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Random assignment and shortest path
problems

Johan Wästlund1†

1 Department of Mathematics, Linköping University, 581 83 Linköping, Sweden

We explore a similarity between the n by n random assignment problem and the random shortest path problem on the
complete graph on n+1 vertices. This similarity is a consequence of the proof of the Parisi formula for the assignment
problem given by C. Nair, B. Prabhakar and M. Sharma in 2003.

We give direct proofs of the analogs for the shortest path problem of some results established by D. Aldous in connection
with his ζ(2) limit theorem for the assignment problem.
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1 Introduction
The purpose of this article is to bring together some results on random assignment and shortest path prob-
lems, and to clarify how they relate to each other. In particular, we investigate the consequences of the two
very different and hard proofs of the ζ(2) limit theorem for the random assignment problem given by David
Aldous [1] and by Chandra Nair, Balaji Prabhakar and Mayank Sharma [11].

The random shortest path problem had already been investigated by Svante Janson [6] (and has recently
been further studied by R. Van der Hofstad, G. Hooghiemstra and P. Van Mieghem [4; 5]). By putting the
papers [11] and [6] side by side, one can see that there is a close connection between these two random
optimization problems.

By establishing this connection we show that some results of Aldous [1] must hold also for the shortest
path problem. Actually these properties are easier to establish directly for the shortest path problem, and by
doing so we obtain, via the results of [11], new independent proofs of Aldous’ results.

2 Random assignment problems
The n by n exp(1) assignment problem can be defined as follows: The entries of an n by n matrix are
independent exp(1) random variables. An assignment is a set of n matrix positions, such that each row and
column contains exactly one of them. The cost of the assignment is the sum of these matrix entries.

A random variable that has been studied for a long time is the minimum cost Cn of an assignment. In
1979 D. Walkup [14] showed that E (Cn) remains bounded as n →∞. It was conjectured by Marc Mézard
and Giorgio Parisi [8; 9; 10] that as n →∞,

E (Cn) → π2

6
. (1)

In her PhD thesis [12] in 1992, Birgitta Olin gave further evidence for the Mézard-Parisi conjecture by
simulation, and proved an asymptotic lower bound of 1.51. From her simulations, she made the interesting
observation that in about half of the rows of the matrix, the smallest entry in the row is also the one that
participates in the minimum assignment. She investigated this further, and discovered what we will call the
2−i-law:

Theorem 1 Let the ordered sequence of entries in a particular row of the matrix be x1 ≤ x2 ≤ · · · ≤ xn.
Then for each positive integer i, the probability that xi participates in the minimum assignment converges
to 2−i as n →∞.

In 2001, the limit (1) was proved by David Aldous [1]. In the same paper, he also gave a proof of
Theorem 1.
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3 Exact formulas
In 1998, Parisi suggested another way of proving (1). He conjectured in [13] that for every n, E (Cn) is
given by the exact formula

E (Cn) = 1 +
1
4

+
1
9

+ · · ·+ 1
n2

. (2)

This conjecture was verified simultaneously and independently in 2003 by Chandra Nair, Balaji Prabhakar,
and Mayank Sharma [11], and by Svante Linusson and the author [7]. The Linusson-Wästlund proof gives,
as a by-product, an exact formula for the i = 1 case of the 2−i law. It is proved in [7] that the probability
that the smallest entry in a row participates in the minimum assignment is

1
2

+
1
2n

. (3)

Naturally one can ask whether there are similar exact formulas for i ≥ 2, but the approach taken in
[7] does not seem to give any information about this. We show that from the proof of (2) given by Nair,
Prabhakar and Sharma, one can deduce not only the formula (3), but also exact results for the higher values
of i, allowing a new proof of Theorem 1. In particular, we show that the probability that the second smallest
entry in a row participates in the minimum assignment is given by the formula (4) below.

It is quite remarkable that although the three proofs of (1) given in [1; 7; 11] are very different, they all
give the i = 1 case of Theorem 1 as a by-product, and two of them allow proofs of the full theorem.

4 The shortest path in a random graph
It is tempting to try to find a simple explanation of the formula (3). It seems as if with probability 1/n, the
smallest entry will participate “just by chance”, and if this is not the case, then with probability exactly 1/2,
it will participate anyway because it is smallest.

There is another type of random minimization problem where precisely this situation occurs. This is the
problem of the minimum length path between two vertices in the complete graph, where the edge lengths
are chosen independently from exp(1)-distribution.

We consider this problem on the complete graph Kn+1 on n + 1 vertices v0, . . . , vn. We choose two
vertices v0 and vn and ask for the probability that the shortest edge from v0 belongs to the shortest path
from v0 to vn. If “by chance” the shortest edge from v0 happens to go directly to vn, then this is of course
also the shortest path to vn. Suppose therefore that the shortest edge from v0 goes to another vertex, say
v1. Then we can subtract the length of the edge (v0, v1) from the lengths of all edges from v0, including
the one to v1. In this new problem, the edge (v0, v1) has zero length, but all other edge lengths are still
independent and exp(1)-distributed. Since every path from v0 to vn contains exactly one edge from v0, the
same amount has been subtracted from all of them, so the shortest path will still be the same. Moreover, it
is clear by symmetry that the probability that the edge (v0, v1) belongs to the shortest path from v0 to vn

is exactly 1/2, since this happens if and only if without using the edge (v0, v1), the distance from v1 to vn

is shorter than the distance from v0 to vn. It follows that the participation probability of the shortest edge
from v0 is given by (3).

This leads to the question whether the participation probability of the i:th shortest edge for i ≥ 2 is also
the same in the two problems. We show that this is the case. Moreover, we give an independent proof that
the 2−i-law holds also for the shortest path problem, thereby obtaining a new proof of Theorem 1.

5 Combining the results on shortest paths and minimum assign-
ments

The shortest path problem was studied in detail by Svante Janson [6] in 1999 and more recently by
R. Van der Hofstad, G. Hooghiemstra and P. Van Mieghem [4; 5]. We first give a short account of some of
Janson’s results, and now we consider the complete graph Kn on n vertices.

Janson used the first passage percolation model, where an infection starts at a root vertex, which we now
take to be vn, and spreads through each edge with exp(1) rate. It is easily observed that the length of the
minimum path from vn to another vertex vj is equal to the time at which vj is infected. If, at a certain
moment, k vertices are infected, then the time until the next vertex is infected is exp(k(n− k))-distributed,
since there are k(n−k) edges that connect an infected vertex to a non-infected one. Moreover, these waiting
times are independent.
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Let t1, . . . , tn be the ordered sequence of distances from the vertex vn to all the vertices of the graph,
including vn itself. Equivalently, t1, . . . , tn are the times at which a new vertex gets infected. Then t1 = 0,
and the increments tk+1 − tk are independent, with tk+1 − tk ∼ exp(k(n− k)).

In [11], the proof of the Parisi conjecture (2) is based on a result on minimum assignments in certain
submatrices, with a remarkable similarity to Janson’s results on minimum paths. In an n− 1 by n matrix of
independent exp(1) entries, consider the costs of the minimum assignments in the n submatrices obtained
by deleting one of the columns. Let T1, . . . , Tn be the ordered sequence of these costs. The following
theorem was proved by Nair, Prabhakar and Sharma [11]:

Theorem 2 The increments Tk+1 − Tk are independent, and Tk+1 − Tk ∼ exp(k(n− k)).

This is a quite deep theorem, and as we explain in Section 9, it is relatively simple to prove that the
Parisi formula (2) follows from it. It has the consequence that we can couple the random n− 1 by n matrix
with the edge lengths in Kn in such a way that Tk = T1 + tk for every k. Suppose now that we introduce
another vertex v0 with independent exp(1) edge lengths x1, . . . , xn to the n vertices v1, . . . , vn, and that we
extend the n − 1 by n matrix by another row with independent exp(1) entries X1, . . . , Xn. Then we can
couple the n by n matrix with the edge lengths in Kn+1 in such a way that Xk = xk for every k, and the
entry Xk participates in the minimum assignment if and only if the edge of length xk participates in the
minimum path from v0 to vn. This is because the minimum assignment in the matrix consists of an entry
Xi together with the minimum assignment in the matrix obtained by deleting column i in the original n− 1
by n matrix, and similarly the shortest path from v0 to vn in the complete graph consists of an edge (v0, vi)
(here possibly i = n) together with the shortest path from vi to vn.

6 Proof of the 2−i-law for the shortest path problem
In the percolation model, we now let the infection start at the vertex v0, and spread to the vertices v1, . . . , vn

by rate 1 through every edge. If we do not care about the actual times that the infection spreads, we can
think of this as a process in discrete time, where at each step, an edge is chosen uniformly among all edges
that connect an infected vertex to a non-infected one. The infection spreads through this edge, and the edges
that are chosen in this way form a tree that grows from v0 and eventually reaches all vertices.

Instead of fixing another vertex, say vn, and asking for the probability that the i:th shortest edge from v0

belongs to the shortest path from v0 to vn, we ask for the expected number of vertices among v1, . . . , vn

whose shortest path from v0 starts with the i:th shortest edge. This is of course the same thing apart from
a factor n. The following lemma shows that it suffices to show that the 2−i-law holds in the discrete
percolation model.

Lemma 1 If we fix i and let n →∞, then with high probability, the i:th edge grown from the root v0 in the
percolation model is also the i:th shortest edge from v0.

Proof: We have to show that with high probability, the i shortest edges from the root are also the shortest
paths to the vertices they go to. This follows easily from the results of Janson [6]. The typical distance
between two randomly chosen vertices in the complete graph is about log n/n, and moreover the probability
that the distance is smaller than, say, log n/(2n) tends to zero as n → ∞. Therefore with high probability
in the limit n → ∞, the i shortest edges from the root are all of length smaller than log n/(2n), and for
none of them there is a shortcut, that is, some other path of smaller length to the same vertex. 2

We can now give a proof of the 2−i-law for the shortest path problem. By the coupling described in the
previous section, this gives a new proof of Theorem 1.

Theorem 3 Let the edges of the complete graph on the vertices v0, . . . , vn have independent exp(1)
lengths. Let the ordered sequence of edge lengths from the vertex v0 be x1 ≤ x2 ≤ · · · ≤ xn. Then
for each positive integer i, the probability that the edge of length xi participates in the shortest path from
v0 to vn converges to 2−i as n →∞.

Proof: We let mi be the number of vertices that are reached from the root through the i:th edge grown from
the root in the percolation model (and mi = 0 if there are fewer than i such edges). By symmetry,

E (m1) =
n + 1

2
,
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since the root and the vertex reached in the first step of the percolation are competing on equal terms for the
remaining vertices. Similarly, for i ≥ 2, if k is the number of vertices that are not reached through any of
the first i− 1 edges from the root, then conditioning on k > 0 we have

E (mi) =
k + 1

2
,

while obviously mi = 0 if k = 0. By induction on i it follows that for fixed i, as n →∞, we have

E (mi)
n

2i
+ O(1),

where the error term comes from the probability that mj = 0 for some j < i. Therefore the probability that
a given vertex, say vn, is reached through the i:th edge from the root is

2−i + O(1/n).

In view of Lemma 1, this completes the proof. 2

7 An exact formula for the second shortest edge
We prove an exact formula for the probability that the second smallest matrix entry in a row participates
in the minimum assignment, or equivalently, that the second shortest edge from the root participates in
the shortest path to a particular vertex. However, since this formula turns out to be quite complicated, our
conclusion is that the formula is in itself of limited interest.

We consider the percolation process described earlier, and condition on the number i of vertices apart
from the root that are infected before the second edge is grown from the root. The probability that this
number is equal to i is given by

1
i(i + 1)

.

Given that this happens, the vertex connected to the root by the second edge from the root will compete
for the remaining vertices on equal terms among the i + 2 vertices that are infected at this stage. Hence the
expected number of vertices that are reached through the second edge from the root is

1 +
n− i− 1

i + 2
.

It remains to find the probability that the second edge grown from the root in the percolation process is
also the second shortest edge from the root. Let Yi = ti+1 − ti be the times between the infections of new
vertices. The first edge grown from the root has length Y1. Then i − 1 more vertices are infected through
this edge, and the lengths of the edges from the root to these vertices, say v2, . . . , vi, are Y1 +Y2 +Z2, Y1 +
Y2+Y3+Z3, . . . , Y1+ · · ·+Yi+Zi, where Z1, . . . , Zi are exp(1) variables, independent of everything else.
The next edge to spread the infection is the second edge from the root, which has length Y1 + · · ·+ Yi+1.

In order for this edge to be the second shortest of the edges from the root, first of all Yi+1 must be the
smallest of the numbers Z2, . . . , Zi, Yi+1. Conditioning on this is equivalent to conditioning on the event
Yi+1 = 0. Given this, we can exclude the edge of length Y1 + · · ·+ Yi + Zi, and then Yi must be smallest
of the numbers Z2, . . . , Zi−1, Yi and so on. Since Yi is exponential of rate i(n− i + 1), the probability for
all this is

i−1∏
j=1

(i + 2− j)(n− i− 1 + j)
i− j + (i + 2− j)(n− i− 1 + j)

.

Consequently, the probability that the second shortest edge from v0 belongs to the shortest path from v0 to
vn is given by

1
n

n−1∑
i=1

1
i(i + 1)

(
1 +

n− i− 1
i + 2

) i−1∏
j=1

(i + 2− j)(n− i− 1 + j)
i− j + (i + 2− j)(n− i− 1 + j)

. (4)

For i = 2, 3, 4, 5 this evaluates to 1/4, 19/72, 89/336 and 2639/10000. The formula (4) can possibly
be simplified slightly, but it seems more interesting to try to obtain a better understanding of the connection
between the assignment and the shortest path problem in this probabilistic model.
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8 Aldous’ function h(x)
The proof of (1) given by Aldous in [1] is based on the solution of the recursive distributional equation

X min(ξi −Xi), (5)

where ξi are the times of the events in a rate 1 Poisson process, and Xi are independent variables of the
same distribution as X . It is proved that the logistic distribution given by

P (X < x)
1

1 + e−x

is the unique solution to this equation. Then (1) is deduced from the following theorem:

Theorem 4 Let x be a positive real number. When n →∞, the probability that a matrix entry participates
in the minimum assignment given that it is equal to x/n, converges to a certain function h(x) which is given
by

h(x) = P (x < X1 + X2),

where X1 and X2 are independent random variables of logistic distribution.

Moreover, it is shown that

h(x)
e−x(e−x − 1 + x)

(1− e−x)2
.

Theorem 4 seems to be out of reach for the method employed in [7], but again we give a new and indepen-
dent proof by showing that the same result holds for the shortest path problem.

It follows from Janson’s results [6] that the shortest path from v0 to another vertex vi in the complete
graph on n + 1 vertices v0, . . . , vn is t = Y1 + · · ·+ Yk, where Y1, . . . , Yn are independent and for every i,
Yi is exponential of rate i(n + 1− i), and k is chosen uniformly on 1, . . . , n independently of Y1, . . . , Yn.
If vj is another vertex, then the difference ∆t in distance to vi and vj is a sum Yk+1 + · · · + Yl, where k
and l are chosen uniformly and (if we allow i = j to hold with probability 1/n) independently on 1, . . . , n.
Here the sum should be interpreted in the obvious way as a negative sum if k > l.

At this point we allow ourselves to be a little imprecise and just say that unless k or l is very close to
1 or n, the sum of the deviations of the variables Yk+1, . . . , Yl from their means will most likely be small
compared to the impact that the choices of k and l have on the value of ∆t. To find the suitably normalized
limit distribution of ∆t we may therefore replace the variables Y1, . . . , Yn by their mean values. Hence

∆t ≈ 1
(k + 1) · (n− k)

+ · · ·+ 1
l · (n + 1− l)

.

We can approximate n ·∆t by the integral ∫ β

α

dx

x(1− x)
,

where α and β correspond to the limits k and l of summation, and are therefore independent and uniform
on the interval [0, 1]. This integral can be written∫ β

1/2

dx

x(1− x)
−

∫ α

1/2

dx

x(1− x)
.

It is therefore the difference of two independent equally distributed random variables whose distribution
can be found as follows:∫ α

1/2

dx

x(1− x)
=

∫ α

1/2

(
1
x

+
1

1− x

)
dx = log α− log(1− α).

Moreover,

P (log α− log(1− α) < x) = P

(
α

1− α
< ex

)
P

(
α <

ex

1 + ex

)
=

ex

1 + ex

1
1 + e−x

.

Hence n · ∆t converges in distribution to the difference of two independent logistic variables. Since the
logistic distribution is symmetric, this is the same thing as the sum of two independent logistic variables.
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Notice however that n(t−E (t)) does not converge to a logistic variable, since there will be a considerable
impact on nt coming from the fluctuations in Yi for small i. It is only the difference in distance that
converges to the difference of two independent logistic variables.

Now we can prove the analog of Theorem 4 for the shortest path problem. Let vi and vj be two arbitrary
vertices in the complete graph on n + 1 vertices v0, . . . , vn. Consider the shortest paths from these two
vertices to the vertex v0. A priori, it is highly unlikely that the edge connecting vi to vj will belong to any
of them, since this single edge will normally have length much greater than log n/n, the expected distance
to v0. If we now fix a positive real number x, and condition on the edge (vi, vj) having length x/n, then
the probability that it belongs to the shortest path connecting vi to v0 is the same as the probability that
x/n < ∆t, in other words that x < n ·∆t. As n →∞, this converges to Aldous’ function h(x).

The limit (1) can now be established as in [1] by computing the integral∫ ∞

0

x · h(x) dx
π2

6
,

or as in [11] by first establishing the Parisi formula (2).

9 The Parisi formula
We can derive the Parisi formula (2) by showing that the expected length of the first edge in the shortest
path between two given vertices in Kn+1 is

1
n

(
1 +

1
4

+
1
9

+ · · ·+ 1
n2

)
. (6)

Since we know that this is the same thing as the expected cost of the entry in the first row in the minimum
assignment, (2) follows. We here point out that this follows from some recent results of R. Van der Hofstad,
G. Hooghiemstra and P. Van Mieghem [4; 5]. These authors studied the shortest path tree (SPT) in the
complete graph with independent exp(1) edge lengths. The SPT is the tree formed by all edges that belong
to the shortest path from a specified root vertex to some other vertex.

Van der Hofstad, Hooghiemstra and Van Mieghem proved that the expected total length of the SPT is
equal to

1 +
1
4

+
1
9

+ · · ·+ 1
n2

,

in other words, the same number that occurs in the Parisi formula. Since the number of edges in the SPT is
n, it follows that the average length of an edge in the SPT is given by (6).

We now notice that each edge in the SPT is the first edge of the shortest path from exactly one vertex
to the root. Hence if we choose a vertex vi uniformly among v1, . . . , vn and consider the first edge of the
shortest path from vi to v0, then we are actually choosing an edge of the SPT with uniform distribution on
its n edges. Hence the expected cost of this edge is given by (6).

10 Interpretation of the shortest path problem as an assignment
problem

It was noted by Chandra Nair (personal communication 2005) that the shortest path problem on the complete
graph on n+1 vertices can be encoded as an assignment problem in an n by n matrix with entries a(i, j) as
follows. We label the rows by the numbers 0, . . . , n− 1 and the columns by the numbers 1, . . . , n. We now
simply let the matrix entries be equal to the lengths of the edges between the corresponding vertices. The
entries a(i, i) for i = 1, . . . , n−1 are all zero, but notice that with our numbering, these entries are one step
off the main diagonal. It is now easily verified that an assignment in this matrix must contain a set of entries
corresponding to a path from v0 to vn in the graph, and conversely any such path can be completed to an
assignment by combining it with the matrix entries a(i, i) for the vertices i that do not belong to the path.
Hence the shortest path problem on the complete graph is equivalent to a special case of the assignment
problem.

In the random model, the matrix entries apart from the (n−1)-diagonal of zeros are exponential variables
of rate 1. We have the symmetry a(i, j) = a(j, i) for 1 ≤ i, j ≤ n − 1, but otherwise the variables are
independent. It can now be seen easily in the percolation model that this symmetry is immaterial, and that
the problem would essentially be the same even if each pair of vertices were connected by two directed
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edges of independent lengths. This is because in the percolation model, only the lengths of the edges from
an infected to a non-infected vertex are considered. If the distances were asymmetric, so that the distance
from vi to vj could be different from the distance from vj to vi, then since one of the vertices must be
infected before the other, only one of the two distances will ever be considered. Another way to state this is
to say that there is an algorithm for finding the minimum assignment in the corresponding matrix that never
reads both of a(i, j) and a(j, i) for i 6= j. Hence it does not matter whether these variables are actually
equal, or just have the same random distribution.

This shows that the random shortest path problem on the complete graph Kn+1 is equivalent to the
random n by n assignment problem with a given zero cost (n − 1)-diagonal. We remark that assignment
problems with a given set of zero cost entries have been studied by several authors [2; 3; 7]. In particular,
D. Coppersmith and G. Sorkin [3] proved in 1999 that the expected value of the assignment problem with
an (n− 1)-diagonal of zeros is asymptotically log n/n, which is equivalent to the corresponding result for
the shortest path problem established by Janson [6] in the same year.

11 A conjecture
We finally mention a very natural conjecture, which can possibly be proved by the methods of [11]. As was
explained in the previous section, the shortest path problem is equivalent to an assignment problem with an
(n− 1)-diagonal of zero entries in the matrix.

If a row in the matrix contains independent exp(1) entries, and we condition on the location of the
minimum entry in the row, then since every minimum assignment contains exactly one entry in the row, we
get an equivalent problem by subtracting the value of the minimum from each entry in the row. This leaves
a zero in the position of the minimum, and by well-known properties of the exponential distribution, the
remaining entries will still be independent and exp(1)-distributed.

Conditioning on an (n − 1)-diagonal of zero entries is therefore equivalent to conditioning on the mini-
mum entries in each of these n− 1 rows occurring in different columns. It is therefore natural to make the
following conjecture:

Conjecture 1 Theorem 2 holds even if we condition on the location of the minimum entry in each of the
n − 1 rows of the matrix, or equivalently if we choose in an arbitrary way one position in each row and
condition on these entries being zero.

We have seen that Theorem 2 of Nair, Prabhakar and Sharma leads to the solution of the recursive
distributional equation (5) considered by Aldous. It is highly desirable to obtain a better understanding
of this theorem, since its generalizations could eventually lead to the solution of other related problems,
for instance the recursive distributional equation associated with the random traveling salesman problem,
described in [1].
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