

(4.2)

≤ Prob
[
max{2|Z ′k|, k ∈ [0, 2n2/3]} ≥ ε

√
n
]

(4.3)

where for any interval I , ∆(Z ′, I) = max{Z ′k, k ∈ I} −min{Z ′k, k ∈ I}. Formula (4.1) is a consequence
of the following considerations. First, if I ⊂ J then ∆(Z ′, I) ≤ ∆(Z ′, J). Secondly |Z ′τn

− Z ′n/c| ≤
∆(Z ′, [τn∧n/c, τn∨n/c]). Hence |Z ′τn

−Z ′n/c| ≤ ∆(Z ′, [n/c−n2/3, n/c+n2/3]) when |τn−n/c| ≤ n2/3.
Equation (4.2) follows the Markov property of the random walk Z ′, and (4.3) is clear.

The classical Doob’s inequality applied to the martingale (Z ′k), yields that for any q > 1,

E[max0≤k≤m |Z ′k|q] ≤ (
q

q − 1
)qE[|Z ′m|q].

Therefore, by (4.3) and the Markov inequality, taking m = 2n2/3 and q = 2,

an ≤ Prob
[
maxk∈[0,m] |Z ′k|2 ≥ ε2n/4

]
≤ C

E
[
|Z ′m|2

]
εn

=
Cmσ′2

εn
,

for some constant C. This latter quantity converges to zero when n →∞. 2
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5 Application to traditional functions and numerical examples
5.1 STARS’s classical functions
Now, we present several example of score functions. Here, our aim is to give closed expressions for the
constants E′

0, C0, V ′
0 , E′

1, C1 and V ′
1 for each score function used by the pattern extraction algorithm

STARS.

Let X be a geometric random variable of parameter p. We compute the moments

E[f(X)] =
∑
k>0

f(k)p(1− p)k−1, E[Xf(X)] =
∑
k>0

kf(k)p(1− p)k−1, and

E
[
(f(X))2

]
=

∑
k>0

f(k)2p(1− p)k−1,

for almost all component scoring functions (that could be) implemented in STARS.
For a monomial score, the computation can be easily done by using function D(z) = 1/(1 − z) (notice

that
∑

k≥0 pk = 1/(1 − p)) and the derivative operator z ∂
∂z (abbreviated by ∆). Indeed, when f is the

monomial function k 7→ k`, the three moments express as

E[f(X)] =
p

1− p
∆`D(z)|z=1−p, E[Xf(X)] =

p

1− p
∆`+1D(z)|z=1−p, and

Var[f(X)] =
p

1− p
∆2`D(z)|z=1−p.

Table 1 provides closed formulas for small values of `. With the help of any kind of computer algebra
software, it is obvious to obtain a closed formula for a monomial function of any degree. This formula
corresponds to sums of Stirling numbers of second kind. Furthermore, linear property of moments allows
to derive closed formulas for any polynomial function.

Table 1: Closed formulas some component score functions.

k 7→ f(k) E[f(X)] E[Xf(X)] Var[f(X)]

k 7→ α α α 1
p 0

k 7→ k 1
p

2−p
p2

1−p
p2

k 7→ k2 2−p
p2

6−6p+p2

p3
20−32p+13p2−p3

p4

For functions that are polynoms, it is not obvious to obtain a closed formula. Nevertheless, for functions
that are of order o(k), such as k 7→

√
k or k 7→ log (1 + k), the remainder Rn :=

∑
k>n f(k)pk is of order

o(npn). Thus, the computations of the first n terms of the sum give access to the first bn log pc digits of the
constant.

5.2 Numerical experiments
These experiments illustrate and confirm the theoretical results of previous sections. We consider two
cases: first, a memoryless source with probability {p0 = 3/4, p1 = 1/4} and second, words taken from the
Bacillus Subtilis DNA sequence (' 4M nucleic acids). In this last case, we compute the match probability
using the four bases frequencies (p1 = 0.254188). We compare bases (from left to right) of two randomly
chosen sub-sequences of size n from the whole genome. Then we build the sequence of size n over {0, 1}
that corresponds to mismatches and matches.

We use the following score functions: f 6=(k) = −k and f=(k) = k2.
The two following figures are respectively the theoretical results and the experimental results. The X-

axes and Y -axes corresponds respectively to the length of the words and to their scores. We trace the
theoretical mean and the bandwidth given by the standard deviation.
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Then, we provide the theoretical and experimental laws computed using a 20000 score measure sample
for sequences of size 1000. We obtain the following results:
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We can notice that for real sequences, the distribution remains Gaussian. A small bias concerning scores
grower than the average appears probably because bases are not randomly uniformly distributed in real
sequences. Nevertheless, this bias does not really break the Gaussian behavior of the distribution.

6 Conclusion and Future Works
6.1 More general sources
Our study lies in a context of simple memoryless sources. It provides a precise approximation of the ex-
pected score and its variance. Nevertheless, biological (and more generally real) sequences are (fortunately)
built in a more complex manner. Thus, a similar study in a context where sources admits correlations be-
tween symbols (such as Markov chains or, in general, dynamical sources [Val01]) should certainly be
meaningful. Our study can entirely be performed in the context of dynamical sources. Indeed, the key fact
of the study consists in the simplicity of the expression of S0, S1 and its derivatives at point u = 1. This also
holds when the generating functions are replaced by generating operators (for details on generating opera-
tors, the reader can refer to [BV02]). Similar results, that moreover emphases the influence of correlations,
can be deduced.

6.2 Non binary alphabet
To compute the score between the words w[1] and w[2], we considered only two kind of events, the
“matches” and the “mismatches” for each position. Among the functions described in [MR03], those we
have presented in this paper correspond to a sub-family, there is no difficulty to extend the previous results
to the whole family. Indeed, among the functions based on cutting in consecutive blocks of “matches” and
“mismatches”, some depend on a “quorum”. Within this context, a “match” is to be considered only if it
occurred in more than Q% of the words already processed, while a “mismatch” is to be considered only if
it occurred in less than Q% of the cases. In the other situations, the comparison has to be ignored. Thus, if
we consider the two words w[1] and w[2], as well as the boolean vector of “presence” −→q of size n associ-
ated with the quorum Q (ie. , −→q [i] is true if, and only if, the constraint quorum is satisfied), we can build
the word wQ ∈ {0, 1, x}n (Q being the quorum) such that: wQ

i = 1 if w
[1]
i = w

[2]
i ∧ −→q [i], wQ

i = 0 if
w[1]i 6= w[2]i ∧ ¬−→q [i], and then wQ

i = x otherwise.
Here, we are thus interested in the score of a word built over the 3-ary alphabet {0, 1, x} where the

consecutive matches of scored by the functions f0, f1 and fx ≡ 0. We can state the most general problem
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of studying the score functions defined by using a decomposition in blocs over an alphabet Σ with scoring
functions {fm}m∈Σ. The basic decomposition of Σ? has to be adapted for this context but the core of the
study remains valid. For alphabets with more than two letters, we can make use of a recurrence between
the set of words built over an alphabet with ` symbols and set of words built over an alphabet with ` + 1
symbols. Indeed, if Σ` := {0, 1, . . . , `−1} and Σ`+1 := {0, 1, . . . , `} denote two alphabets of respectively
` and ` + 1 symbols, one has

ε + Σ+
`+1 = (ε + Σ+

` ) · (`+ · Σ+
` )? · (ε + `+).

This recurrence directly translates into a recurrence on score generating functions as shown in Section 2.

Aknowledgments. We wish to thank Jean-François Marckert for its helpful comments and advices. We
also thank the anonymous referees for their precious reading of this paper.

References
[AGM+90] Stephen F. Altschul, Warren R. Gish, Webb Miller, Eugène W. Myers, and David J. Lipman.

A Basic Local Alignment Search Tool. Journal of Molecular Biology, 215:403–410, 1990.

[BB95] Vladimir Batagelj and Matev¸ Bren. Comparing Resemblance Measures. Journal of Classifi-
cation, 12(1):73–90, 1995.

[BV02] Jérémie Bourdon and Brigitte Vallée. Generalized Pattern Matching Statistics. In Trends
in Mathematics Birkhauser, editor, Mathematics and Computer Science II, pages 1–16, 2002.
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